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CRITICAL STRESS OF THIN-WAL)LED CYLINDERS IN TORSION

By S. B. Batdorf, Manuel Stein, and Murry Schi;dcrout
SUMMARY

A theoretical solution is given for the critical stress of
thin-walled cylinders loaded in torsion. The results are presented
in terms of a few simple formulas and curves which are applicable
to & wide rangs of cylinder dimensions from very short cylinders of
large radius to long cylinders of small radius. Theorstical
results are found to be in somewhat better agreement with experi-—.
mental results than previous theoretical work for the same range
of cylinder dimensions.

INTRODUCTION

For most practical purposes the solution to the problem of
the buckling of cylinders in torsion was given by Donnell in an
importent contribution to shell theory published in 1933 (reference 1).
The present paper, which gives a solution to"the same problem,
has two main obJectives: first, to present a theoretical sclution
of somewhet improved acecuracy; second, to help complete a series
of papers treating the buckling strength of curved sheet from a
unified viewpoint based on a method of analysis essentially
equivalent. to that of Donmell but comsidersbly simpler. (See,
for example, references 2 and 3.)

The method of solution in the preseat paper 1is that "developed
in reference 3. The steps in the theoretical computetions of the
critical stress are contained in the appendix. The results are
given in the form of nondimensional curves and simple approximate
formulas which follow these curves' closely in the usual range of
cylinder dimenslons.
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SYMBOLS

Jsm,n integers
P arbltrery constant
r redius of cylinder _
t thickness of cylinder wall
u axlal component of dlsplacement; positive in x—direction
v circumferential component of displacement poéitive in

. y~-&irection -
W radial component of displacement; positive outward
x axlial coordinate of cylinder
y circumferentlal coordinate of cylinder
D flexural stiffness of plate per unit length (: Et3

‘ 12(1 - p?)

B Youngt!s modulus
L length of cylinder

Q - mathematicael operator defined in appendix

2 2 . B
Z curvature parameter (3&€;f1 - qr_ (%) ilﬁl - u2:>

ans bp coefflcients of deflection functions

kg "_ critical shear-stress coefficlent appearing in
2
formile Tgp = kg 22

My = & (02 + p2)2 4+ 12725
Se (2 + 2)2

' Vo Wy deflection Tunctions defined in sppendix
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A half wave length of buckles In circwnferéntial direction
i1 Poisgon's ratio
Tor critical shear stress I

y ot ot a”

= + D e
Y-
¥ inverse of y*, defined by v = w
RESULTS AND DISCUSSION

The critical shear stresses for cylinders are obtained from
the equation

2
_kE D

CI‘
12t

The values of kg for cylinders with either simply supporited or
clemped edges are given in the form of logarithmic plots in

" Pigure 1. The ordinate in this figure is the .critical -shear-
stress coefficient kg The abscissa 1s a curvature parameter Z
which ie given directly by the theory and involves the dimensions
of the cylinder and Poisson's ratio.

For very short cylinders the value of the shear-gtress coef-
ficient approaches the values for flat plates, 5.3% when the edges
are simply supported and 8.93 when the edges are clamped. As Z
increases kg also increases and the curves which defined kg
are given approximately 'by straight lines. For simply.supported
cylinders,

= 0.85 z3/lp

For cylinders with clamped odges, -

iy = 0.93 23/
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The range of valldity of these formulass is approximately

2
100<€ 2 < 10 &=,
%2

For the case of long cylinders the curves of figure 1 split
into a series of curves depending upon the radius—thickness ratio.
These cltirves, which correspond to buckling of the cylinder into
two circumferential waves (n = 2), depart from the straight lines

at approximately 2 = 1032 or approximeteély %-:-3vﬁ% . Because
t LR » . .. . - -

the critical shear stress of a long cylinder is almost
independent of end conditions, the curves for different values

of r/t apply both to cylinders with simply supported edges and
to cylinders with clamped edges. These curves are probebly some—
whet inaccurate, however, because one of the reguirements for the
validity of the simplified equatlon of eguilibrium used is

that n2>> 1. A calculation for long cylinders made by Schwerin
end reported in reference 1 by Donnell suggests thet all values
corresponding to the curves given in the present paper for n = 2
are slightly high. - o

In figure 2 the results of the present paper are compared with
those given by Donnell (reference 1) and Leggett (reference 4).
The present solution agrees quite closely with that—of Donnell
except in the transition region between the horizontal part and
the sloping straight—line part of the curves. In thls region the
present results ere apprecisbly less than those of Donnell
(meximum deviationabout 17 percent) but are in close agreement with
Leggett's resulte, which are. limited to low velues of Z.

In figure 3 the present solution and that of Donnell for the
critical sheer stress of simply supported oylinders are compared
on the basis of asgreement with test results obtained by a number
of investigetors.  (See referencesl, 5, 6, and 7.). The curves
giving the present solutlon ere appreciebly closer to the test
points. More then 80 percent of the test points are within 20 percent
of the values corregsponding to the theoreticeal curve for almply
supported cylinders given in the present paper, and all points
are within 35 percent of values corresponding to the ocurve. .

In figure 4 the present solution for criticel shear-stress’
coefficients of long cylinders which buckle into two half waves
ie given more fully than in figure. 1l and 1s compared with test
results of references 1 and 8.
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The computed values from which the theoretical curves presented
in this paper were drawn are given in tables 1 and 2.

CONCLUDING REMARKS

A theorstical solution is given for the buckling stress of
thin-walled cylinders loaded in torsion. The results are appliceble
to a wide range of cylinder dimensions from very short cylinders
of large radius to very long cylinders of small radius. The
theoretical results are found to be in socmewhat better agreement with
experimental results than previocus theorstical work for the same
range of cylinder dimensions. .

Lengley Memoriel Aeronauticel Laboratory
National Advisory Commitlee for Asronautics
Langley Field, Va., March 20, 1947
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APPEEDIX
THEORETICAL, SOLULION

The critical shear stress at which buckling occurs in a
cylindrical shell may be obtained by solving the eguation of
equilibrium,

Equation of equilibrium.~ The equation of squilibrium for
a slightly buckled cylindrical shell under shear is (reference 3)

oy, o 34 :
o P :--—-\7 L'BIZ-FQTcrtax;y:O ()

where x is the axisl direction and y the circumferential
direction. The following figure shows the coordinste system
uged in the anelysis:

/ S
v//,

\\
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Dividing &hrough equation (1) by D gives

by 4 o=k Ay 72 3%y _
Y Ll" F ot 2 B teral (2)

where the dimensionless parameters 2 and kg .are defined by

end

The equation of equilibrium msy be represented by
Qv =0 (3)
where Q 1is defined by

Q=v*+ mzv-“% oy I2 =l
Ll" 3x 12 3x By

Method of solution.-— The equation of equilibrium may be solved

by using the Galerkin method as outlined in reference 9. In
applying this method, equation (3) is solved by expressing w in
terms of an arbitrery number of functions (Vg, Vis . . . Vj, Vo
Wi, . . ., Wj) that need not satisfy the equation but do satisfy
the boundary conditions on w; thus let

J- ) .
W = P &me + z .bm"&n . (ll')
m=0 m=0
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The coefficient &y and by are then determined by the equations

12x 0L ‘
J / anwdxdy’:-o

.

o Lo

2V 1L
L/ WnQWdId,Vﬂo

0 U0

where
n=0,1,2, « ¢« .5 J

The solutions given in the present peper satisfy the following
condltions at the ends. of the cylinder:
For cylinders of short and medium length with simply supported
. . wo_ - o ’
edges w.= 5;2 =v =0 and u 1s unrestralnsd. Fop ¢ylinders of

short and medium length with clemped edges w = gg =u=0 and v ie
unrestrained. For long cylinders w = 0. (See references 2 and 3.)

Solution for Cylinders of Short and Medium Length

Simply supported edges.— A deflection function for simply
supported edges may be taken as the infinite series

o ' =R .
w = gin &L ap 8in IMX 4 cos XL ZE; by sin IZE (6)
A . L ) A L

m=1 m=1

vhere A 18 the half wave length of the buckles in the cir-—
cumferential direction. Equation (6) is equivalent to equation (4)

ir
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Vn = sin %F sin B4X

W. = cog &L gin
A L
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n
. J

Substitution of expressions (6) and (7) into equations (5) and
integration over the limits Indicated give

r : - o™
¥ 2 h Tem——
a,| (02 + g2)2 + 12 > ~ BB
L (02 + p2) i T ﬁ;i
r 3 2
) o\ 2 12720k Bkgp
by (n= + B=)< + nh(n2 N 32)2 . 21*
- - m=1
where
= L
B A
n=1, 2, 3,

and min is odd.
deoterminant vanishes:

9
(7)
mn =0
2 — m?
> (8)
mn o
2 — m2
)

Equations (8) have a sclution if the following
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al 32 5.3 a.)+ 8.5 a6 e bl be .b3 bl‘- b5 b6 P
- 2 b £ ...
n EJ;M]_ © o o o o0 .. o & Z 5 0 =
= ' 1 -2 = 0 coe
n=2 0 E:vie 0 0 0 0 ... -%& 2 z- O = 0
- 1 el 12 2
n—3 O o E"S-DdS O O O LU ] J.‘-O 5 0 7 O 3 LI}
oy - e -'J':g" -29' a0
n= 0o 0 o 1—3;444 ) ol iy 0% 0 F 0
) 1 _10 .20 0.,
n 0 0 0 0 E;MS 0 ... 60 -5 0 > 0 =
_ .6 .2 -39
=6 0 0 0 o0 o0 l%émé emz 0 -2 0 B 0 L
- .2 e & 1
n=1 0 S 0 1= 0 - ... E;Ml o 0 0 0 0 ...
= 2 - -0 1 '
2| £ Z € o0 o .. o i 0 0 o o .
- <] 12 .2 1
—3 Ll-o 5 o 7 O 3 .o 0 O EEM3 o 0 O s
- 4 12 .20 1
= 15 O 7 0 9 O e o O O O Ejﬂ‘_ O 0 . O
=5 10 20 . .30 1
6| & 2 30 ' 1
n=6 5= o 3 0 & 0 ... © 0 0 0o o0 E;MG s
where -

' 2nk
Mn ____1'(__{(112 + '82)2 + 12Zen
8p k(a2 + p2)2 ]

By rearranging rows
into the product of
to each other, The
following squation:

and columns, the infinite determinant can be factored
two Infinite subdeterminents which are equivalent
critical stress may then be obtained from the

(9)
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n

1 ¢€10)
(11)

)2 MMp -

The first approximation, obtained from the second-order determinant,

is given by
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The gecond epproximation, obtained from the third—order determinant,
is giveny by

kg2 = g3 (12)

(5/ Mt (3)2M3

The third spproximation, obtalned from the fourth-order determinant,
is given hy .

3 8P - P (9P - @Pon - (]

+ MlMQM3M4 =0 ' S (13)

Each of these equations shows that for a selscted value of the -
curvature parameter 2Z +the critical buckling stress of a cylinder

depends on the wave length. Since a structure buckles at the lowest

stress at which instability can occur, kg is minimized with respect -
to the wave length by substituting vaelues of B into the equation

until the minimum value of kg can be obtained from a_plot of kg

against B. This procedure ls permissible when 8> 5% s thet is, .

wher the cylinder buckles into more than two circumferentisl waves.
For the limiting case of a cylinder buckling into two waves,

pgee the sectlon of the present appendix entitled "Solution for

a Lopg Cylinder" which follows.

Figure 5(a) shows the convergence of the determinant for cylinders
with simply surported edges.

Clamyed edgen.— A procedure similer to that used for cylinders
with simply supported edges may be followed for cylinders with
clamped edges. The deflection function used is the following
series: y

oo — —
= i
w = pin EXJ’[ ‘\/ ey | cos I_]i%_;x. - cos8 LE—-‘-—L—E-)-EE .
£ . - H
=0 -
2 ~ - -
+ co8 %? :} by [eos Q%E ~ cos QE.:EEAE%J (%) -
m=0 :
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Bech term of this serdies satisfies the condition on w at the edges.
The functions Vn and Wn are now defined ag follows:

'T
'V'n = gin ﬂ[@os arx _ cos .(.n_'*'_g.).ﬂ]
A L L
%
(13)
Wn = Cco8 ﬂ-iz [cos 9-]-:‘“-35— - cOo8 Qiig)—@:\

where

n= O_, _]-’ 2,‘ e o .

When the same operstions as those carried out for the case
of simply esupported edges are performed, the following simultaneous
equations result: '

For n =0,
) o I
o : m2 fm + 2)2
- - =0
ao(2Mp + Mp) =~ agMp + kg Z bml' m2—lp+(m+2)2"l"
m==l:3:5 ’ '
For n=1,
o 5 2
ey (M + M3) — agMg + kg bn | —E— - —F
1(ML + M3) —agM3 + kg ) L@—L 2 -9

m=0,2,4

m+2)2 | _@+2)% | o
m+2)2%-1 (m+2)%-9
For n=2,3, 4. ..,

e

_me

. [oo)
en(Mn + Mn+2) — epoMp — ansoMns2 + kg bm[

l\/

i
o

_ me o me22 (m + 2)° .\;0
2

me--(n+2)2 (n + 2)2—112 (m+2)2—(n+2)
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where mt n is odd,

For n =0,

bo(aM g+ Mp) = DMy — kg z am{_ m? + (m + 2)2 ] o
m=1,3,5 -

For n =1,

o -
u 2 2 - (m + 2)2
b1(Mp + M3) — B -k N aml L BN S
. 3 3M3 8 m=0,L2,’h l_me -1 m2 — 9 (m + 2)2 -1
.
pofmr2)° 0
(m+2)2 -9
E‘or n = 2_’ 3,. )'4" LI I Y
N >~ 2
: o m
bp(Mp + Mpyp) = DpoMy — bpeoMnip — kg >‘ | ST 5
. =0 m- — n me — (n + 2)
=_(m+2)2 (m +.2)2

= -
(m+2)2-02 (m+2)2— (n+2)2 (16)

-t

where m.i n is odd and

= | {n<c + B + - -
¥n 88 hf ) wH(n2 + g2)2

—

The infinite determinant formed by these equations can be rearranged
80 88 to factor into the product of two determinants which are
equivalent to each other. The vanishing of one of these determinants

leads to the following equation (limited for convenience to the
sixth arder):
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&0 by ap b3 ay b5

n=0| (o) 15 -gM - 1%5 0 - 531_"'5-

il % - %;‘% %75_2 ﬁ(Mst) - %9%(2 o BEet)

n= 0 % - ﬁMa - %9%9 E]'E(MLI_+M6) %;l

n=5| - 53% o - %—%g - én% % é(MS”M?)

The first approximetion, obtained from the second—order
determinant, 1s given by

ke? = (2] (205 + 1) (g + 113) (18)

The sgecond epproximation, obtalned from the third—order determinant,
is given by :

(M + M3) | (Mg + Mp) (Mp + M) — MoP]

32\ 6L 2
l5> (Me"'M)-I-)"E'%%':M’Z"’ %)2 (EMQ"'MQ)

kg? = (19)

The third approximation, obtained from the fourth-order determinant,
is given by _
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2
15 315 105 105 315)2 (Mg + Mp) (M1 + M3) + (%)2 (Mg + Mp) (M3 + M)

a1

ik 321_1;’@_353&_)2,]{82[&12

e (2P s _aB e
+(105/ :(M]_ Mg)(M2+M.[;) (15)2 (M2 Mu)(M3+M5) 105 315 Mp(My M3)

- 8k 352 — J0% 1472 - G &4
15 105 Mol + 15) 105 g5 30+ M) 15 105 "3 ¥ M)

64 e ' o .
" E%JF%EE)MQM?’}!-%%*M‘*)”*EI"‘*F‘HZMl(MﬁMS)+M3M5J =0 (20)

— ]
—_

These equeticns may be golved in the same way as in the previcus problem of
simply supported edges, by substituting values of f into the equation until the
minimm value of kg is obtained from a plot of B and correspondirng values of k-

The restrictian that B> & applies for cylinders with clamped edges es well as for
- o .

cylinders with simply supparted edges. Figure 5(b) shows the convergence of this
determinant.

HHET *ON NI VOWN _
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Solution for a Long Cylinder

A long slender cylinder (Z > 10 i-é- will buckle into two
-waves in the elrcumfersntiel direction. IFf, in the previous
capes of cylindere with simply supported or clamped edges, the
half wave length in the circumfersntisl direction A 1is taken
as 11:::-/2, it is possible to find tho criticel stress of a long
slender cylinder with the corresponding edge conditions. This
method of solution is laborious, however, because determinants of
-high order must be employed to obtain solutions of reasonable
accuracy. The labor ig greatly reduced.by the use of the following
deflection function: _

g!)_ co{gg +L22m: + gg] (21)

W = a3« co8 (E.E-:-KP

where p + 1 is the phase difference of the circumferential waves
at the two ends of the cylinder measursed in quarter-revolutions.
This equation matisfies the oingle boundary condition w = 0.
With this deflection function, the functlons V and . W =zll
vanish except .

Vi = cos (P%E- + gz) - cos [:.(E__"'_LE_L@ + %l] ' (22)
: r

‘Use of equa'bions (5),. (21), and (22) and the relation 2\ =
results in the following equation: ,

" 272 1272p%
kg = ..E__a:_.__ P2 + ;t% %) ] Y
8-5(p + 1) ] :tl"l-p (

2. 4 /1\2 |2 12z2(p+2)
+[(p+2) +“2<>;l + (23)

i H(P+2)2 I‘(L)J
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This equation may be written

e - rrl/ o |/_1 _— (pe .Y ) 1272pk

B

8(p + 1) ﬁr;/l-p +_1_+g 74 2
r l-—ué

: 2 b
+[(p+2)2+%-—§3_] + 1222(p + 2) s
L Tyl -2 [(p+2)2+-5—é--—-————-—2t 2
w r[/l-y.a_

24y

For given values of Z -end %Vl - u2, p is varied until a

mipimum value of kg ie obtained from & plot of p- and corresponding
values of kg. The critical stress of a long slender cylinder is
very insensitive to edge restraint; therefore, the solution epplies
with sufficient accuracy to cylinders with either simply supported

or clemped edges. The shear-stress coefficient for long slender
cylinders is plotted asgalnst the curvature parameter in figure k,

and parte of these curves also appear in figure 1.
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TABLE 1

AEROSPACE .coMm

THEORETICAL SHEAR-STRESS COEFFICIENTS AND WAVE LENGTHS

OF BUCKLES FOR SHORT— AND MEDIUM-LENGTH CYLINDERS

First approximation

Second approximation

Third epproximstion

Z
ks .B ks B ks ’3
Cylinders with simply supported edges
0 5.60 0.770 5.34 0.790 | == = = o= - = ==
1 5.69 .805 5.42 .860 5.41 0.865
5 6.68 1.00 6.22 1.015 | m = e e -~
10 8.36 1.24 7.55 1.265 7.545] 1.27
30 14.93 1.82 12.69 1.875 - e
100 3%.09 2.7% 27.86 2.9 e e - -~
300 76.80 3.86 62.47 4.8 61.47 4.32
1,000 | 189.5 5.0 153.0 595 = | em= e — e =
10,000 | 1072 10.0 871.2 11.2 851.9 11.8
100,000 | 6050 17.9 4920 20.1 4800 23.0
Cylinders with clamped edges
o} 9.55 1.175 9.31 1.205 9.09 1.205
1 9.57 1.18 9.32 1.2, e m e e - —
5 9.90 1.23 9.62 .27 e e e - - -
1o} 10.79 | 1.35 10.k2 1.38 10.19 | 1.38
30 16.13 1.89 14,99 197 |- - -
100 35.%0 2.95 30.68 3.14 30.65 3.12
1,000 | 206.3 6.12 167.5 6.70 165.7 7.00
10,000 | 6860 20.85 5449 23.2 5310 24k .8

NATTONAL ADVISORY
COMMITTEE FOR AERONAUTICS
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THECRETICAL SHEAR-STRESS COEFFICIENTS

FCR IONG CYLINDERS

_ .2 )
e . .
[ 4 x 103 428
3 x 10k 2,450
20 <
102 7,780
106 76,500
\.
[ 2.5 x 10* 1,680
109 ' 5,380
50 < 6
10 47,900
107 176,000
s
i 10° 4,800
100 } 10° 35,200
T
[ 10 334,500

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS



ECHNICAL LIBRARY

10° 5 . —
— Long cylinders _‘E‘/'_Hz 2
. l'\' 1” O
— simply supported or 50— ’ {2
| ' es Z
clemped edg 20 E
_ 4
2 2
0’ 5 : Z g
. =
5§ Clamped edges——r—r1% %
u A %
I T LI LI l‘//,y
B Simply supported edgesv'
i )i
(og= - p it
2 = =
ke Tetle B v
5 F——‘"_z N ’//;;/
i 17
] /,/,;,
10 = L= |
— i 7 i
|
o 0 I0? I0° 10° I0°
2 COMMITTEE Fon ATRORATICS -
Z-L- 10 2
-t

Figure 1.~ Critical shear-stress coefficients for thin-walled cylinders
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