Le— . ——m

NACA TN No. 1522

Ky ~ FOR AERONAUTICS |

TECHNICAL NOTE . T "
A7 -

No. 1522 e e s

IN BENDING OR TORSION OF NONUNIFORM BEAMS

« By John C. Houbnlt and Roger A. Anders_on_ o __

g b Langley Memorial Aeronautical La.boratory o
Langley Field, Va. BT

it

Washington . ] R UL .
- February 1948 = . S

i_
[ R =

: N A ¢ A LIHR%R“ ST
7o LANGLEY “MEMOPIAL WAM‘"‘"*—--
T LARRATCRY T e
Sk Tatuitey Fekl. V._ o=

= Rkl o ..-".—- R ——

I
i
1
H


http://www.abbottaerospace.com/technical-library

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO, 1522

CAICUIATICN OF UNCOUFLED MODES AND FREQUENCIES
IN BENDING OR TORSION OF NONUNIFC_)H/I BE_ABB
By Jdohn C. Houbolt and Roger A, Anderson

SUMMARY

A procedure ls presented for the caloulation of frequencies and
modes of nonuniform beems in uncoupled bending and torsional vibration.
Based on the principle of the Stodola method, the procedure consists
of .golving the differentlel equation of equilibrium for vibration by
a method of successive spproximations. Basloc primeiples of engineering
beam theory arse employed in the method, and the integrations involved
are performed by improved mumerloal methods. 'An effort has been made
to perfom all calculations in a manner consistent with the accuracy
to which physlical constente in dDullt-up beams are ordinarily known,

} Higher modes are readlly found by use of the orthogonality
relation between normal modes. The frequency 1g found simply as the
sguare root of the proportlionallty faotor existing between modal
deflection ourves in successive approximations. All computations are
tabular in form and are performed mentally or with the aid of a slide
rule. Comparison made with avallable oxaot analytical solutions shows
that the method gives for practical purposes the. exact answer. Specilal
consideration has been given to the treatment of various boundary
condltions that are found in the vibration of aircraft structures,

The cantilever bedm, the free~free beam, beams with concentrated
messes, beams mounted on springs, beams elastlcally coupled to masses,
end so forth, are shown to be handled with practical simplieity, In
order to serve as a gulde in the solution of practical problems, the
procedures for handling & mmber of different cases are illustrated by
& liberal use of examples.

INTRODUCTION

" In the dynamic analysis of aireraft struotures, the determination
of the natural modes and frequencles is of basic importence. A
number of methods for caloulating modes and frequenciés have been
developed; each method has certain desireble features. The objective
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of the present paper is to develop a procedure which is readily
learned by anyone fanillar witkh engineering beam theory, ls easy and
guick to apply without the use of complicated computing devices, and
glves results within the rangé of accuracy with which the physical
properties of the structure (mass, stiffness distribution, etc.) can
ordinerily be determined. An adaptation of the successive- .
approximation procedure of Stodola (see reference 1) fulfills these
requirements and has the additional advantage that data necessary for
the analysls of stresges due to vibration ave obtained during the
computations for the modes. In the present paper, this successive-
approximation or iteration method 1is employed to obtain solutions to
the differential equations of equilibrium for bending and torsicnal
vihrations.

The Stodola method, outlined _in reference 1, was ordiginally e
graphical-integration procedure for determining fundemental modes and
frequencies. Burgess presented in reference 2 a numerical procedure
for finding the fundamental frequency of a cantllever, whlch was in
essenceo a series of approximate numorical integratlions to determine
the modal deflection followed by an. energy solution for the freguency.
‘Boukidis and Ruggiero (reference 3) gave an application of the Stodola
~ method, in.the form of a numerical procedure, which permittsd cal-
culation of the higher as well as the fundamental modes and freguenciles
of a free-free beam in symmetrical vibration. Inmherent disadvantages

in the method of higher-mode determination, as presented in reference 3,'

‘however,-have been prointed out by Beskln and Rosenberg in reference 4,
These authors made use of-the orthogonality relation between normal
modes: of vibration, in conjunction with Burgees's numerical procedure,
to determine the higher modes of & cantilever,

. Two -improved methods of numericel integration are presented in
the present paper for . .the solution of differential equations by
iteration. One of the methods 1s a summation process, somewhat

-similar to the numerical procedure of reference 2; the other method

is described by Newmark (reference 5), who used it in beam and column

-analysis and ' called attention to ite applicability ‘to vibration
problems. Both methods are simple to apply and lead to relatively
accurate modal deflections. The frequency is finally found to be the
square root of the proportionality factor existing between modal-
deflection curves in successive iterations.

In order to perform the integrations, the boundary conditions
on the vibrating member must be taken into account. Consideration
hes been given herein to a number of different boundary conditions.
Both the symmetrical and the antisymmetrical mcdes of a free-frese beam
- are treated in detmill., Boundary conditions for the vibration of beams
supported on springs, ‘beams elastically coupled to masses, and so

-

-
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forth will be shown to be handled with -practiocal simplicity, Although
the method can be applied to problems in which bending and torsion are
aoupled, the analysis will not be prescented hersln.

ey IR UL
In order to determine modes higher then the fundamental by
iteration, ccmponents of all modes lower than the one to be determined
must be removed. This operation is performed by use of the orthogo-
nality reletion between normal modes, With this additional step ’
acourate solutions for Higher modes are readily obtained.

The basio ét'eﬁs "of 'the iteretion method and & condensed procedure
for solving problems will be outlined in the followlng segtlons,
Actual application of the procedure is illustreted by a mmfbar of
examples. These oxamples are intended to sexrve as a guid.e {n’the
solutions of practical probleme and at the sams time to give an
indication of the simplioclty attainable with ~this method of analysis.
All computations ars performed mentally or with the ald of a slide
rule and comparisons made with the few avallable exadt solutions
show that the iteration method glves for practical purposes the
exaot answer. A theoretical verification of the amlysis presem:ed
is given in the a.ppend:lx.

TR . . . : AR T e

L

SYMBOIS
L * Jength of heam; half ‘spen for symmetrical beems, full span
for unsymmetrical beams o
. Young's modulus of elasticity
G modulus of elastiolty in shear o
bending moment of inextis
I1° msss polar mament of inertia per unit ‘length of beam about
- axis of rotation ' .
0 torsional stiffness constant T S
‘. S : : LT KU 4
¥, ! .  Welght of heam per unit length '
g moceleration due to gravity &

m .. mass of beam per unit length ('—8‘5)
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S : " shegd

M _bending moment

.T-" torque ,

k : 'disﬁaxloé between stations along 'bea.m '
a, -_ amplitude of nth mode {n = 1,2,3, P

Fn2 GIR.- used. in plaoe of an -bo d.en‘oto very small amplitudes
and T o vezy small emplituds

x o - station coord.ina‘be

oy | elastia Spring constant e;t Jth station.

my -con‘centn_:'ated. mags at Jth station

frn frequency of nth nstural mode '(bend.ing or torsional)

vibration, cycleq .por second

wy ' circular frequency of nth natural mode of (bending or
toreional) vibmtion, r&dmns per second, (wn = 2nfn)

el Lt

equivalent loading

eq
D3 natural frequency of a spring—mass osoilla.tor, radians per
second o - : _
63- deflection at station  J ..

yor¥ general notatlion for deflection

Yn( ) or
(o) agsumed or reasonable approximate deflection of nth n.lode s
Y, (x), usug.lly written in texms of & upit tip deflectic(ags -
Y, denotes deflection of a given point; Y,' ‘(x)
denotes modal-deflection funotion

Vo oOr '
n( ) exact deflection of nth mode written in terms of a unit
Ip\% tip defleotion; y, denotes deflection of a given point;
yn{x)} denotes modal-deflection function
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deflection of nth mode after 1’ itérations for both
Yn(i)(x)j derived velues of defleotion and Ya}ues written in
texms of unit tip deflection; Y,\1/ denotes deflection

of e given point; Y, {1)(x) denotes modal-deflection
function ’

Y (1) (x) is glven relative to an axis through center of beam end
o ' must be corrscted to satisfy boundary conditions for
both derived values of deflection and values written in

torms of a unit tip defleotion; Yn'(i) denotes
deflectlon of a gilven point; Yn'(i)(x) denotes modal~
deflection funotion ’

Yo(i) a constant correction to be applied to Yn'(i)(x), after

ith iteration, when a solution is sought for a symmetrical
mode of & free—free beam T

.K(i)x - & linearly varying correctlon to be applied'to Y '(i)(x),
_ » in

after the 1th iteration, when a solution is sought for
an antisymmetirlcal mode of a free-free beam

Yn(i) or .
deflection of nth mode after all modes lowsr than nth mode
¥ (1) (x) have heen removed after ith iteration for both the
n derived values of deflection and values written in
terms of unit tip deflection; yn(i) denotes deflection

of a given point; yn(i)(x) denotes modal-deflection
function ' T

g or o general notation for rotatlon in torsicnal-vibration
problems (with y and Y replaced by ¢ and @

definition of symbols for rotation is similar to that
for deflection)

BASIC STEPS OF ANAIYSIS
Iteration Methods

Bending.~ Examination of the differential equation of equi—
librivn for a beam In free harmonic bending vibration
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o
& ur S |y () (1)

axe ax?
shows that a beam vibrating in one of Its natural modes has an
inertia loading at any polint that is proportional to the product of
the mass intenslty and the deflection at that point. The left-hand
gide of the equatlion represents the elastic restoring foxce of -the
beam and, in the.orxdinary bending theory of beesms, equals the external
loading., The right~hand silde represents the inertla loading whigh
mey be considered at any-instant of time to be sitatically applied.
Deflection functions yn(x) | which satisfy both oquation (1) and the
boundary conditions of the beam are called the natural modes of the
beam. The factor oy, 1 the natural frequency in radians per second.
of vibration of the nth mede., =~ = - '

A curve approximsting the deflection may be assumed end, as
indicated by the right-hand side of the equation, values proportional
to the loading at any poinf Tay be computed directly by muliiplying
the assumed deflection ¥ 0 by the mass intensity et the point.
The factor wn2 can be ignored since 1t 18 a constant and since the
ampllitude of the deflection is purely arbltrary, The values of

mYl(O) then represent the inertla loading at each point, With this

computed loading, a new deflection may be found by any of the known
methods of engineering beam theory such as the direct—integration
method; that is, with the loading on the beam as a starting point,
successive integrations give in turn the shear, the moment, the slope,
and the deflection, '

In the present paper, the process of finding a new deflection
frem an assumed or given approximate deflection ocurve by four
successive numerical integrations is considered one iteration. In
the appendix the new defleotlon is shown to couverge toward the lowest
mode ocmponent present In the assumed deflection. By successive
iteration, & natural-mode deflection curve may be found to an arbiltrery

degree of agccuraacy.

An 1teration by two different methods for a beam in bending
vibration is presented in table 1. The problem used for illustration
is that of a nonunlform cantilever carrying a concentrated mass., The
summation method is & simple numerical~lntegratlion prccedure to
determine the shear, the mcment, the slope, and the new defleation,
The seoond method presented is a form-of numeriocal integration whioh
:2%65 us? of the concept of equivalent concentrated loads. (See

le 1. ’
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Most of the s.téps of an iteration will beoome self—evident on .
inspection of the tabulated computations end the graphical illustrar-
tlions.in figure 1.

For the summation method (table 1), the physical constants. I
‘and n for the cantilever beam are listed in columns 2 and 3, and
the initlally essumed values of deflectlon at each station are listed
in column 4, The beam is divided into equally spaced stations with
the root as station O and the tip as station 10. In the mumerical
‘integrations, the distance M\ between stations may t{xg be carried
a8 a ccmmon :[‘aotor as shown, ~ The loading values mY, which are
proportional to the inertia loading are given in columns 5 and 6.
The shear (column 7) and mcment {column 8) are then found by the
summstion process -indicated in figure 2. Except for the initial .
value, the shear.is found by suscessive addition of the loading
ordinates. The initial value of shear is found by a.ppl.ication of
'bhe following simple equation (i‘rom fig. 2) .

Area.:kég'-é—"-'—h) . |  -- ,—(2)

- Addltion starts from station 10 because the shear 1s known to be
zero there. The mcment is found by successive addition of the shear
va.lues, the addition starts at station .10 whers the moment is zero.
Frcm the  M/I values - {column 9), the slope {column 10) is found
in the same manmer that was used to obtaln the shear except that
integration proceeds frcm station O where the slope is zero.
Successive addition of the slope values, starting at station O, gives
finally the new deflection (column 11). In order to ccmpare the new

. deflection with the assumed deflectlion, the new deflection 1s given
in the next colwmn in terms of a unit tip ordinate. Burgess's method
{reference 2) consists of adding successive station ordinetes but

. &.clear plwsioal interpretation of hls procedure oa:mot readily 'be
made, '

Since the beam has been divided into equal intervals, mess
concentrations on the beam will not, in general, be looated at
stetlion polnts. The provedure, then, is to distribute a concentrated

, mass proportlonally to two adlecent statlon points on the assumption
' that the mass is supported by a simple beam between the two pointe.
When the statlon points are spaced veasonably close, this local
redistribution of <the loading produces no signifioant change 1n 'bhe
" derived deflection, S
: - For curves ‘that cannot be reasona.'bly approximated by straight
lines between stations without resorting to & large munber of stations,
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another method of performing integrations nuterically has been
employed. In reference 5, the equivalent-load method is presented; -
this method mekes use .of the properties of a second--degree curve for
camputing the system of concentrated loads at the stations which
produce the true moment at each station and for computing the concen
trated values of M/EI which ceuse the ‘deflection to be correot at
each -station. The method 1s easy to apply and gives results which
are quite acourate even when ourvaturea are a.ppreoia‘ble between
stations.

For the equivalent~load method (table 1), the equivalent—loading
diagram (coluwmn L4) is computed by using equations (a) and (b) given
in figure 3. These eqiwtlons were taken from reference 5 and are
immediately applicable only to curves confimuous over at least two
station intervals. In order to keep. mYy 0) (column 3) from having

a discontinuity at sta'bion 3, therefore s the conventrated mass
(column 5) is handled sepa.ra.tely ‘ Summation of the equivalent loads
glves the average shear between each station and summation of the
shear gives the itrue~-moment dlagram. The equlvalent values of M/I
(E is carried as a cammon factor) are then Ffound in the same menner
a8 the equivalent loads with the exception of the value at station 3.
The discontinuity in the shear diagrem at station 3 causes an abrupt
change in-slope of the moment dlagrem. The equivalent M/I value

at this station is camputed by use of equation (c) in Pigure 3, whioh
is derived by epplying squation (a) to the ordinates of the smooth
curve on either slde of the abrupt ohange. ‘The deflection (column 11)
is found after two swmatlions.

" Either the summation method or the equivalent—loed method may be
used for an iteration. The summation method is simple and quick
and gives good results for the lower modes and frequencies of vibration.
The method 'of equivalent loads, on the other hend, is particularly
sulted for hlgher-mode d.etenniz;ation. For the higher modes, curvatures
are appreciable in the functions to’be integrested, and the greater
inherent accuracy of this method resulis in better approximetions to
the deflections. . .

l .

Torsion.-— The differen‘bial equa:bion in torsional vibration is

.—, rs [ d¢n(x)] 2 Ip¢n(x) | (3)

This equation is analogous to egquation (1) for- ‘bending vibrations.
The Jeft-hand side of the equation represents the elastic restoring
" force, and the. righb—ha.nd. sid.e represents the inertia Joading. The
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lteration process in torsion is similar to that in bending; that is,
a curve of angular dlsplacement is assumed and on multiplication by

" the mass polar moment of* inertia, a measure of the inertia torque
loading is obtained. By direct integration & new angulav—displacement
curve ie found. Only fwa integrations need be parformed in an
1teration for torsional problems as compared-.with the four integra-
‘tions for Pending.problems because the differential eguation of
equilibriuvm.in torsion is of the second order, whereas the. equation
in bending is of the fourth ordevr. e e . .:_ﬁ_

A typical iteration for a cantilever in torsional vidbration 1s
‘glven in tabular form in table 2 and presented graphically in figure L.
Integration of the torque-loading ovdinates (column 5) by the summation
method glves & value of torque (column 6) midway betwéen each
station, -After. dividing ‘each torque ordinate by its corresponding
value of . J, eanother summation gives. the rotation (cqlumn 8). The
sumnation in each integration beging at the station where the function
 belng determined, is kmown to be zeYo. Only the summation nethod of
integration is used in torsional problems becauvse it is not convenient
" to determine equivalent concentrated: inertje torque loads that will
give the correct internal toraue at specific points on +he beam.

Treatment of Various Boundary Conditions

. Bending.- The boundary. conditions encountered in vibration
problems are the same as those found in problems in statics; that is,
the beam may have any combination of free, pinned, elastically
restrained, or fixed ends. TIn addition, if the beam and its support
conditions are symmetrical about a denter line, the equilibrium
conditions existing at the center line depend on whether the beam

. is vidrating in symmetrical or antisymmetrical modes. For such beams,
the two types of modes are found separately by considering the beam
to Pe cut at the center and by arplying the: proper-boundary conditions
for each type.

In the iteration process, the functions determiried by mumerical
integration will be correct only if all the Jboundary conditions are
satisfied. In the simplest cases, such as a cantilever or a
symmetrical simply supported beam, wheve the shear, moment, slope,
and deflection are each known to’ ée zero at specific points on the
" beam, no difficulty 1s encountered in performing integrations. Sum-
metions simply proceed from the. points whers the. functions are known
to. be zero. In other types of beams, there may be more than one known
boundary condition on some of the functliorss and none at all on others,
Fer those functions without boundary conditions, the point at which
the function is zero'is generally not known and g special treatment
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must. therefore be made in -the:intégration process. Although the
treatment will vary with ‘éach problem,.& géneral method of approach
- ‘may be outlined, -The method-1is to sketch the probable deflection,
shear, moment, and slepe diagrams in:that order. In doing so, the
conditions that must be satisfied td make each diagram follow from
the preceding one-will become evident. It will be seon that an
arbitrary constant of integration is introduced when no boundary
conditions are known for a particuler function. The constant is
then carried along and evaluated later when two boundary conditions
are known for one of the other functions. In some probdlems, short-
cut celculations may be made to evaluate the constant immediately.

‘As an illustration of the general approach, considsr the .case
of a free-free beam symmetrical about its midpoint. In figure 5 the
series of diagrams on the right represent the actual variation of the
deflection, loading, shear, end so forth, along the half aspan of
: the beam for the first symmetrical ‘bending mode, Ne boundary condl-
tions are known for the deflection; the shear is zerc at both the

© -+ midpoint and the tip, the moment: is zero at the tip, and the slope is

‘zero &t the midpoint. Since an arbitrarily asgumed déflection will.
-not, in general, producé & loading which'will cause the shear to be
zero &t both the midpoint and the tip, the deflection has been
assumed 1in two parts as shown in the two diagrams on the left. A

variable part Y +(0) giving deflections relative to the center of

the beam 1s assumed, together with a constant part Y (0)5 the
magnitude of which is to be detérmined later by the shear boundary
conditions. This separation of the deflection into two parts ie
vermisaible since the principle of superposition holds for problems
of this type. _ :

Loadings are computed for both deflections (each deflection is
multiplied by the mass variation given in colum 2 of table 3) and the
shear diagram for each loading is found by integration from the tip
invard., In.order to make the shear zerc at the center line, the
ordinates of the S, dlagram must be adjusted to make the center-line

ordinates of the S' and S, diagrams.equal in magnitude and

opposite in sign; the two . diag“ams then added give the true
shear diagram S (fig. 5). If desired, it is now posasidble at this
point to correct the assumed deflection and to obtain the correct

loading. Since the value of shear 8, 18 proportional to 1, (0)

the adjusted’ deflectibn '§~ © added to ¥, (0} gives the -

B ~, . _o- . . -

(
deflection ¥, 8).' When the true shear diagram is known, the moment
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and slope diagra.mé are Pfound without any t_lif:‘;‘ioul-by. For the new
deflection int_egrati?n proceeds from the center line which gives
the deflegtions Yl' 1)” yelative to the center of the beam, The

correotion Yo(l) must now be determined. This corregtion is found
from Yl'(l) in the seme mammer that Yo(o) was determined from

Yl'(o). After Yo(l) is determined, Y_i"(l) 1s corrected to give
the better modal approximation ¥3(1), Note that the process of
detemining the corrections Yo(i consists aptually of performing

e large part of anothexr iteration. The method jJust desoribed for
integrating and satisfying boundary conditions is analogous to
direct analytlcal integration of the differentlel squation, where
the unknown constants of integration are carried along until enough
boundery values are known to permit them to be evaluated.

A short—cut caloulation is derived for the preceding case from
the following consideration.” It is recognized that in order to
prevent translation of the beam +the negative and positive loading
areas must be equal, (See loading in fig. 5.) Ixpressed mathe—
matically the gondlition is R . -

L T . - - - - .
fmyn dx.= 6 SR £
0O .

wor i1f Y, ie broken into two parts, as in figure 5, equation 4 ©
becomes : S .

L _ _
f w(Y,' —¥,) éx =0 . (5
o} ' '
and Yo ie found %o be . . . . o
L ‘. .
[Pary e | :
o . _

(6)
L
f m dx
0

Tn equations L to 6,and whenever convenlent in the equations to follow,
the superscripts indicating the iteration nmumber have been purposely
omitted for simplicity in presentation. The equations are of gerieral

Yo=
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form and apply regardless of the number of the iteration. The
numerator.and dencminator of eguation (6} can conveniently be evaluated .
in terms .of  the .ptation ordinates by means of, 'I:ha flollowing equation
which is, darived in the appendix:

i

A:.L’éi.(os*ea " 150'b+c+d.+l.503+076f+lbOg
+ h 1w 1.503 0. 381c) ' ' (7)

+

Equation (7) for oomputing the total area under & curve i used
hereinafter beoause of its simplicity and accuracy. Thls equation
is based on the properties of a fifthvdegree curve and lg therefore
applioable to finite intervels in sets of five. After Yn has been

assumed, Y, can be computed direotly by use of equation (6) and

then the correct deflection Yn = ¥' — Y, can be found. This shorte

out precedure is illustrated by the pumerical example in teble 3. A
complete-iteration is given in the section "EXAMPIES".

Tn table 4, the general approach is illustrated for the first
antisymmetrical mode of a'symmetriocal free--free bDeam, The dlagrammatic -
presentation of the datae is shown in figure 6. As illustrated in
the column of diagrams on the right-hand side the deflection and loading
are known to be zero at the center of the beam and the shear ls zero
at the tip. The moment must be zero at both the center and tip, and
no boundary values are known for the slops., The difficulty in this
set of boundary condltions is that an arbitrarily assumed deflection
will not produce a loading which will csuse the moment to be zero
at both the center and the tip. The moment boundary conditions can
be satisfled, however, if the assumed curve is glven a proper rotation
about the midpoint of the beam, A linearly varying correotion

K(O x is therefore integrated along with the.assumed deflection

l'(o), as shown in the two left~hand columns in figure 6, until
the moment disgrems are obtained., The two dlagrams are addad

(fig. 6) to give the tiue moment diagram. When the corrsction to be
applied is known, the corrected assumed deflection, the correct
loading, and the Bhear can be obtained.

In the next step the.interior point at which the slope 1s zero
1s unknown, so a zero point 1s assumed and integration for the slope
proceeds from this point in both directions. An axbltrary constant
correctlion 1s also assumed, Integration of the incorrect alope
diagram and the constant correction gives the incorrect deflection

'Yl'(ll and the linearly varylng correction K(l)x. The correctlion
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k(Lx to the deflection Yl'(l) is" &otermined in the gaiie manner
that was used to find the correstion E(%x to the deflestion ¥;'{0);

that 15, with ¥31(Y) ena E(Mx, integration procesds in the next
iteration (not shown in the table) until the mcoment diagrams are’
found, from which the true correction can be found. by the condition
that the center-line moment must be zero. .

Again en equation can be derived for correcting the’ assumed
deflection before an iteration and the number of integrations is
thereby reduced. In order to preVent rotation of the beam sbout an
axis at midspan perpendicular to the plane of vibration, the mament of
the inertia loading about this axig must bes zero, Written mathemati-
cally in terms of the two assumed 1qac'£ings, t.he condition 1e o

RS

f sy ~xBzez=o” L T (@)
0. o . ]

where K 15 the slopa of a linear soPrection. ‘Solution for X _‘
given . .

|=l4i|. .

L )
. Jr I‘;ﬂn’-(i) dx ) .
R0 oo S -
mx® dx ' t ST
e |

This equation can be convenlently evaluated numerically by use of
equation (7). The use of eguation (9) is illustrated by the example
in tats:l.‘a:h A complete 1'beration is given in a subsgequent emmple.

As an indica'bion of the’ flexi‘oility of the general method of )
approach for handling boundary conditions, conasider next & beam fixed
at’ ore end and simply supported at the other end. The logicel
procedure for performing an iteration on such a problem is glven in
figure 7. "The process should become clear from a sbudy of the sketches
and the step—by»—step outline of the 1teration procedure.

The roregoing illustrations indicate that rather complica'bed
and even statlically indeterminate structures can bs handled if thaey
are broker up into their besic camponent parts. In the examples that
are presented subsequently; the method of adding elastic restraints,
such as springs, to the beams is shown. The solutions given for these
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prohlems make use of ah sl gimilar to equation (6),
which arb deriyed froq Ps zzgugkgpcgegggg 5 ag éhgsg Bh gwg in’ f
figures 5 ggg DA . .
Torgion As was trde eh bending‘-vibmtior; problems no

difficulﬁies ‘arise in thg Mapdling of the ordinary boundary conditions
for problems in torsion with the éxcebtion .of the Lree—frep and
certain fixed-end beans, For these cases a procedure ‘analogous to
that in Yending must be used . - .

'
+,

. ' .
- .
o Lo

. Removal of Lower—Mode Components

Bendigg.» In the determination of ‘higher modes by the iteration
process any components of mocdes lower than the one to be determinsd
must be removed from the essumed or given deflectlion. Unless this
procedure is followed before each iteration, convergence will tend
toward the lowest-mode camponent present in the assumed deflection..
Assuming that the shapes of the lower modes are known, the compohents
of each mode present in the assumed higher-mocde shape can be found by
ugse of the orthogonality relation Vetween the normal modes of vibra-
tion. The equation for computing the amplitude &, of any mode yp

present in a given deflection curve Y, is

L
J man ax

L
Y0

This equatidn is given in reference 1 and, for completeness, a
derivat}on 1s included in the present appendix, :

(10)

an =

The procedure for removing lower-mode components ig illustrated
in table 5 where the fundamental-mode component ig subtracted from
an assumed second-mode siape for a cantilever. A graphlcal repre—
sentation of this procedure is given in figure 8. The integrals in
equation (10) are evaluated in colums 5 and 8, and the fundamental-
mode amplitude is computed at.the bottom of the table. The assumed
second-mode shape mlnus the ccmponent of the fundamental mode is given
in colump 11 in terms of a unit tip deflection. The same procedure
applies when n~l lower modes are being ramoved from an agsunption
for the deflected shape of the nth mode, .

Torgion.- The method for removing lower-mode canponents in
torsional problems is the same as that for bending
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Frequenoy Detemina.tion

Bending.-— Once a close approxima.tion fox the a.eflection of &
given mode has been established, the frequency of vibration can be
determined. For bending, the fréquency may be found from the following
equation

(1)
a2 = —2 (11)
yn(i + 1) Cy
where
yn(i) value of deflection of a point on beam before iteration

yn(_i + 1) value of deflection of point after iteration when . .
' ‘Tundamental mode is being determined; whereas, it 1s
deflection of point after lteration and removal
of lower-mode oomponents for higher-mode determination

" (The deflection yu(1) is usuelly written in terms of & unit tip
deflection and, when equation (11) is used, ¥y (L +1) 15 the

gbsolute value of the deflectlion found in an iteration., Before the

next iteration is begun, however, yn(i + 1) is for convenlence

written in terms of & unit tip deflegtion.) The use of equation (11)
in the frequency detemimtion Qf a beam is 1llustrated 1n & su‘bsequent
seotion “EXAMPIES." . -

. The frequeéncy may a.lso be d.eterminecl :E'rom the following equations
which are derived in the appendix:

N

2 S
M ax : | )
— X

. Jjwmy(i)y(i * 1) gx . |
W = (13)

J;Bu+1ﬂ2@
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The moment 1? in equation (12) is the moment which results fram the
loading my, ). Both equations are dexrived from the energy reletions

of a beanm in vibration and have 'been uged by other investigators.

Since the frequency, as glven by these _equatlions, is evaluated from
the entire deflection ourve, values of deflseotion which ‘are &s accurate
as those regquired by equation (11),where the frequency iz evaluated
from the deflections at a point, are not necessary. Thus, if only

the frequency is deslred in a glven example, a good value may be

found from elthexr of these equations by use of & deflection which is
found from one to two less lteratlons than those that would normally
be required if both mode and frequency are to be dstermined.

Torsion.— Frequenoy determination in torsion is analogous to -
that in bending. The frequency may be found from the following
equation S

g'(i) | .

n e _ .
¢ ( i+ 1)
where
¢ ‘(i) va,lue of rota.tion of a station on the beazn before lteration

¢ (i * 1) value of rotation of station after iteration for fundamental- *
‘mode determination; value of rotation of station aftex-
- fteration and removal of lower-mode oomponen‘bs Tor
A e higher-mode d.etemination.-

SUMMARKY OF FPROCEDURE

Thus far, the more Important steps in the analysis have been
explalned in soms detall. In order:to faclillitate the actual working
of problems, the various steps will be summarized in thelr logical
order. The procedure will be given for computing the modes and
frequencies of a beam in bending vibration. An anslogous prccedure
is used for torsional problems.

Fundsmental Mode.~ The steops for camputing the fundamental mode
are ag follows:

(1) Divide the beam into a conveniel;zt nuber of eq_ual stations.
If only the fundemental mode is to be oomputed, six to eight stations
will be sufficlent. ‘If higher modes aré to be determined later, ten

L
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stations should he yged because any errors present in the fundamental
mode will have an effect on the accuracy of the higher modes, With

_the beam divided into ten stations, a very accurate fundsmental mode

cen be obtained. TFrom mass and moment—of-inertia distribution plots,
read off the values of these varlsbles at each stetion, Any large
concantrated ma.sses should be distributed to the neerxest sta‘bion
points. -

: (2) Assume a rea.sona.‘ble approzima.tion 0 the fundamental mod.e.
A convenlent way is to sketch the deflected shape of the beam and
read off the defleoctlion ordinates at each station.

(3) Perform an iteration with proper regard to boundary conditions.

(1) Use the deflected shape from the previous iteration and
sucoesslively repeat step 3 un’oil 'I:he denired degree of convergence is
obtalned.

(5) Compute the frequency by sequation (11).

Higher Modes.— The s*beps for oompu*ing higher mod.es ave as
folldws: —

(1) Divide the beem into equal stations. Tor conveniencs in
applying-the integration formuls (equation (7)), which is based on
a fifth-degree curve, the number of stations should be a multiple of
five. In order to retain the same degrees of accurasy for each higher
mode, the mumber of stations must be increased when successively
higher modes are being determined. For the first four modes, however,
ten statlions are sufficient for englineering agecuracy if the Iterations

. are performed by use of the method of equivalent loads, Determine

the mass and moment—of-inertia values at each station.

(2) Sketch the most probeble shape of the highe:r mode %o be

' d.etemined. and read off the valuees of deflectlon at each station,

{Each successiVe higher mode has one additional nodal point.)

(3) Remove all lower-mode camponents from the sssumed higher-
mode defleation, :

(%) Perform an Llteration with proper regerd to boundary conditions

.and remove lower-mode oomponents from the derived deflection.

. (B) Successively repeat step 4 until the desired degree of
donvergence is obtained. It msy be found that all the lower-mode
components need not be removed after each iteration. (A more complete
explanation as to when lower modes ought to be removed is presented

" in the example on the determination of the third mode of a cantilever.)

Bofore and after the Tinal iteration all the lower modes should be
removed., .
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(6) Compute frequency by equation (11).
EXAMPLES
The solution to a number c;f 'typioa.l ;probleins .1s illvstrated by
examples., These examples are presented to serve as a gulde when
actual problems of the type. they represent are being solved and each

one need. not be studied to understand the basle procedurs. given in
this paper. The examples are:

Exemple 1-—Nonuniforxm cantilever, first bending mode
Example 2..Nonuniform qantilever, first torsional mode
Example 3-TUniform cantilever, second bending mode
Example U4 ~Uniform cantilever, third bending mode

Example 5-Free-—-free beam with concentrated masses, first
symmetrical. bending mode

Example 6—TFree~free beem coupled to masses through springs, first
symmetrical bendlng mode

Exemple T-Free—free beam wilth concentrated masses, first anti-.
symmetrical bending mode

Exemple &§--Beam with concentrated mass and mounted on spring, first
bending mode

Example 9 —Beam with concentrated masss end mounted on spring, second
: bending mode

Exemples 1 and 2 are simple 1llustrations of the iteration
process for bending and for torsion., Exemples 3 and 4 show the
removal of lower-mode components in the determination of higher modes.
A comparison is given with the exact solution for modes and frequencies.
Exemples 5 to T 1llustrate the mammer in which boundary conditions
are satisfied for the vibration of free—free beams. Boundary condi-
tions for beams coupled to springs are illustrated in exemples 8 and 9
and the results are compared with exact solutions. In every example
one or two complete iterations are shown in detail, and results of
any other iteratlions nedessary for convergence are indicated.
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Example l: Nonunilform cantilever, first bending mode,— The
physical constants and first iteration Tor example 1 ave given in
table 1 and the solution is completed in table 6. Teoh step follows
very alosely the procedure outlined for fundrmental-mode determination.
1t should be noted that convergence +to the fundasmental modse in
cantilever beams ls yvery rapld, After only two lterations the ratio
was taken at each station of two successive deflections, oolumn 12,
and it is seen to be fairly constant. A compaiison is given in
figure 9 between the a.ssumed. d.eflection and bhe calculated fundar-
mentel mode.

Example 2: Nonunlform cantllever, first ’corsiona.l mode .~ An
example of beam torsional vibration is presented in table 7. The
first iteration is the one uwsed to illustrate tHe iteration process
for torsion (table 2). It is seen'in colwms 2, 7, 9, 11, and 1b4 in
table 7 that convergence to the fundemental torsional mode for a
cantlilever 1s slower than for the corresponding mode in bending. The
rate of convergenace in the iteration method is a function of the
seperation of the frequencies of the natural modes and, for a canti-
lesver, the frequencies of the torsiocnal modes are not as widely
separated as the frequencles of the bending modes. The grealsr
number of iterations needed in this partioculer exanple can also be
attributed in part to the large dlfference in the shawes of the
assumed mode and derived mode. ({Ses fig. 10.) The lahor involved,
however, in finding a torsicnal mode is comparahle to that in bending
since only two integrations are needed for an iteration.

Example 3: Uniform cantilever, second bending mode.— A uniform-
beam case 18 presented in table U so that & comparison can he made
between the exact solution and the results obtained by the iteration
method. The procedure used is that outlined for higher modes.
Previously computed ordinates for the fundemental mode are listed in
column 2 end the assumed second-mode ordinates are glven in golumn 5.
Becavge the beam is uniform, the solution is scmewhat simplified as
the mase m and moment of inertia I ocan be ignored during the
iterations and are taken into account only in the f{requency compute~
tion. By comperison of columns 35 and 38 it can be seen thet the mode
obtained alfter two lterations i1s good enough for moast practical
burposes, If modes higher then the second are to he calculated, how—
ever, more agourate values should be obteined for the deflectlon of
the second mode than those gilven in column 35. The results of the
third lteration are shown in the sketoh of figure 1i{a), and they
present a olose check on the mode and frequency obtained by an exact
analysis. The denominator of equation (10) is evaluated in column 40
for use in the third-modes determination, presented in the next
sectlon. The faot that column 42 sums 4o zero means that the derived
second mode 1s orthogonal to the Pundamental mode,
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Example 4: Uniform cantllever, third bending mode.— The third
mode and frequendy ccmputations for the same uniform beam are
presented in table 9. .The assumed third mods lg given in column 2
and the fundemental mode and derived second mode from table 8 are
uged in camputing columms 3 and 5. After each lteration a large
Tundamental-mode component must be removed from the derived deflec—
tion, It is’'difficult to remove completely all traces of lower
modes, and during each lteration the residual lowexr-mode components
are amplified; in this case in the ratios (w3/wl)2 for the first

mode and (w3/w2)2 for the second mode. For a oantilevex the
::'&l.'t.io..'(cu.xs’/w;,_)2 18 very large and after one ilteration the Tirgt—

mode impurity has Been greatly amplified (column 23). The actual
amount of emplification of the second-mode impurity (coluwmn 24) is
small enough to be neglligible., - Same labor could have been saved In
this example by postponing the removal of the sscond-mode componsnt
untll after the segond iteratiomn.' After three iterations and removal
of the lower modes, the derived third mode (column L6) and frequency
as oamputed by equation (11} glve an iadicatlion of the high accuracy
attainable by the procedure desoribed herein when the beam is divided
into ten stations. Figure 1l(b) shows the assumed third mode, the
computed mods, the exaot mode, and a comparison of the exact and
camputed frequency. . )

Exemple 53 Free—free beam with concentrated masses, first
gsymnetiical bending mode.— In table 10, the flrst symmetrical bending
mode and fregquency of & uniform free-—free beam' carrylng concentreted
messes are computed, A convenlent assumptlion for the deflection 1s
one with a zexo center—line ordinate (column 5), In order to insure
that the shear be zerc at the center line, the assumed deflection is
then oorrected according to equation 6, the use of which has been
illustrated in taeble 3, With the computation starting at -the corrected
defleotion, given in texms of a unit +ip deflection and multiplied
by the constant mass of unity (column 8), iteration is performed in
a straightforward manmner. The new deflection (column 15) is again
glven with a zero center-line ordinate and corrested (column 19) by
use of equation'6. Two iterations are sufficient to determine the
mode and frequency. The computed deflected shape 1s shown in figure 12,

Example 6: TFree—free beam ocoupled to masses through springs,
Tirst symmetrical bending mode.~ Example 6 (table 1l1) is the seme as
example 5 except that the concentrated masses are elastlcally conneoted
to the beam by springs. The equation used to make thu assumed loading
(column 5) satisfy the ghear boundary conditions is given in Figure 13
end is developed in the eppendix. This equatlion contains terms
involving the unknown coupled ‘frequericy, whioh necessitates an assump—
tion for this frequency before each iteration. Unlesg the natural
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frequency P 32 of the spring-mass system nearly coingides with the
wnlmown frequency w2 of the coupled system, the equation for Y,

is relatively insensitive to lncorveot assumptions for o2, In the
general case, & mors acaurabe sssumption is made for w2 before
each succeeding iteration on the basis of a freguency ccamputed Lfrom
the preced.ing lteration.

The system under consideration in this example involves a
relatively stiff Yestraint between the masses and the beam. The
unlnown fréquency will be only slightly less than the frequency
obtdined in example 5 which considers the mass rigidly commected to
the beam. In that e le (see table 10) the square of the frequency
was found to be 11,6 Erad.ians /5e0)7; sonseguently, an hssumption of
11 (redions/sea )~ was moade for this esse, The initial assumption for
the deflection 1s the 'déflegted chepo obtalned in the last lteration
in table 10. Onde the aoryect inertia loading is computed (teble 11,
column 8) -iteration proceeds ns before., Since the assumed deflected
shape and frequency were very close {o thelr actual values, one
iteration résults in & uniform ratio at esch station (column 20)
between the deflectlon and the amsuned deflected shape, The camputed
deflection is shown as the dashed curve in figure 12, Elastic
coupling between the beem and masses is seen to reduoce the frequency
of the entire system and to cut down the deflection of the center
ol the beam relative:-to the ends. In table 11 a computetion is also
presented for the force in the spring :E'cr the given beam—-bip
deflection. _ ) _
... .BExample T: Free-—-free 'bea.m with ooncen't.rated. masses, Liret
aentisymmetrical bending mode.— hepble 12 illustrates the solution for
-the. antisymmetrical modes of the same free--fres beam analyzed in
exemple 5, A dsflection is assumed {(column 7) and by means of
equation (9) this deflectlon is corrected to satisfy the moment
boundary gonditions. This procedure has been illustrated in teble 4,
With the correct loading (colwmn 12) the integrations are stralght~
forward until the slope (column 19) is to be determined. The point
of zero slope 1s unknown and 1s assumed to be between stations 3 and k4,
Integration of the assumed slope diagrem resulte in incorrect deflec—
tions (column 20).. A tiue defleotion is computed as before, however,
which satisfles the moment boundsry conditions 'and automa.tioally has
the corrsct slope at each point. The frequency was computed after
the second iteratlion. The computed defleoted shape is showvn in
figure iy, :

Example 8: Beam mounted on ipring, fi-ﬂst bending mode,—- A first
mode. molutlion for the problem Of & beem vibrating on & spring is
given in teble 13. The boundary condltions are the same as for the
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symuetrical free-free beam modes except that the unbalanced inertia
loading on the beam must equal the spring reaction. This condition
is patisfied when the distance Y, in figure 15 is computed by the
equation given In the figure whioh l1g developed in the appendix. In
order to solve this:equation an estimation of the probable value of

w? 1s first necessaxy. The i‘ollowing congidexations will ald in
making thie estimate, If the spring is infinitely etiff, the lowest
mode end frequency is the fundamental for the half beam vibrating as
a cantllever. If the spring has a finite stiffness, however, one
natural frequency of the system will bhe lower than the cantilever
frequency. The more flexible the spring is relative to the beam
stiffness, the lower the frequency of the first bending mode will be
relative to the cantilever frequency. The limlting case is that in
which the beam is considered to have infinite stiffness and corres-
ponds to an inelastic mass vibrating on a spring. Call this frequensy

of vibration pJa which is given as. pj -—!1 ~The lowest natural
bending 'frequenéy @ of the system will always 'be lower than p 3

The example worked in table 13 is for the case of a flexible
beam carrying a heavy concentrated mass snd mounted on & relatively
stiff spring. The cantilever and spring-mess frequencies are first
calculated in order to form a bagis for estlmaiting the probable

natural frequency. Since pde is several times larger than mlzoe.n‘b’

a natural frequency only slightly lower than the cantilever frequenocy

was assumed. After Y(O) 1s calculated by use of the formula glven,
the suoceeding steps of an iteratlion are the same as those for ‘the
symmetrical modss of & free~frge beam: The trial frequencies calou~
lated in columnt 17 show that the estimated frequency of 5.9 used in

calculating Yl( ) 1is as acourate en assumption as could have ‘been
made, ATter the second iteration a few trial caloulations for wn
(column 28) showed that an estimated freguency. of 5.93 gave the proper
values of Y1(2). A third iteration is indicated with the resulting

frequency and mode glven in columns 31 and 32." ' In figure 16 the
.deflection is presented with a comparison between the exact and
computed frequencies.

Exemple 9: Beam mounted on spring, second bending mode.- A
second-mode solution for the.seme beam-mass--spring system 1s presented
in teble ‘14, The proceduke used is that for higher—mode determination.
The most reasonable assumption for the deflection (column 5) is a
curve having a unit deflection at the tip and center. The first-mode
component present in the assumed ourve is calculated and removed and
one lteration performed. The deflection (column 16) is given in terms
of a zero center-line ordinate. This ordinate must be computed by
use of the equation which was used in the Tirst-mode determination.
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In order to solve this eq_ua.’c.io‘:i“;" Ly frequency must first be estimated.
A reasonebly acceptable value may be obtalned by eguating the total

. 3 vt

inertia forge { w2 mye(o)ﬁ dx | of the aesumed loading to the spring

force (oenter deflection times spring donstant) and solving for @2,
This calculation is shown in teble 14%. The acourecy of w® depends,

of course, on the closeness of. the assumed ourve Lo the actual
"deflection. By use of this value of cua, the equation for Y, in

figure 15 is solved for Y, (1), The value of Yo(l) is subtracted
from the value of ¥, (l) (oolumn 19) end the first-mode component

-1 again removed and another i'bera.tion performed. In each suoceeding
iteration & better value of ®° is found by consldering the center-

~ line shear boundary conditlon end finally ®w® gonverges to ‘the -fre—

- quenty as ccmputed by equation (1l). In this example, three iterations
are sufficient for oconvergence, The determined mode and freciﬁendy

are presented in figure 16. 4 oompa:ison is given between thé ex&ct
and cemputed frequency, )

e’

CONCLUDING REMARKS ' T

The examples presented have shown the manmer in which the
determination of vibratlorn modes and frequencies is related to beam-
deflection theory. By successive approximetion, solutions ere
reedily found to an accuracy consistent with that to which the phyesical
constants in bullt-up beams are ordinarily known. Although exaot
solutions, for practical purposes, are obtained .to the differentisl
equetions, the equations themselves are based on 11miti.ns assumptions.
Since the equatlions do not include the effects of structural damping,
rotary inertia, and deflection due to shear, whioh are known to cause
a change in the shapes and frequencies of the higher modes, engineering
Judgement must be used to interpret solutions obta.ined. from these
equations. . . oo

Langley Memorial Aeroneautical Lebovatory
National Advisory Commlttes for Aeronautics
Lengley Fleld, Va., July 23, i9h7
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THEORETICAL (DERI‘{A_TIQI\@; L

Detexmination of the Deflection by the Iteration Method

. ] et
*

Differential equation of équilibrium.— The differential eguation
of equilibriwn bf 8 'bea.m in free harmonio bending vibration 15 _

& S SR ST~ L -, L 2 - ; -
‘ .‘1 (EI ) R 7'+

16 left- ha.ncl side of 'bhe equa.tion represents the elastio restoring
i‘orces of_the beam and in thé ordinary bending theory of beams equals
"-the e:t’oemal loading. For bedms in vibration the loading is oomposed
T -&F tnertis forces which at eny inmetant of time ma.y be considered as
statlc forces given Dy the expression on the right-hand side of the
equation. Equation (Al) has solvtlons y =y, and assoolated

characteristlic values = uy,, where y, dcsoribes the deflection

of the nth mode of vibration and oy, is the frequency of vibration
of that mode, Except for some simple cases these solutione cannot be
obtained by exaot analysis. . It is-possible, however, to solve

. sq_uation (AJ,) by an. iteration .process in which successive approxima—
ﬁions a,:..e i‘ound, eagh dpproximtion moxre alosely representine; 'bhe
-l;,rue sqlu'l;:[on. s , )

df..

b § Cul¥

In%egr&tion of’ d.ifferential eq_uation.- Suppose that so&ne
a.r‘bitra.r;r,i\uwtion ¥ 1is substlituted for . ;5 on the right—hand. side
: "; of equation (Al)., Except for the. factor which may be ignored
) ‘beca.uae X _ie purely ar'bitrazy, the equation would ‘be.. ,

n o s i - P S 13

‘12 (EI—EZ . (a2)

This esquatlion can be solved by direct integration, Assume for the
moment that the solution is y = F(x). From the static loading concept
indlicated 1n the previous geotion it .follows thal a beam with a

loading wymy, would have a deflection y,. A beam loaded with
forces my, would therefore.heve a deflesction yn/cnn?' Thus, 1f ¥

were an exaot solution — say y, - of sgquation (A1), the solution of
equation (A2) would be simply :
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y=5G <3 . (43)
O

In general, Y is not the exact solution y,, énd the proportion—

2lity given by. equation (A3) would not be, sonstant along the Yeam.
Because the progess of finding a new curve from a given curve is a
. converging process, however, cuxrves givi:‘:g a sonstant ‘proportionality
may be obtalned even though the sterting curve 1s epproximate. The
newly found ourve is used to determihe the loading, and another
deflectlon 1s computed, This. operation is repeated until two suc-
cessively determined deflection curves are of constant ratio to each
other. The final curve found is the Ffundamentel or first mode (n = 1)
of vibration of the system, This procese of finding the ourve is
commonly known as the Stodols method. The faot. that the process is
converging and converges to the lowent Jqode will be shown in the next
section, In the section "Frequenoy Determination" +the way in which
the method 1s made to converge to a given higher mode of vi‘bration
is shovn . _ o o
Proof of convergence of the iteration process «— The a*bitrarily
chosen ocuxrve Y may .be. expressed in terms of & serles 1nvo;l.ving the
normal modes of vi‘bra'bion of the eystem, thus .

Y(O)(x) = a.lyl(x) + 32}/'2(1) + a3y3(x) .00 | (AY)

If this seriles is. substituted for ¥ on the right—hand. aid.e o:E‘
equation (A2) and integration is performed, then, by the principle
of superposition, the solutlon will 'be

! Lot

Y(l) (x) = --g-yl(x) + 23’2(2) '

I~ 2:fg,(x) e -(45)_

@3

If the process is repeated successivel;y with the newly found curve
as the approximation to the defleotion, the curye found &fter i
lterations will be

(D) & Py (x) ¢ 22 _’is_ '
ix) mleiyl(x) + waayg(x) +w321.v3(;c) I (.éé)

This equation may be written in the following form
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(1) o ‘.B.l‘gi ﬂEi
Y (x) lei [alyl(x) +<ﬂ)p) aaye(x).+(w3> a.3y3(x) + e .}(A'()

Since D < s wy < D35 « o Wy ingreasing 1 ocauses %he higher-a Jo
camponents to decrease, and the fi:‘c‘st"lmod.e ¥ &ppears more and

more pure. The greater the separation of Wy, Wpy W3, « .+ 4, the
strongexr will be the convergence to yj. -

Removal of Lower-Mode Components

The iterative process will alweys cause convergence to the lowest
mode present In the originally assumed deflection. ITn equation (AT)

)< (2« (=
Pp %2, < Oy < o

- component of each higher mode reduced during an iteration but aleo
the amount of reduction becames greater with each successive highor
mode. Thus,’ if the components of all the modes lower than the nth
mode werc to be removed occmpletely from a given defleation ourve,

the solution would necessarily have 6 converge to the nth mode

(the lowest mode remaining). Provided that the shape of a given mode
is known, the ccmponent of thet mode in a given curve may be found
conveniently by use of the orthogonality of the normal modes of
vibration. Buppose that the given curve is expressed by equation (AL)
end that y, 1s the mode Tor which the capondnt is being determined.
Multiplication through by myn(x) gives L B

23 .
l) * Not only, therefore, is the

myn()¥(0)(x) = aymyn(x)yy(x) + azyq(xlyalx)
e e arlzﬁyne(x) e (48)

Integration over the length of the beam glves the relation

N L 2
_ Jo myn(x)y(o)(x) ax :fo aniyn (x) ax : _ (A9)

slnoo the y,-texms are orthogonal funotions defined by the oxthogo-
nallty condition .

i
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f Lmym(z)yn(x) x =0 vwhen m#n (a10)
Q.

In the integrals to follow, the limits of integrations have been
cnitted but should be interpreted to be over the half span for all
beams symmetrical about a center line and over the full span in
wnsymuetrical beams. Solution of equation (A9) for &y, - glves

f (1700 ) e

. {(a11)
f my 2(x) ax
With =, knowm, the nth mode component any,(x) may be readily
removed from the given curve by subtresotion, thus
¥(0)(x) aryn(x) = a3y3(x) + aoyo(x) + . «
+ By Tp1(x) + By Tnealx) + . .. | (a12)

Trestment of Free-Free Beams

In the case of symmetrical vibrations of free—free beesms the
first normal mode (pure translation, frequency equal to zers) is mot -
an elastic mode but must be lncluded when an arbiitrary curve is
developed in a serles involving the nommel modes. Thus, the series
for en arbitrarily chosen deflection Y'(x) 1is :

YUx) =Y, alyl(x) + aaye(x') + a3yB(x) e © (A13)

vhere Y, 1s simply a constant. Since 1t is deslirable to have the
chosen curve in terms of the elastlc modes alone, the value of Y,

must be determined. In oxrder to prevent translation of the beam, the
inertlia loading in each symmetrical mode of vibration must sum to
zero over the span. The following relation must therefore be true:
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< (A1)

. Multiplioation of eg_uation (Al3) ’ohrough by m and integrating over
‘the length of the beam by use of equation (AlY) yilelds

my?(x) dx = n_tYQ ax (a15)

* . whioch when solved for .‘fo gives

me'(x) ax o . :
. (A16)
fm dx

Y, may nov be ‘subtracted fram the assumed deflection, thus

¥(x) = ¥'(x) -~ ¥, = agy (x) + a'eya(_x) + a.3y3(x) oo oo e (ALT)

The resulting deflection is now given in terms of the normal elastioe
modes of a free~free beam, satisfies the equilibrium condition
(sequation (A15)) and may be substituted in the right-hand side of
equation (A2), The expression mey then be integrated without .
difficulty. S _ :

For convenlence ,in"bhe',‘ present solution for symmetricel modes of
free--free beams, the assumed deflection Y'(x) is always given in
toerms of a zerc center—line ordinate. With this assumption, Y, then

reﬁresen‘cs the center-line defléction.

In the case” of antisymmetrical vibrations of free—free beams,
the first normsl.mode is a pure rotation with frequenoy equal to zero.
An arbitrarlly assumed curve, representing the defleotion of an
antisymetrical mode end developed in a serdles involving the normal
modes; must inclids a teym oorresponding to d.efleotion dus to
rotation; 'bhus ’ :

Y'(x) = Kx + a;7,(x) + a.eya(x) + a3y3(x) e e (A18)
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wvhere X 418 a slope snd Xx therefore is a linearly varying
defleotion., In order %o prevent rotation, the moment of the lnertia
loading about the midpoint of the beam must equal zexo. Thus,

f my,{x) &x =0 - (A19)

Multiplication of equation (Al8) through by xm and integrating
over half the length of the beam by use of equation (Al9) ylelds

f:mﬂ"(x) dx = | Kx°m dx (a20)

which, solved for XK, glves

!:mﬁ."(x) ax
K= (Aal)
fxem ax

After thls value of X is multliplled by x, XEx may be subtragted
from the assumed deflsction; thus,

Y(x) =¥ (x) - K = &J._Vl(x) + agyp(x) + a3y3(x) e o. . '(A22)

This expression may now be substituted in the right-hand side of
equation (A2) and integrated without difficulty.

‘.'L‘reatmént for Beams Coupled to Springs

In orxder to analyze structures which contain an elastic restreint,
such as a spring, the equilibrium of forces existing between the
structure and the restralnt must first be considered. For the case
shown in figure 15, & deflection ¢cannot be assumed dilrectly because
the equilibrium condition (spring foroe equals unbalanced shear at
center lins) may not be satisfied. On assumling the variable part
I*(x) of the deflection, however, the constant part Y, may be
determined by eguating the total inertla load to the force in the
spring; +thus,

2

o? | n¥(x) ax = ~a¥_ - (a23)
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Since Y(x) has been broken up Anto. the variable part Y'(x) and
the congtant Y equation {A23) ey e wvitten

o® fm[Y’(x) - Yo] dx = -a¥, (a2k)
Solutiondfqr Y, gives-

f r’ (x) dx
Yo =T N (a25)

- %
5 + j’urdx

e

The generalizatioen of equation (A25) for a apring placed at the Jth

station along the beam is
Bac
me (x) ax -~
W

Yo (A26)
ot
-+ m dx .
w' ‘-.
where &4 1is the deflection of the ieam-at—tpe_Jth.station relative
t0 the center of the beam and s is the elasgtic constant—of the

epring at the Jth station, Subtraction of Y, from Y'(x) then
gives . ‘ :

Y(x) =Y (x} - ¥y = 8971(x) + epyp(x) + agy3(x) (a27)

-which 1s the arbitrarily assumed curve corrected to satiefy the shear
boundary conditions.
.7 For the case of 8 free-free beam coupled to spring-mdss |

oscillators (fig. 13), the total inertia load must again equal the
forece in the spring. At .any instant of time o

w‘z:"ImY'(x)' dx + F =0 “ S (428)

vhere F 1s the spring force., For convenience, the equilibrium of
forces at maximum displacement: ‘will be considered. If equation (30)
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in reference 1 (p. 59) is multiplied through by aj8, and then
@y, is replaced by F, ap by (¥, + 83)', and ®, by Py, the
following expression is obtained for the spring foxce F:

. . 57) @3 (Yo + By)
| p (F0) %0 (For (429)
1 o
PJ)

Since the natural frequency o 3 of the simple oscillator 1s given by
. o _
 Jegac (A30)
3
equation (A29) may be written

-3 (Fo +8y) o
18 2 -
P3 ‘

Substituting this va.lue of F in equation (A28) and writing Y(x)
in’texms of Y'(x) eand Y, .glves the expression

(431)

a@f mEi"(x) - Yo] ax + my(Yo + 8y) ®? = 0 (A32)
( K

1- (2N
Pj
which can be solved for Yo

fml" ax 4+ mjad
ﬁ") - (a33)

fmdx+——-i—T

(PJ)
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The generelization of equation (A33) for any number of elastically
mounted masses symmetrically placed at J points along the beam 1s

J~mY’(x) ax +
¥ _ —(?J>
o= - (A3k4)
. ~rm.dx o+ — 2
l‘_‘(fs

Subtracting the value YO from the veriable defleotion Y'(x) gives

Y(x) = TMx) = Yo = a7y (%) + agplx) + agyy(x) + 0 0 0 (435)

which represente an arbltrarily assumed deflection of the beam
corrscted to setisfy the equilibrium condition between beam and

spiring. ,
Frequenocy Determination
In equation (A7) all terms except the first become negligible
when 1 18 large enough, and the equatlon reduces simply to

) (x) = 2 ayyy(x) (436)
oy 21

If one more iteration had been performed the equation would have
reduced to

(141) 0y o1
Y (x) N a4y (x) (A37)

Divislon of equation (A36) by equation (A37) gives for the square
of the frequency
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y(1)
Y(i-l—l)

Thus, after enough lterations have been performed to ceuse the higher-
mode ccmponents to become small, the ratic of two successively found
defleotions is the square of the natural frequency of the mnd.ameh’ca,l
mode of vibration., ; o .

» Although equation (A38) denotes the frequency of the i‘tmdamental
mode, 'a similar equation can be derived for the higher nodes. Suppose
that the nth mode is being determined and that 1 i1terations with
the negessary removal of lower-mode components have been performed;
then, with the removal of all modes lower than the nth mode after the

ith iteration, the resulting ourves may be expressed by the equation

yn(i)(x) e1y1(x)} + egyolx ) e anyn(x)

e e Boye(x) ¢ ... ____.n(A39)

The smell coeffioclents €1s €ps WD to 8, remain because in the
numerical procedurs each mode lower than the nth mode cannot be

" removed precisely. These values, however, are very small in comparison
with values of aj. Iterating once again, beginning with equation (A39),

gives the curve

Yn(i+l)(x) = _G_J_-_yl(x) -+ ..e_e..ye(x) t oo oo in—?n(x)
w12 wo? : wn?

33
G e

If —%- is factored out of the right-hand side of equation (A40), it
1ls seen that, in comparison with ofns the first-mode component has

been emplified by the factor =2\, the second mode by the Fagtor
Wy . :
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2 t- : i
g% s and so forth., Removal again of all modes lower than the

nth mode gives then the deflections

-‘fn(i”l)(x) = nyyp(x) + noya(x) + . o . ffé- ¥n(x)
+ e- v @ "E'E?-' yp(x)':' * v 0 L -_ (Aul)

where 1, np ave extremely small in comparison with :hé.

. On .
Division of equation (A39) by equation (Akl) and neglecting all
terms dn - ¢, 4, and 1 glves, as a close approximation to the square

of the Ffregqueéency. the relation

(Ak2)

Alternate Method of Frequency Deteirmination

Another method for.determining the frequency can be found from
the energy expresslons for a beam in vibration. It can be shown that
the potential energy of hending U for a beam in Its maximun
displaced positlon 1s given by the expression

2 2 : .
U=z |orf&X ) dx (Ak3)
2 dxz i

and the kinetlc enerxgy of the beam V as it vnasses through the
gquilibrium position is

V = % wCmy® dx’ ' {Alh)
These energles must be egqual, hence
2
% El(i-%-é) ax = »}; omy? ax (aks)

Solution of this sguation for w? gives

<f%> “
(AL6)
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With the use of the relation M = EI-?"J-?E, equation (AL6) may be

B
2 _JEL (ALT)

o

As epplied to the iteration process, the moment M in equation (AL7)
is associsted with the deflectlion that is dexived. That 1s, y in

equation (A47) corresponds to y{(i+l), the deflection derived in an

iteration, where y(i) is the given deflection or the deflection
used. at the start of the iteration. By use of equation (AL2), the

frequency may be written in terms of y(i) and the moment rather
than y(i+l) and the moment. - .

written

Substitution of the expression for y(i"'l) fron equation (AL2)
for y in eq_uation (Al:-"{) and solving for a.\n gives

©? . Im[yn(i)] o © - (ALB)

M2
EL

Thus, after a reasonahly good spproximstion to the deflection of a
mode has been established, the moment which results from a loading
computed from this defleotion is found, and by use of equation (AL8)
a good value of the frequenoy of that mode can be determined.

Equation (A42). expresses the frequency in terms of the
successively found ordinates at any station along the beam.
Equation (A46) can be transformed so thap the Frequency is expressed
in terms of all the ordinates along the beam., The transformation
is given hereln as a matterof interest. On integration of the
numerator by parts, equation (Ak6) would eppeay _ . .

a2 [-a }
o2 . f R [Iaz‘% 0x
Jer e

(a49)
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For the (1 + 1) deflection this equation would be

Ey(1+1) JL, _Exiiii_ ax
2 ax? :
[4> g — (A5O )

[ (1+l) )

S IE (i+l) were the exact deflection, it would neoessarily have to
satisfy eqpation (A1); thus,

. 1 ' -
i—% EI(;:) _..21.9.1.2 - a)am(x)y(i"'l) : (A51)

With the use of equation (Ak2), squation (A51) may be written

.‘fé EI(x) ﬁé}:a_ll - m(a)y () (A52)
ax : . Ax .

Substitution of equéf;oh—(ASE) in equation (A50) then gives
for the frequency the relation

Jay(0)p(291) oy
0.)2 = (A53)

[afsten] ?

This equation gives, in effect, a weighted average of the frequencies
glven by equation (A42) for all the pointe on the beam, The accuracy
" of the frequency obtailned fram equation (A53) will in general be

greater than that obteined from equation (A¥2). Any loccal error in
deflection will cause no appreciable error in the frequency as given
by equation (A53); whereas an error in the deflection of e point will
cause & like erxror in the frequency if detexmined by equatlon (ak2)
with the deflections at that point.

V
i

Iteration as Applied to Torsional Problems

For torsional problems the differentlal equation of equilibrium
is
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_ﬁ I:GJ %__%]: méIp¢ o -(A.5l+)

This eq_uation is ana.logous to aqua.tion (A1) for bending vibrations.
The left—hand side of the equation represents the elastic restoring
forces and the right-hand side represents the inertia loading., &
procedure similay to that used In the.case of bending vibrations 1s
used to solve equation (A54); that is, a curve representing the mode
to e dotermined le assumed and is substitubed on the right-hand side
~and, by direct integration, & new curve is found; and so on. Only
two integrations need be performed in an lteration for torsional
problems as compared with the four for bending problems because the
differential equation of squilibriuvm in torsion is of the second ordex,
whersas the equation in bending 1s of the fourth order. The proof of
the process for obtalning a solution by iteration follows closely
that given for bending vibratlions and., therefore, no further
discussion will be glven.

Derivation of Equation Used in Numericel Evaluation of Areas

Suppose the area under a given curve is to be determined. 1In
general, any part of the curve over a finiter intervel may be spproxi~
mated by & seqond—, third—, or higher-degres curve; the acouracy of
approximation, of course, inoreases with the degree of the curve,
In the present analysis a fifth—degree curve has been used for
convenience, .

Consider the plot of & curve ¥ = £(x). Iet z' = 3‘);- in order %o

obtain & dlmenaionless coordinate, and let tne ordinates y at
z=0C . 2.3 4 5 be a, b, 0, d, e, £, respectively., It can be
ree.i" wy vexifled that the following eduation represents a fa.ctored.
generul Ififth-degree equetion having the required. values

¥ =8, Dy Gy o« « - &85 2 =0, 1, 2,7 ¢ & @
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= - -i-%—da(z -1z - 2)(z - 3)(z ~ 4)(z - 5) + -ggbz(z - 2)(z -~ 3)(z - ¥)}(z - 5)

gt

- doa(z - Dz ~ 3z = Dz - 5) + 2aa(z ~ V(z - 2)(z - 1)z - 5)

- é—"nez(z -1z - 2)(z ~ 3)(z - 5) + i-;vafz(z - )z - 2)(z ~ 3)(z - &) (A55)

The area under the curve in the interval z =0 to z =5 is found simply by 1ntegzation of
this equation; thus,

A =j yadx = )uf ydz = % (0.38a + 1.50b + ¢ + @ + 1.50e + 0.38d) (256)
0 0 . .

By application of eguation (A56) to adjacent sets of five intervals the camplete area under
sny curve may be found. Ushally ten intervals are é.d.equate for most purposes; the area in
torms of the eleven coordinates would then be _

A= .1333% (0.3% + 1.50b + 0 + @ + 1.50e + O.T6f + 1.50g + b + 1 + 1.50 + 0.38k)  (A57)

For most purposes an aresa may be evaluated most conveniently in tabular form. Colwmms 3 and 6
in table 3 are illustrations of such an evaluation.

T "ON NI VOVN

o'



http://www.abbottaerospace.com/technical-library

NACA TN No. 1522 .39

1.

2,

3.

L,

REFERENCES

Den Hartog, J. P.: Mechanlcal Vibrations, Second ed.,
McGraw-Hill Book Co., Inc., 1940, p. 188.

Burgess, C. P.: The Frequencies of Cantilever Wings in Bean
and Torsional Vibrations. NACA TN No. Ti6, 19kO.

Boukldis, W. A., and Rugglero, R. J.: An Iterative Method for
Determining Dynamic Defleotlons and Frequencies. Jour. Aero.
Sci., vol. 11, no. 4, Oct. 1944, pp. 319-32C.

Beskin, L., and Rosenberg, B, M.; Higher Modes of Vibration by
e Method of Sweeplng, Jour, Aero, Sci., vol. 13, no. 11, Nov.

Newmark, N. M,: Numerioal Procedure for Camputing Deflections,
Moments, and Buckling ILoads. Paper No., 2202, Trans. A.S.C.E.,
vol., 108, 1943, pp. 11611188,

ol


http://www.abbottaerospace.com/technical-library

40

TABLE 1',— ILLUSTRATIVE EXAMPLES OF ITERATTON PROCESS FOR A BEAN IN BENDING VIBRATION

[ = 100 in.; A =10 1in; E = 10,000,000 psi; mg = 3000 !-h;'_aﬁ]
n,

NACA TN No. 1522 -

e
.
Ri
A S _' LR
Station o ) . *
1
VO sméion method _ i - b
1 2 3 3 5 6 7 8 9 10 1 12 .
e | T S 1,(0) w9 ‘mgty s X NI $1ope x, (1) ALY
* CommoR fa0LOYS ~—m—i— ey .| A A a2 A2 23/ abe .
10 20 10 1.90 20.00 - ‘ S o 173.9 1.000 R
N bs5,a1 L 25.50 N :
] 22 12 | . .8% 10.08 5.0, . .27 138.% 85k h 2
5 RS : ©15.09 |, : 25.27" - . d
8 25, 15 ., .68. 10.24¢ - 20,1 .80 123.1 .T08 . *
1. : -, N 25.29 | ¢ : 24 A6 N
7 3 28 53 5.5% wg | B | e 98.60 567 .
6 38 22 Jo |- 8.8 *3’63' 80.2 2,112 ao.Bg 75.60 235 -
5 ¥ 26 29" Tk L0777 | 2e3.8 - | 2.692 ot 5%.71 - .315 .
- . A g 51.17 S ‘i3.20 ' -
* 56 . 30 .19 5.70 ) se.ap | AT59 3.120 © 15.08 36.51 -210 - -
3 65 35 1 3.85 | %330 |~ |em;m.g | 355 11'55 21,43 123 .
. 3.72 |1 . .
2 77 %0 .05 2.00 2 325.6 | .23 9.87 0558
) 95.72 7.33 .
2 88 A5 .01 .45 - 21,3 4,790 2.54 6136 v o
. . 96.17 c2.5%
o 100 50 o 0 - 517,5 5.175 - ° o LT
* myt3 = 3&:9&;’;- 33.0 ) RN
b oggy . (3% :Lo,g_g) + 10,08 S R - =
¢ 2,54 m x + 4, o - B oo v
8
Equivelent-lced method . L. . . -
1 [ e 3 - 5 | s 3 7 ‘8. ) 10 n 12 N
Y | o) | ayy(0) Pog |  Peq a. M| W (/1)4q | #10pe ¥, (1) Ll d
Common fastors ——> 3/22 | /12 /12 2z | a2Ae | adam aaue | e .
B 1.00 10.00 %60.1 . ¢ Q 2478 1.000 ot
. : 60 | - . 3668 \
9 .8% |+~10.087| Pi21.0 s - 60 2.73 37 i 21310 .853
1.1 32 ‘-
8 .68 % 10,20 11,6 . 241 9.65 116 3515 17579 .06 .
302.7 ) . . .
7 .53 |C 9.5% |. 114,k \1r 1 5k 17.52 | 20 : 18163 566 ¢
. - 7. ] 2305 - .
6 .50 8.80 105.1 se2.2 961 25.30 303, 3002 1e5g A3k )
5 .29 7.5 89.9 c1zq | 1463 32.25:| 385 o 857 .31 <
» .19 5.70 68,4 680.' 2095 . | 37.%2 ma 265 5240 .20 MR
5. .
3 11 .85 45,3 | 396 L b2.10 | 9513 271 .123 « -
2 ..05 2,00 1~ o2x.3. Tl 3809 50.60 | 605 1655 ans5 0565 . -
11¥7.0. 1051 .
1 0L 45 6.5 5046 57.%0 88T 6 36k LOINE i
0 o o - H53.3 6199 ~ | 61.99 364 ) ° ° c .
-
& 65,1 - LT x 10.00) ; (6 x 10,08) — 10.20 R = "4}

b 121,0 = 10.00 + (10 x 10.08) + 10.20
© 296 =4 x3000x0m .. . .

4513~ ~BL%0 4 (3%.50.60) + (T x 32.20) + (3 x 37.%2) ~ 3228
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TABIE 2,— ILLUSTRATIVE EXAMPLE OF ITERATION PROCESS FOR A

CANTILEVER IN TORSIONAL VIBRATION

[L = 200 4n.; A =10 1n.; @ = 4,000,000 psi]

- 10A=L -
Sz‘aﬁon%/ 2 3 4 &5 6 7 &8 9 /0

X 3 y 5 6 7 8 9
Sta— 7 1 (o) (o) (1) (1)
tion P gl ' ID¢1 T T/3 s’:L ¢1 ~

Common £acCtOrs ——m——> A A 22 /o
0 120 1.00 120.0 8,905.| 1.000
* 90 2 60.2 | 0.669
9 135 .90 121,585 ° . 8.236 . 925
145 182.7 | l.252
8 163 .80 130.3 ) 6.98% .785
235 312,0 1.329
7 202 .70 1%1.3 _ 5.655 635
380 453.3 | 1.192
6 259 .60 155.2 4,463 501
595 608.5 1,023
5 334 .50 167.0 3.4%%0 .386
875 T775.5 .886
4 71 R:Ts} 188.2 2.554 .286
1255 963.7 .768
3 726 .30 218.0 1,786 .200
1750 1181.7 676
2 1100 .20 220,0 1.110 .125
2360 1401.7 .594
1 1480 .10 148.0 _ ..516 .058
3000 1549.7 | .516 .7
o { 1850 0 0 - ro 0

E'60.21:L3><

120) + 121.5 :

8
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TABLE 3,— SATISFACTION OF BOUNDARY CONDITION FOR

THE FIRST SYMMETRICAL MODE OF A FREE-FREE
BEAM BY A SHORT-CUT CALCULATION

1 2 3 b 5 6 T 8
Ste=| m |z [v'(0)|myy"(0) Y:(LS) v, (0)
factors > omn Ty
10 10 3.8} 1.00} 10.0 3,8]10.806 |1.000

9 13| 19.5 84k | 10.9 |16.4] .646 | .801

8 16 | 16.0 .68 1 10.9 [l0.9]| .486 | .603

7 20| 20.0 .53 ] 10.6 |10.6] .336 | .416

6 25| 37.5 .40 | 10.0 |15.0| .206 | .256

5 31| 22.6 +29 9.0 6.8 .096 | .119

4 38| 57.0 .19 7.2 |10.8]-.004 |-.005

3 | 47| 7.0 A1 | s.2 | 5.2]-.084 |~.104

2 59| 59.0 .05 3.0 3.0 |- 144 | -,179

1 75 | 112.5 .01 .8 1.2|-.,184% |~,228

o 100} 38,0/ o 0 0o [-.19% [~.240

¥32.9 83.7
&y (0) .y '(0) _y (0) ynere y (0) .22 (%)
1 1 o o sm
- f%%f% = 0.19%

NATIONAL ADVISORY
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PABIE %,— SATISPAGTION OF BOURDARY GONDITIONS FOR THE FIRST A!TIM-ICAL
MODE OF A FREE-FREKE BEAM BY A SHORT-CUT CALGULATTON .

1 2 3. ] 5 6 7 8 9 10 11
w2 =] e w0 e | s [ o [ m@ | e
Copmon 2 12532 125\
factors | U L T L Tt
10 10 1.0 10.00 3.80 1,00 10.00 3.80 -0 .48 1.18 1.000

9 13 .9 10.52 15,80 .60 T.01 10,51 - 376 .76 .689

8 16 .8 10.23 10.23 28 3.07 3.07 ~.33% ST 405

T 20 T 9.50 9.8 ~ 10 ~ 1,80 -1.40 ~ .203 .193 136

6 25 .6 9.00 13.50 - 38 -5.70 - 8.%% ~ 251 -.129 -.091

5 3 5 7.7 | . 5.89 ~ .62 - 9.60 - T.29 ~ .209 -1 ~.290.

4 38 .3 6.08 9.11 -.70 -10.62 -15.92 - J6T ~.533 -,

3 Y7 o3 § o3 .23 —~.60 -84 -8..86 - 125 - 475 -.335

2 59 2 2.36 2,36 —.h2 -k 06 -4.96 ~ .03 - ' =237

1 75 i 15 1.12 - ,22 ~1.65 ~2.47 ~ ol -.178 -, 126

0 I00 0 0 ] 0 0 0 0 0 0

75.84% -31,67
a ' ’ saxy; H{0)  _
1, (0) my M(0)- k(0L whrare x{O) 1 -0,00%18.

X0
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TABLE 5.— REMOVAL OF THE FUNDAMENTAI-MODE COMPONENT IN AN ASSUMED SECOND
MODE POR A CANTILEVER IN BENDING VIBRATION

6

vo(0) = 1,00} _a ()5

vhere a.l(o) -

5.025

M = =258 = -0,51%
£m(y;)?

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTIC3

1 2 3 4 5 7 8 9 10 1

ﬁg’; m v n(y,)? b 7,(0) my;v,(0) I 81(0)yy ’?S)) 72{0)

Common fa¢tors > ]fﬁ:‘ %ﬁ‘-
10 1 1,000 1,000 0.380 1.00 1.000 0.380 ~0.51% 1.514 1,000
9 1 8h7 .718 1,077 .50 .h23 .63% -.435 .935 617
8 2 .698 OTH ‘.9;74 .06 .084 .084 -.358 .18 276
7 3 545 .891 891 -.32 -.524 —.524 -.280 —.040 -.026
6 y 409 670 1.005 —.54 -, 584 -1.325 -,210 ~,330 -.218
5 5 .287 J12 313 -.60 -.861 -.655 ~ 147 ~.153 -.299
h 6 .18 .194 .291 —.52 —.561 -84 -.092 —.h28 —.282
3 7 .105 077 077 -~ 36 —-.264 -, 264 -.05% ~.306 -.202
2 8 043 .015 .015 -18 -.063 ~-.063 ©—,023 -.157 —. 10k
1 9 .011 .001 .002 —.0h -.004 006 | —.006 —.034 -.022
0 10 0 0 0 0 0 (0 o 0 0
5.025 ~2.580
a

4%
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TABIE 6,— NONUNIFORM CANTTIEVER, FIRST BENDING MOLE

1 2 3 3 5 6 7 8 9 10 12 12 13
Sta- (1) (1) i
Y
tlon | Y1 | m) p | Ryl s Mo W | Wn)eq| Slope | (2 | w2 () |y (2)
Common fastors—> | 2/12 | 3/12] a/12 | 2242 | a2/2 | a3/uk | a3/1me | a%/1me
10 1,000 10.00‘ 60,4 0 o 26221 5.9 1.000
60,k 3833
9 .853 |10.23 | 222,9 183.3 60.% | 2.7% 37 379 22388 5.49 .853
8 706 | 10,59 | 126.3 ’ oh3. 7| 9.7% | 118 18592 5.48 .709
- 309.6 3678
7 566 | 10,19 | 1230 ¥32.6 553:3 | 17.83 | 21k A6 1491k BT .569
6 A3k | 955 | 113.8 56#'# 885.9 | 25.95 | 311 1153 11850 5.46 36
5 | .34 | 8:16 | a7.5 6113'9 1532.3 | 33.30 | 398 - 8297 5.45 .316
'l 20 | 6.30 | 75.5 | ;6.2 | 38.85 | 166 5542 5.45 .211
: T19.4 2289
3 223 | %31 | s1.7 | %43 2895,6 | #3.90 g‘gg 3253 5.45 124
121%,1 1753
2 0566 | 2,26 7.6 1ow1.7 1109.7 | 53.%0 639 . 1500 5.34 0572
1 L0146 | .66 8.9 1250'6 5351.4% | 60.85 | 728 6 ' 386 5.4 L0147
o |a 0 0 " | 6602,0 | 66,02 | 386 0 0

Ima = 5.45 (redians/sec)?
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TABLE 7.~ NONUNIFORM CANTILEVER, FIRST TORSIONAL MODE

1 2 3 ] 5 6 é 8 9 10 11 12 13 1L
ol FACREIACHE B RV PR ) BTSN I (3|, (u
ton [ 1777 | Ipfh SRR A IS A WA PAC) 05| g ()
Common factors — 3 2 A 2%/a X 22/a 2/
10 |1.000 | 120.0 60.6 | o674 8.31% 1 1.000 | 8.068 §1.000 | 7.987 |1.000 | 7.919 5050 1,000
- 0. 7' -
9 | .925 12%.9 7.6%0 | .919(7.395] .016 | 7.276 [ .915 | 7.248 5050 915
185.5 | 1.280 N .
8 7851 128.0 3.5 | 1.333 6.360 | .765|6.123] .759 | 6.007 .T55 5.979 5050 .55
7 | .635| 128.0 Ml's 1'163 5.027 | .605| 4,805 .595 |4.607| .501 | 4.6 5060 .590
6 | .501| 129.8 571' .952 3.864 | .65 | 3.688 | um1 | 3570 | Lmag |3,5u9 5060 g
03 .
5 .386 | 129,0 700.3 | 800 2.902 | .33912,715 | .336 |2.654 | .33% 2.638 5060 .333
4 | ,286 | 134.8 : '1 .666 2.102| .25211.950 | 242 [1.903| .80 |1.801 5070 .239
35.1 | .
3 .200 | 145.2 > 1836 ( .173[21.323 | .16% |1.288 162 | 1,280 5060 L1631,
980.3 | .560
2] 125§ 137.3 1176 A7h 8761 .105| .Bo2 0995 | 779 | .0980 | .77A 5060 .0976
! 1117.6 | .47
1 058 85.9 Jdoz2 | o8| 366 | .ousk| .355 1 .okus <353 5050 045
1203.5 | ko2
0 0 0 ) s] 0 0 0 0 0 - 0

@ = 5050 (radians/sec)?
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PABIE 8, SECORD BEWDING MOLE OF A UNIMORM CANTILEVER

2
[L-mom.; A=10m; w=5200800 10t - 30,000,000 pat]

in.
£ /oA=L /'1'
P | 1 1 1 é L —1
o] / £ 3 L2 ) ] 7 a g [l
1 2 3 ) 5 (3 7 8 -9 10 11 12 13 1k 5
Sta— o | - ot
Common ___ o, n 125xm ™ 125am A A%m 23 P
astors T o el e E
10 {1,000 ;1,000 [0.380(1.00-] 1.000 | 0.3800{0.038 | 0.962) 1.000 | A.oh3 v.h 0 1296
9| .63 | v [2.006) 50| a3 | .emeo| w33 | .a67| 486 5.803 10'94 8,95 | 65.2 vem
B | 726 | 526 | .526| .06 | .oM36 | .0%36| 008 03| .033| .460 11.:30 15.78 | 189.8 oty
T{ .59 | .39 | .3kg|-32 | 289 [ -.3Bo0] 023 | —.383] 356 |-4.307 . £7.08 { 320.8 720
5] Aa [ L2l o ams-.sh ] -2k i-.m_ A8 | ~.598) 580 {-5.792 o 3,27 | Wr5 .
51 30 ] .ns5 d 088 |—-b0 | ~204 § —a5m0 ) Loa3 | —623| —.636 |-T.ho0 _7:09' 34.67 | waB.5 o3
] | b -
| .23 I-Gss‘ 079]-52 | ~238 J —.1798 009 | -$529| -0 |-6,515 .-13461. 27.58 | 3204 37
3 | g5l om6] wa9{-35 | -wotg | ok ] w05 |-365 —379 A9 | | BET| 1632 st
2] o638) aw1] oot {38 | ~oms fooms)| Loee | -ase ﬂnmuean-4mh5ﬁ_un 23| g
‘1] s «op3{o  |-u% [ —0007 | -.0020 | Lot |-.0kr|-.of2| —609] |-2.62 |w06.0
. [ [l —21.06 ~232
0 {0 L] 40 0 0 T 0 Q 0 9 45,68 | —232.0
2,879 9.1202° !
® 70(0) = ¥p(0) - aq(0Yy;  voere 2100} - L 1 0,038

HATIOMAT. ADYISORY
OOMMITTEE PR AERORAUTICS
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TAHLE 8.— SECOND BENDING MODE OF A UNIFORM CAN?TIEVER — Continued

2
[L-2001n; A=101m.; m=53{ze8)" 7.5 1%

E = 10,000,000 psi]

.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
statton | T,V [5x,0 ] 2 afVy |y, 5, (0] £ | s N M, |8wre 5,2 lyx, ()] = a4y
Comton , b A | 12552 | A% | A'm A | An | 2% (m3 [ m3 | mb | 2% | 225252 | afm

1REET | 14KET | 1AYSET | 1MAET | 1MNEI 12 12 12 T1hEET | 1M4ET | IMEET |1MEEY | 1M 1HREX

10 st | 2754 1047 82 2672 §1.,000 | 5,026 .03 0 - 2816 | 2816 1070 11

9 1458 | 1258 1887 n 1387} .519 | 6.252 u.aﬁ 5.03| 66.6 - 1435 | 1239 1859 96

8 227 | 165 165 60 167] 0625 | .81 12'10 16,31 | 196.5 \17 121 88 88 —80

7 614 | 481 | 481 1) -863{ w323 |-3.757 3:34 28.m | 337.2 50 —o97 | 589 | -589 -66

6 -1534 | 108 | -1061 38 -1572 § 580 |-6.916 1'¥2 36.75 [ 43%.1 6 arrr | 818 | 1228 51

5 1850 | -629 478 28 -1878 | -. 703 |-8.08% _s.as 38.18 | Mho.9 ok 2123 | 722 —5kg 38

x»  {-a7s7| Ao | 605 19 | -a776 | -.665 |~7.859 -u"ra 31,32 | 368.0 e |2 Ash | 696 -25

3 —13%0 | -183 183 1 —351 | - -6.011 _20'73 16.60 | 193.2 655 2588 | 212 -2 -5

2 | 7s0| 8 | 8 5 | -m65|-.286 |-3.853 _2"18 3| sy0 | | ses | 56 | 5 7

1 232 | & -6 233] 0872|158 | T |[-28.31|-3h0.9 en| 5 7 -2

—25.3% 21
¢ 0 0 0 olo 0 53,65 | —270.9 0 V] 0 0
237 -319
D) - B .gas 6 (2) 29 4m
2,879 2,879
NAYIONAL, ADVISORY
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TABLE . SECOND BENDING MOLE OF A UNIFORM CANTILEVER — Conoluded

2
[L -00n.; A=10in; m=5 I (s00)°, 150 1nt; & - 10,000,000 pei]
; . . . L
p ]
32 33 KL 35 36 a7 38 39 %0 131 k2
station | ¥2(2) | 7(W/m(®) | 72(2) | 3,(3) | yo(2)/yo(3) 72(3) (¥o)2 I ¥ z
- (b)
¥ B
C ommon mA mA 125am n 1255m
factors | juaer 134T " 1kt 14k
. I
10 2927 Ag1 1.000 2659 - 486 1.000 1,0000 | 0.3800 | 1.000 0,380
9 1531 488 .523 1550 486 .523 .27h0 | 4110 451 67T
8 201 hk8 .0686 " 207 478 .070 .00k9 .0049 .051 .051
T 931 500 -.318 938 488 —317 J1005 | L1005 | -.187 —.187
6 -1726 oy —-.589 ~1Ths hae —-.589 .3470 5210 —.272 — 408
5 —2085 485 —.713 ~212 A8& —.T1A .5090 .3870 —.243 -.185
Ll -1964 480 —.681 2022 485 —.684 L6T5 7010 | -, 15T —235
3 -1533 4715 —~.524 1557 k85 —526 L2765 | L2765 | —.0T2 —.072
2 -876 470 ~.299 -89l 4B4 —.301 .0906 .0906 -.019 —.019
1 ‘269 a7 —-,0019 =274 484 —.0926 ,0086 0129 | -,0016 | —.002
0 0 _ 0 0 -- 0 0 0 0 0o
2,8854 [+

® a2 - 72(2) 1 486 (radtans/sec?)

72(3)

RATIONAYT, ADVISORY
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MABLE 9,— TEIRD BERDING NOLE OF A UNIFOEM CAWFILEVER

2
[L=12002m A=-101m; l-5n-iinl§”3—'; 1-5 in.% E 10,000,000 psi]

COMMITTER FOR AXHONAUTION

2 2 3 L) 5 6 T 8 ] 10 1 12 13 14 15 15
b (73 ’1r3(°') N EE A0 N P P A bty ,?n(.()’) 1O 2 | s N | Hq | 3iope
10 1.00 1.0006 .0.380 1,0000 | 0,3800 | —0.0T8 034 -0.084 | 1.okk|2.000]| M.123 b.125 0 e

9 Jo| .0863 | .129| .05e3 | .o78h | —.068 018 - 50 | .13 ] 2,082 hi12] 515

: 6,165 232.9

8 | =M |-300 | —.380 | 0322 (0322 —057 .002 —055 |—ho8| - ~§,257 1,508 10,29 | 19,2 Lo

7| —60|-35% | -355| 2902 | .2 -0 | ~o0n -057 | —.543] —.520 | -5.936 028 12,20 | 1¥0.5 6.8

6 | —¥2|-1935 | ~290| 2475 | .370 | -036 | —.020 -.056 |-—.364| —.388 | -3.951 979 8.17] o4l 120.9

5l L] 0 0 0 ~-.02T | —.02x -0%. |o.051]| .oM| .56% s .19 2.8 237

L M0 | .0g920 138 | —.273% | —.Al00 | -,008 | -.023 -,081 JNL | ko2 | ABTL P, -7.23 [ -B1.9 .8

3 .60 | ,0813 | .062|-38 | -3160| —011 | —.018 ~.029 G20 .602| 6.916 ¥.372 -0.77 |-110.3 6.5

2 81 0306 L031 | —, 1885 | ~1¥k5 | — 005 [ —.010 015 Mo | Lath| 5.0 5882 -5.80 | -59.3 127.8

1 14| .0023 ,003 | =.0130 | ~.0195 | —001 | —.003 —00% JAMN T 138 1,854 13.706 kA5 55.3 2.5

1o |o Q. fo o____|o 0 0 0 ) 0 1616 | 725 | -

0,226 0.097*
a ,3(0) - 1-3(0) - .1(0)',1__52(0)12 *
vhere  ,(0) - "gig ~ -0,0785 h
wmd a,(0) -:-'-3?53 = 0.0338 HATTONAL ADVISORY .

0§
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[L-].OD:‘I.II.] A=10ing; m=5

TARLE 9,— THIRD EENDTING MODE OF A UNIFORM CANTIIEVER — Contimmed

2
hL !_m124 I =50 :.n.", X = 10,000,000 pai]

m'
17 18 19 20 21 o2 a3 ok 25 26 o7 28 29 30 2 3
1 1
stetion | 00 |gxg | x far @)z Wy, oy | eolmm 24 70 |30 | 2 | 8 on | Wy |s20me
Common y m* | Np? |12952 | a%? | 10352 [ wit m} it o Ay | an (22, |23 (23
footors " yyygy | IMNRT | 134T | 1MEET | UWA%ET | 1Weer | LabED TRAET 1y 12 12 12 1%%ET | 1MkET
10 |s86.6( 586.6 | 223.0 | 586.6 | 283.0 | =267 2 265 222 {1,000 | %372 vam| ° -
. .3
9 j02.2) =260,5 | 376.0 | 158,0 | 237.0 230 -1 229 T3 W226 | 2872 7.243 k37] 55.3 36720
8 69.3| 50.3 50,3 38 L8 104 0 10 —125 |- 4,284 2'959 1.61| 135.0 232'0
7 |-wwas] 262 | w62 | wa| w1 | 158 1 159 203 | -.630 | 7.129 4'170 1,57 | 167.7 &'
6 |-27.6] 8. | w22 | 108 15.6 | 123 1 124 %2 | -m | -5.006]. 10.% | 110.8 -3
-9,176 ~55.5
g w03.0) 35.2 26,7 | —r3.8 | -56.0 91 1 g2 11 | .03+ .M _8.765 l.22] 5.1 0.6
X |oz7d| s2.2 | T8.% | -as5.2 | =32.8 61 1 62 165 | .512] 5.87% _2'391 ~7.5%| 846 111.0
3 }268.8) 36.7 | 6.7 | -am.7 | am.7 36 1 37 232 | .re0| 8,277 5' 6 -10.43| -116.9 130'9
2 [{200.3] 12.8 | 12.8 | 60.2 | -60.2 17 1 18 182 | .565( 6.584 11-970 5,08 —53.9 13#-8
1 172.5| 1.2 1.8 | -6.7| -ao.0 X 0 3 69 | .2u1] 2,705 14'675 6.93] 85.9 98'9
o 0 0 0 0 0 0 0 0 o |o ’ 21,60 o809 7
769.3 -6,2
a (1) - M- 26 (1) - —6.2 -
1 2.879 7 8 Py 2.1?

NATIONAL ; ADYIB0HY
CONMTTYER PR AXROBATYION
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TAEIE G.— THIRD BENDING MODE OF A UNTFGEM CANTILEVER — Conoluded

\

[1.:100 in.y Am=201in; mw=532 i:“ 2, I =50 1.4 2 = 10,000,000 pai]
33 3% 35 3% 37 38 39 ko 1] LT k3 ¥ 5 | as 7 18
(=)
Statlon T, ,13*3(2) B 3-213(2) I ﬁti’)yl .2(2)y2 w:%;:n +,3(2) ,3(1)/,3(2) 73(2) 13(3) ,3(3) ,3(2)/,3(3) ya(3)
Comuon __ o, Aa | a2 10552 | At 502 [ wat 0 o' i . s |2
factora 1xkET | akdEr | 1M4°EI | 13MRX 14&25 IMET | 18kED 14ED (14T 1ML | 1MhET
10 1388.1 | 1388 o7 | 1388 527 1027 - 1025 363 3950 1.000 | -205.6 | 377 3820 1,000
9 965,86 | B3k 1251 505 ST 885 -1 884 82 3970 .,226| 03,7 3780 .228
8 598.8 | M35 135 a2 X2 Th5 0 ™ A% 3830 -.h02| -635.% | %0 3860 ~-.398
T 366.8 | 217 217 | -6 -116 606 1 6ot —2k0 3780 —661| 6h4.1 | -pug 3820 ~.661
6 302.5 | 139 208 | 78 -867 ¥73 1 kTh -1 3720 ~¥T1) 8855 | 180 3770 478
5 358.0 | 122 93 | 256 ~194 349 2 351 7 ——— .019| -217.9 ‘8 ——— 021
] V8.6 '98.6 8 | —pg3 | Ak 236 2 238 19 3860 26| 86,7 190! 3810 528
3 Mk 6] 56 56 | 8 -8 1h0 1 nE s 278 3780 755 195.k | 28B4 /30 .53
2 a83.7| 18 18 -85 -B5 66 1 67 217 3760 598 | 185.6 | 228 3780 .605
1 98.9 LT 2 -3 -13 17 o 17 82 3760 2260 ALY 85 3830 205
0 a 0 0 0 0 o 0 0 0 ——— 0 0 0 - 0
5955 =1

: ll(a) - —2?;2- = 1027

2.

¢32 » 3820 ('l'l.tl:ll.'u.q_/aats)2

FATIONAY, ADVISORY
COMMITTEE FOR AFROMAUTICS
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TPAELE 10.— FIRBY SYMNEYRICAL BENDING MODRE (F A FRER-FREE BEAM CANHYING COBOENYRATED WAOSES g
N b
[L-lﬂom.: A=101n) Iesint x-m,uuo,uoonqt]
: =
/ Z
. I 2
10X L — | o
2 3 44 56 7T 8 9_/9
'_._I
My =100 pb-sect/in. &
(%)
1 2| 3 % 1 & 7 8 9 1 b1 12 13 b1 1 19 16 17
- (0)
sy im| 2 | m') | g ’J(-“) w0 | g Peq 3 X Mg | B10pe | 3"V | ') z
125 185w LY 2 Y LA e A | mb m;%
Qommon factors -2 —Tyy u he 12 1z 12 12 | wwmr | vex | umexp | 1k | 1w
10 5| 1] 0.8 1,00 0.38 | o,786, | 1.000 5.%8 5.5 0 TBS69 | 78669 29900
9 5] 1]) 150 4 1,96 606 .51 9.9 15'° .6 i 259: 67290 67290 | 10ogo0
8 | 5] 1] 1.0 8 .68 BT .582 .00 22' "1 a =5 u:; 55987 [ Ss0By | mmoey
T 5| 1) 1.00 .53 3 .236 .386 1,66 eslg ka7 817 2053 Hig39 3ag3g %%939
6 | 511|158 .50 60 166 AT 2.63 29' % 69.4 836 o M08 | 34kof | s1wmo
5 |51 .18 .29 82 L086 073 .89 30'25 9,8 | 186 " 500 avni3 | #vps | 18780
s 1] 1m0 .9 A8 | —om | - 66, 29'59 120.0 | 1548 ooy | 160 | aee0h | 2300
3 | 5) 11! 1.0 a1 U NPT R -1.92. | 5.5 3‘17 186 | 32 5oy 923 9243
2 5 F 1 100 .05 05 | —am | e ~2,86 5’!1 166,86 | 1998 :: L SEES 5L L] A1 T)
L[5 L% a1 02 [ —zoh | o009 | 308 1'3 1721 | 2061 oh 104 108 1863
o | 5| 1| .8 0 0 ~23h | 36 | —2.83 13 | om o o 0
11,52 k13 ! 3¥1,303 '
a0yl g0 .
0 ey oy v Peq = % 100 X (~0,1698) = ~19.50
e o, ) 200 x 0.13 :
vhors 7,(0) (l“ 1) ) - 3685 | o093 !
(1’:‘3"‘ 11-5"‘) + 100 = ; NALTONAL ATNISURY
| COMCTCNEE POR ARRONADTION
I :
! | on
! )

Y At j ey
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TABLE 10,~ FIRST

SYMMETRICAL BERDING MODE OF A FREE-FREE BEAM CARRYING CONCENTRATED MASSES - Concluded

[L =100 in,; A=10in.; I =5 111-4; E = 10,000,000 psi]

18 19 20 21 22 23 24 25 26 271 28 29 30 31 32 33
1
statton | 1) |7 (A W wr W 2 b op | s | m | Mg [stope |yt @) | gt@]  x 7 (3 1y, (1) A (2) | 1, (2)
Common A} Al A A a2 a3 ] a3 | A% | m* |1255m |_at
factors”™ jygpy 12 12 12 12 | 1387 | 18481 | 14RT | 1M4ET | 13421 | 1B4EI
10 59240 12,1 1.000 5.61 5.61 0 11856 82148 | 82148 31200 61833 11.63 1,000
9 | wr8eo| 11.9 808 | 9.70 15'31 5.6 7 | 0|02 | moese | 05300 nog77’| 11.63 . | .808
8 | 36560 115 616 | 7.40 22'71 20.9| 258 | |50513 | 59513 | 58513 | 36198 1162 617
T 25510 10.9 431 5.18 27.89 43.,6) 529 10992 k6992 | 46992 L6992 2667T 11.61 431
L] 0
6 14980 10.4 .253 | 3,05 0.8 71.5| 861 lo131 '36000 | 36000 | 54000 | 15685 | 11.60 .254
30,
5 5280 10.0 0802 | 1.09 » 102.5| 1231 8000 25869 | 25869 19670 5554 11.58 .090
' 32.03 90
b [ 3230 12.7 —.0545 | .62 1A 134,5 | 1613 7287 16969 | 16969 | 25450 | 3346 | 11.72 —.054
) 3 . - :
3 | -lo1g0 [ 115 ~.2720 | -2,03 (~20.65 8.73 165.9 | 1335 ¥ 9682 ( 9682 [ 9682 |-10633 | 11.63 —.172
’ . 53
2 | -15290 11.3 -.258 | -3.06 17%.6 | 2092 h3ko §3k0 380 | 15975 | 11.62 —.258
) ) 5.67 3250
1 | -18390 11.5 -.310 |-3.68 1.99 180.3 | 2160 2090 1090 1090 1630 | -19225 11.62 -.311
o | o3| 1.3 -.328 |-1,95 77 1182,3 | 1090 0 0 o |-e0315 | 11.62 -.328
356,777
125M\m
X 3481303 + 100 x 9234
T(1) . M . 3886000 g x30
200 200 2
®° % 11.62 (radians/ses)?
12
X 356777 + 100 x 9682
v, () . i R R

200

NATIONAL ADVISORY

COMMITTEE FOR ABROMAUTICS
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TABLE 11.- FIRST SYMMETRICAL BENDING MODE OF A FREE-FREE BEAM
CARRYING MASSES MOUNTED THROUGH SPRINGS
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TABLE 12,— FIRST ANTISYMMETRICAL BERDING MODE OF A PREE-FREE BEAM CARRYING CONCENTRATED MASSES — Condluded

[L =100 in.; A =104n.; I =5 in.% E = 10,000,000 pu]
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TABLE 13.— EFAM MOUNTED ON 3FRINOG, FIR3T BENDING WODE
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TABLE 13.— BEAM HOURTED ON SPRING, FIR3Y BENDING MODE — Oaonoluded %
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[L-looin.; A =10 in.3

TAELE 1%.— ERAN MOUNTED ON A SPRING, SECOND BENDING MOIE
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TAELE 14, EFAM WOUNTED OX A SYRING, SEOOMD BENDING MODR — OmElnued
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TABLE 1h,— BEAM MOUNTED ON A SPRING, SECOND BENDING MODE — Concluded

]

2 .
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Figure 2,- Two successive numerical integrations of a curve by the summation method.
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Flgure 3:- Formulas for equivalent concentrated loads.
Equations (a) and (b) from reference 5.)
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Figure L.~ Graphlical 1llustration of the
torsional lteration presented in table 2.
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Figure 5.~ Satisfaction of boundary condibiona'ror ths firat sysmotrical mode of a frae-free

bsan by the genaral method of approach.
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Aasumsd deflsation, I](_O )
(oorrected)

—— -
- Y
P T~
-~
~
~

Loading, my{")

———

ya ~

-~
~ J
~—

Moment, x_io)
= 81
I— \"\ _ (oorrggio:ed)

~
-
S
'\___.__-
- ——

-~ ~—
P =~

Deflection, ¥{1) ™
{corracted)

Y

Figure 6.~ Satisfaction of boundary conditions for first sntisyumetricel mode of & free-fres
beam by general method of approach.
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Assumed deflection, Y{o)

RN

Loading, my{®)

Assumed shear

N

Assumed deflection, Y{o)

RN

Loading, mY{O)

(0) —
. Correction, So P
I [ —
Incorrect shear, sl(O) } L — — — Shear, &{0)
) ) ) : (corrected)
- {————_~§§\\\\\\\\\\\\‘\>> Woment correction, M\°) —_——
s My - ~
T
Incorrect moment, M (0! . i /,’, Moment, M(o)
1 R 1
: v (corrected)
- -
. Slope correction 7~ l
<
~ 7 Slope

Incorrect slope "‘“‘-_-__.~____________J
I

¥ (1)
I Deflection correction, Yo

“w

~ « _ —~"(corrected)

N

)
- Incorrect deflection, Yl(l) ‘__-‘_‘§"“‘-\\<§;:>

1) ¥ (1) (1)
Yl( - %o- p 29 Yl

outline of Iteration Procedurs:

(0)

(0) is assumed and loeding m¥y

(1) Deflection ¥y

Correct deflection, Yil)

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

1s computed.

{2) Shear is determined in two parts; known shear varistion relative to left end, and an

assumed correction for the left-end reaction.

(3) By successive integrations, the moment, slope, and deflection dlagrams are found

from each of the two shear diagrams.

(4) Deflection ¥ must equal 7y’ ; therefore, the deflection arising from the shear

[+
.. Yzl

(5) Process is repeated until Y{i) o< !§i+l)

ryrection 1s adjusted. The two diagrams then added give the final deflsction
, which satisfles the deflection boundary conditions.

Pigure 7.~ Boundary conditions and iteration procedure for a2 beam flxed at one

end and simply supported at the other end,.
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Column of
table §
2 m
5 ¥1 .
0
6 Ya( )
9 aJ(. I1
10 ¥, (0)
1 I 1 | 1 | 1 | N |
0 2 L 6 8 10
Station NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS

Figure 8.- Graphical representation of table 5.
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8 - (Calculated
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S .8 -=- Assumed
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g 6r
2
- I / NATIONAL ADVISORY
= OOMMITTEE FOR AERONAUTICS
- .
&~ 2 Concentrated mass N

o | | 4 | ] |5
o .2 A .6 .8 1.0
x/L
Figure 9.- Fundamental bending mode of & nonuniform
cantilever beam.

1.0 o =
o —~
S ~-— Calculated _
B .8 = --- Assumed ~
5] P
o -
“ -
o 6 -~
o Pt

~
2 -
ord 9T -
@ - NATIONAL ADVISORY
° -~ COMMITTEE FOR AERONAUTIOS
m -2 - //
-~
//
o} = ] ) ) 1 [ 1 L 1 |
0 .2 A .6 .8 1.0
x/L

Filgure 10.- Fundamental torsional mode of & nonuniform
cantilever beam.
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Relative deflection

Relatlive deflection

NACA TN No. 1522

1.0~

gl --= Assumed
) — Exact
o] Calculated

- Frequency
* ~ (cps)
Exact 3.51
o b Calculated 3.52

»

0 ) i 1
\\ .2

Frequency
{cps)
Exact S. :
Calculated 9.85

NATIONAL ADVISORY
(b} Third mode. COMMITTEE FOR AERONAUTICS

Figure 1l.~ Second and third bending modes of a uniform
cantilever beanm.
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.8 —
g f =0.535 cps
H .6 —
H e
E .h
o £ ='0.541 cps
> 2
ot
e}
as
— 0 | i L | = | ! .
O o7
o .2 A .6 .8 1.0

NATIONAL ADVISORY
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-4

Figure 12.- First symmetrical bending mode of a Ires-free
beam carrying concentrated masses.

G.J Q.J , ’\5 ('Y‘

o

ng'd" * l_m%'j? Py =1/§13—

'UIE

Yo = .
m
Sm dx + -———L7 y=Y'- Yo
1- (@
‘ (15 3 NATIONAL ADVISORY
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Figure 13.- Equations for correcting assumed deflection
curve for & beam carrylng spring-mounted masses.
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Relative deflection

NACA TN No. 1522

£ = 1,147 cps

! | ] | | l ! | 1 |
.2 s AP .8 1.0

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

L >

Figure 1.~ First antisymmetrical bending mode of a free-free
beam carrylng concentrated masses.

NATIONAL ABDVISORY
COMMITTEE FOR AERONAUTICS

SmY'dx
¥, = Y=Y -Y
_a Stn dx
w? .

Pigure 15.- Equation for coarrecting assumed
deflection curve for a beam mounted on a

spring.
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l.o [~
8 Frequency
(cps)

Exact 0.388
o 6+ Calculated 0.388
3
P
o
g i
© ml
o
o
5
o
2 L ] |
[+
2 .8 1.0
m N

x/L
éégi (a) Pirst mode.
1.0~ Frequency
(eps?
Exact 1.342

o .5 Calculated 1.342
7
9 0 i ; | \ | L | j |
o .2 .8 1.0
s
o =5k
.E x NATIONAL ADVISORY
@ -1.0 COMMITTEE FOR AERONAUTICS

(b) Second node.

Figure 16.- First and second bending modes of a
beam-mass-spring system.
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