0ST8

P

[l %

/¢t

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

i
L

TECHNICAL NOTE -

No. 1699

A LINEARIZED SOLUTION FOR TIME-DEPENDENT VELOCITY
POTENTIAIS NEAR THREE-DIMENSIONAL WINGS AT
SUPERSONIC SPEEDS
By John C. Evvard

Flight Propulsion Research Laboratory
Cleveland, Ohio

~WFE—

Washington. .
September 19487377

2 oL, .

b:dl ey '.71~t:‘

g
NN ‘adv AHVHEIT HO3L

|

(\\



http://www.abbottaerospace.com/technical-library

TECH LIBRARY KAFB, NM

GO

0144961

ERRATA

NACA TN No. 1699
A TINEARTZED SOLUTION FOR TIME-DEPENDENT VELOCTITY
POTENTTALS NEAR THREE-DIMENSIONAL WINGS AT
SUPERSONIC SPEEDS -
By John C. Bvvard
September 1948 !

Page 19, equation (31): A plus sign should replace the minus sign of |
the fourth term within the bracket; 'bhat is
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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE No. 1699

A LINEARIZED SOLUTION FOR TIME-DEPENDENT VELOCITY
POTENTTAIS NEAR THREE-DIMENSIONAL WINGS AT
SUPERSONIC SPEEDS

. By Jdohn C. Evvard

SUMMARY

A gource-distribution method is applied to derive a solution for
the time-depenient surface veloclity potential of thin finite wings at
supersonic speeds. The solution is illustrated by evaluating the
upwash over the tlp of an arblirary-plan-boundary wing having a
supersonic and subsonic leading edge. The upwash then gives the
effective sources of the flow field lying between the wing plan
boundary and the foremost Mach waves, which are applied in the
derivation of the wing-surface velocity potential. A simple example,
the load distribution on a wing whose effective angle of attack is -
changing linearly with time, is included to illustrate the appli-
cations of the derived expressions.

INTRODUCTION

The analysis of the aerodynamic effects in the vicinity of thin
wings at supersonic speeds can be simplified to obtain useful results
by means of the lineariged theory. Steady-state or time-independent
golutions have been obtained for enough cases (for example 5 refer-
ences 1 to 27) that the essential features of the load distributions
on various parts of the wing can be determined by graphical or
analytical methods, The time-dependent load dlstributions are more
difficult to cbtain. Such problems include the transient effects
of gusts, changes in angle of attack, skin vibration, and flutter.

A number of investigators have studied two-dimensional time-

dependent flows over thin wings.' These flows are generally included
as speclal cases of the theory of reference 27. The method of
reference 27 is similar to the steady-state solution of reference 1
and includes three-dimensional or finite wing solutions in cases
where the aercdynamic effects of the bottom and top wing surfaces are
independent. No solutions are known to have been published for

cages involving interaction between the flow over the bottom and

top wing surfaces.
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The concepts of references 9 and 18 that lead to solutions,
which include the effects of interaction between the bottom and
top wing surfaces in the steady state, can also be applied to
obtain times-dependent solutions. The derivation of the surface
velooity potential in regions influenced by subsonic leading .
edges was completed during January 1948 at the NACA Cleveland
laboratory and is presented herein.

ANALYSIS

In order to unify the discussion, parts of the fundamental
treatment presented in reference 27 are repeated. The analysis
includes the derivations of (1) the time-dependent s linearigzed
partial-differential equation for the perturbation-velocity
potential of an ideal fluid, (2) the fundamental solution that
will satisfy the boundary conditions on the wing, (3) the upwash
between the wing boundary and the foremost Mach line, and (4) the
velocity potential on the surface of the wing.

Differential equation. - The linearized Euler's eguations
for a compressible fluid may be written

P . _1»
Mt &’ gy x

2 2
where
P perturbation-velocity potential
t . time
iI free-stream velo-city )
e free-gtream density


http://www.abbottaerospace.com/technical-library

¥L6

NACA TN No. 1699 3

P static pressure
x,y,2 Cartesian coordinates (free stream parallel to x axis)
(A complete 1list of symbols is included in appendix A.)

When equations(l) are multiplied by dx, dy, and dz respec-
tively, added, and integrated, the result is . g

Po
vhere g(t) is an integration constant at any given time.

o 2.
a1;-l-€+ a(t) (2)

The 1inearized continuity equation can be written

2 2 2
§e+Uée+po(a—g+34;+§%co (3)
ot ox ox* Jy° e

6r, because the veloclity of sound ¢ is

cz = %.E ~ coz
equation (3) becomes
d .3\ p . % % %
<§€fuﬁ>pocoz+a,z*ayz+azz'° (32)

Substitution of p/po from equation (2) in equation (3) yields

(1 - M2) ach+azq>+azq>__1_ach+§azq> + 188

(4)
x? byz a2 2% Zadt o at

whore M 1ig the Mach number of the free stream and the zero sub-
soript has been dropped from eo.
Equation (4) is the required linearired partial-differential

equation for the velocity potential. If ® 1is independent of tims,
the Prandtl-Glauert equation immediately results.
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The function g(t) depends on the condition of the flow ahead
of the body. If the flow is wniform and undisturbed, g will be
constant (from egquation (2)) and equal to po/po. Tho function g

will be assumed constent in the rest of the analysis.

A change in variables will comvert equation (4) to a standard
form of the wave equation, The transformation equations are

x' =X

= 1-¥5

z' = /1 -M% 2
tre(L-¥2) 6+ 2 (5)

Application of equation (5) in egquation (4), with g set equal to
a oconstant, gives

Po o o 1 P
ax'? g2 gt | of 3u12 (8

Basic solutions of equation (6) corresponding to spherical waves
are

1 rt 1 rt tt
oebe(Eop) weE(E-E O

where 1t = Vx'a +3'% & z'a, g2 = M2 - l, ani f 18 an arbitrary

function.

The basic solution for the supersonic case is obtained as the

. sum of equations (7). (See reference 27.) If this solution is
transformed to a general point in the- x,y,z space, the basic
solution of equation (4) assumes the form

L6
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o 1 £on e - s, A= el et
Nx=b)® - g2(z-n)® - 6%(2-L)?

B0 po
é 2 2
+ £ @"J;,t - .(.z_;_%fu. - ,V(Ii)_a - ﬂz(:%:) -8 (ﬂ‘;)__) . (8)

where £,n, and { are Cartesian coordimates in the x,y, and ¢ directicms, re ively.
Because the operations indicated in equation (4) are independent of £,n, amal, f my
bé & fumotion of these variables. Extemled solutions of egmation (8) may be obtained by

integration with respect to any of the variables ¢,n, orl.

For thin wings, the sources of the disturbances will lie in the plane of the wing, vhich
may be defined by the relation { = 0., The problem is then to determine the fumction f in

terma of Imown or computed wing or streamline defleotions.

Required gource gtrength for thin wings. - In order to shorten the equations, the

quantity A/(x-£)Z - BE(y-n)Z - pP2 may be replaced by the symbol r. Egquation (8) then
becomas

1’ e ‘
@-5 f@ﬂ,;,t--(:é—fm*‘i)" fé}“,‘,*"%?""%) (a‘)

Bo

The perturbation-velocity component o4z may be obtained by differemtiation to give

669T °ON NI VOVN'


http://www.abbottaerospace.com/technical-library

P @

The wing dictates that 39/dz 1s not zero near sz = 0. Eguation (9), however, shows that the con-
tridbution of the sources to- OP/dz 1s zero, except for those sources mear r = 0, The qumt:ltg r
is nearly zero elther for small values of lx—ﬁ), (y-n), and z or for (x-£)2 ='p2[(y-9)2 + ).
The second condition gives a lover-order zero in the denominator of equation {9) than the firat oon-
dition ani does not contribute to the value of oP/dz abt the point (x,y,0) on the wing swface,

Hoar the point (x,7,0) the quantities (x~!) and r are nearly rero, The function f then
reduces to & function of x,y, amd t, The velocity potemtial at point (x,y) dus to the subelements

in the viocinity of the po can then be obtainsd by integration of the sources incluwled in ths forward

Mach ccme, From figure 1, the field of integration is bounded by the -ocwrves -gl and,
(x-9)2 - 8%(r-n)? - $%P® = 0. o velooity potential is then .

' . N\
‘ Nx-pz Q + %‘- /V(:-E )2 - plgd )
P = 2£(x,y,t) af a1

—= -t )2 - Ba,z\) ‘\/ (z-8)? - p3(z-n)" - pBf

1 g
= ——(—wr ; L (I - p' - gl) (10)
Partial differentation of equation (10) with respect to = gives

g = w(x,y,t) = - 2xf{x,7,%) - . (11)

974

669T °‘OM NX: VOVM
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vhere w 1s the local 2z component of the perturbation velocity.
Equation (11) defines the strength of the local source in terms of
the 2z component of the perturbation velocity. The fact that equa-
tion (11) is independent of the value of £; 1s in agreement with
the statement that only those subelements near the point (x,y,0)
contribute to the vertical velocity O@/dz on the wing surface.
Physically, this evaluation infers that the flow is tangent to the
wing surface at each local point.

The time-delay terms of equation (8) can be denoted by T, and
Ty Wwhere ; .

r (=t V8?2 - g¥(gn)? - 6%
a 520 Bac

v o St Va-t)? - g2(yn)? - p2s?

; (12)
b ﬂzc Bzc

The velocity potential at any point (x,y) is obtained by integrating
the sources In the 2z = 0 plane over the area S included in the

forward Mach cone. By use of equation (11), the velocity potential
becomes

®= - El,? [w( £,n,t-T) +w( E.,n,t-'r-b)] atdn (1)
s 'I/(x'5)2 - B2(y-n)% - p%%

Equation (13) was derived by Garrick and Rubinow in reference 27 and
glves the velocity potential at any point in space in terms of the

z component of the perturbation velocity in the 2z = O plane. The
equation reduces to the steady-state solution of Puckett (reference 1)
when w 1is independent of time.

A physical interpretation may be given for the time delays T a

and T, of equations (12) and (13). If a disturbance is generated
at point (E,n) at time t = 0, the wave front from that disturbance
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will travel outward as a spherical wave about a center that moves with
the free-stream velocity. (The trace of the waves on the 2z = 0 plane
is 11lustrated in fig. 2.) The wave front will enter and emerge from
the point (x,y,») at two later times T, and T,. The eguation of

the spherical wave path that passes through the point (x,y,z) 1is

(x-£-U7)2 + (7-1)2 + 22 = o272 (14)

The solution for T 1is

Szt N(x=£? - B (z-n)2 - e
ﬁ c Bzc

which gives equations (12). (At a given point (x,7,2z), the strengths
of the same wave at the two times T, and Ty are equal despite the

change in the radius of the wave front.) At a given time t, only the
wave fronts that are entering and emerging from the point (x,y,z) con-
tribute to the velocity potential. These two waves originated at the
point (£,n,0) at times (t-T,) and (t-Tp).

The remainder of the analysis 1s primarily concerned with the
aerodynamics in the plane of the wing go that 2 may be set equal to
zero. Equations (12) and (13) may also be conveniently expressed in
an obligue coordinate system whose axes lile parallel to the Mach lines.
(See fig. 3.) The transformation equations are

w= _2’.‘5 (¢-gn) v = 2% (E+pn)
¢ =§ (v+u) 1 =§ (v-u)
= 'Z_B (x-By) Vg = -2’-’5 (x+8Y)
x =§ (v +w,) . y -% (v,;-nw) © (15)

Inasmuch as the elemental area in the (u,v) coordinate system is

ig- dudv, equations (13) and (12), in the case of 2z = 0, become
M
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P _z_;fh/—rfL"(u:‘:':t'Ta) + w(u,v,t-Tb)]Ld@-V _ .. (18) -
(
S

Avg=u) tvy=v)

. M(vy=v+u,-u) + 2 /V(u‘,-u) (vg=v)
c

s Mp

M(vv-v-l-%-u) -2 (q'-u) (vw-v)

(27)
MBe

T
b

Equation (16) gives the velocity potential in the z = 0 plane
in terms of the perturbation-velccity component w normal to the
plane, If only supersonic leading edges are included in the forward
Mach cone from (x,y), w may be evaluated in terms of the effective
wing slcpes O measured in 1 = constant planes by the relation

w = Uo (18)
If a subsonic leading (or tralling) edge is also included in the
forward Mach cone from (x,y), the slopes of the stream-lines A
agsociated with the upwash between the wing boundary and the foremost
Mach wave must be evaluated and included in the calculation (equa-
tion (16)) for the velocity potential.

Upwash between wing boundary and formost Mach line. - The glopes
of the streamlines in the region 8;, of figure 4 could conceivably
be generated by & thin wing or diaphragm, as employed in reference 9.

The flows above and below the z = 0 plane may then be independently
treated. The veloclty potential on the top surface of the z =0
plans is given by equations (16) and (18) as

———— e o ap oy b i
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o . 0 f EIT(u,v" ,t-'l'gl' +Op(u,v ,t-‘fhﬂ dudv
T 2Mrc
Sy

A(up-u) (vp-v)

ff l}\(u,v,t-'r) + Nu,v,t-‘rb)] dudv (19)
(‘Di)-u)(V])"V) :

where up and vy are the coordinates of the point at which @ is
evaluated, GT represents the slopes of the streamlines on the top

wing surface , and A represents the slopes of the streamlines in the
field Sp from the point of view of the top wing surface. Similarly,
the potential on the bottom surface of the z = 0 plane is

P = - 'zlm Ejﬂ—u,v,t-h) + OB(u,v,t7T.b):| dudv
8, (o) (p=v) .

E\(u, 6eT,) + ?\(u,v,t-‘l‘b)] dudv
'v (up-u) (vp=v)

The pressure at a given point of the field Sy (fig. 4) in the
plane of the wing can be calculated by substituting either ¢g or
Py into equation (2). The two comput_'.ations of the pressure can
then be equated: ’

'(20)
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Equation (21) has the solution -

Pp =Py + 2H(x-Ut,y) (21a)

where H 1s an integration function. Substitution of eguations (19)
and (20) in (21a) yields

.U _Mep g (Graply pluiv o
e 5 (up=u) (vp-v) ax 5 2 'V(up-u) (vp-v)
D v

(21p)

(In equation (21b) and in some of the equations to follow, the
notation A, means A(w,v,t-7,) and A a,b Teans

[}\(u,v,t-ra) + Mu,v,t-T) |. A similar notation is applied to
OB, Op, ani (Op-Op).) If equation (21b) is substituted into (19),
the result is .

(0,30,,)_ ., dudv
B Tab +E (22)

U
Pp = - B

5, 2 /f(up=u) (vp=v)

Fquation (22) represents the velocity potential in the plane of the
wing for the region Sp. Similarly, formulation of @ would change

only the sign affixed to H., The function 2H of equation (2la)
represents the difference in potential across the 2z = 0 plans,
carresponding to the strength of vorticity in the wake of the wing
(reference 18). For flat-plate wings, Op +Op = 0 and H 1s

Just the potential on the top surface of the vortex sheet.

The foremost Mach wave (fig. 4 or 5) originating on the leading
edge generally represents a line of infinitesimal disturbance along
which H(x-Ut,y) ocan be set equal to zero at all times, The func-
tion H remains gzero along ¥y = constant lines for values of x
not intercepted by the wing or a material body (region 3]),1 of

fig. 5). The reglon 8 , of figure 5 generally contains & vortex
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gsheet lying in the plane of the wing and H 18 not zero. The func-
tion H(y), established along the wing trailing edge at some time t,
remains unaltered for later times along a curve that sweeps down-
stream with the free-stream velocity and has the form of the wing
tralling edge. The rest of the discusdion 1s concerned with\only the
effects of leading edges, that is, those cases for which H 1is zero.

The origin of coordinates for the wing shown on figure 4 is
_ placed at the jJunction of the supersonic and subsonic leading edge.
The supersonic and subsonic leading edges are respectively defined by
the equations

v = v4(u) or u = u(v)
v = v,(u) or 2 = uy(v) (23)

BEquation (21b) with H set equal to zero, then becomes

up vp up) vz(u)
du Aa!bdv - du (UB'OT)a.,'bdv
4’ Up~u A’VD-V 4/uD-u ' 2 vp~v
vz(u) 0/ vl(u)

(21c)

In the steady-state solution, A and (Op-Op) are independent
of up (references 9 and 11), so that the integrations with respect
to v may be equgted to give

D vo(w)
Ao 2d¥ _ (0p~Op) g ,p 47

vo(u) qu-v vy (u) 2'V—V_D-$

The reduction of equation (2lc) to give equation (24) for the
time-independent case shows that only those wing slopea along
u = up contribute to the upwash for points on this Mach line. In
the time-dependent case, both A and (0p-Op) contain functions
of up, and the validity of the reduction may be questioned. If

(24)

974
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in the time-depemdent case only those wing slopes along u = up

were to contribute to the upwash for points on this Mach line,
A and (op-op) would beccme independent of wup and the reduction

of equation (21c) to egquation (24) would again be justified. An
argunent to substantiate this cholce i1s presented in appendix B.

If u 1is replaced by wup in equation (24), the two time
delays become equal and are linear with respect to v

VD-‘V

Each ininitesimal wing element then produces at time + and place p
an increment in upwash corresponding to the steady-state effect of
wing elements whose slopes are the same as the time-dependent elements
evaluated at time t-T,. The solution of equation (24) is the sum

of a series of 1nf1nitesinal steady-state solutions, each of which
satigfies Abel's equation (reference 11) and each of which reguires
integration only over the wing slopes along u = up.

In order to illustrate the argument, the increment in A at
point (up, vp) (fig. 6) due to a stea.dy-sta.te wing element of

length dv at point (up,v) may be obtained (appendix B) from
Abel's equation in the manner of reference 1l as

ar_ (o0p) {75
& Zn(vD-v)/\l Vp-Vg L.

Equation (25) may de applied in either the time-dependent or the
time-independent cases. For the time-independent cases s the wing
slopes are evaluated at wuy,v. For the time-dependent solutions,

the wing slopes are evaluated at (wp,v) at time t - Vlgcv

(25)

Integration of equation (25) across the wing gives
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C. u Vo-v 4V
A (u,vD,t) - .—.—1—-— B:T 27 2 (26)

2n A’ VD-VZ . VD-V

1

where OB p Means (O‘B- That equation (26)‘ is a solution of equa-
tion (24) is shown in appendix B.

Evaluation of velocity potential on wing surface. - Equations (19)
and (26) now allow the calculations of the veloclity potential on the
wing surface. With reference to figure 7, the velocity potential at
the point (u,,v,) is

A
o . T Og, , dudv - a.p S0V
T 2Mrt 2Mn
l\f w,~u) (v, -v) V (u,-u) (v,-v)
5 5
W ,1+2
i (27)
For the wing of figure 7, the integration of A over the
area SD is .
p
A dudv
J A (wg=0) (v=v)
SD .
PuZ(vw) vw A av.
T du a,b "D
= - (28)
JO (u,-u) v, V=D

If A from equation (26) is substituted into equation (28), there
results

7.6
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(w) e
ST _au_ &
‘“2“ ‘U ‘I-uJ .'.z(u) ('D-'z) (""D’ '1(u) TD-T

 (288)

The integration of A over the ﬂo" field B8; ocan be replaced by the integratiom of a
funoction over the wing area Bw 1. This replacement is acoomplished by inberoha.nging
the order of integration of v and vp. Equation (28a) then becomes

“2(‘u) 'a(“) Yy ~ W~ -
I=- _U?M' = N2V o % jtTt - T ¥~ s (e !""vbl“dvn

4x Uy-u (v0-v) A{(vp-v2)(vy-vD)

0 Tl(u) a(u)

w(v)  alw) - % ) '
“' n
T M == Vz - ¥ av Tpal” TE’v’t § T“- ol — A ﬂﬂ”

4x 0 u,-u " o) (vpev) ’\/('n-"z)(’v"‘n)

(28b)

"ON NI VOVM
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Iquation (28b) represents the contributicm to the velocity potential of the upwash over
the wing tip anl oan be uged to rewrite parts of equation (27). If the veloocity pobential

from eguation (27) is written in full for the rl.ns of Pigure 7, the following resulte is
obtainedy

(vy) vp(u) - |
e[ [l e
0 Ny (w) ﬁl‘w

(v,) vo(0)
. f'“z v 1 re OTE:,V,'I: ';: u;ou Blzlo (u'-u)(v'-v)]d.v
”m ——— e
0

T -1 v"-v

v, (w)

T'-'V

f __E,vt 151 —a:- m n"-u)(v‘-v)k
v, ()

ug(v )

L

nz(V) u‘- v;(n) 9

(eontinued on the following pege)

&

66T "ON NI VOVN
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e e m A - — o =

(v,) vp(u) B A o Y ey y rogp
g v w | z,‘rva'_v av. a0y [mvits- -2 - . "9]“”
“l -n
0 u' J':l (w) dve(w) (vp=v) Aflvp-vg)(vg=vp)
“a(‘w) ' Pvz(u) K Vg~V n
o u,v,t-—‘-'---:"é——- (u,=u) (v,=vp) |&
¥ n-UTu ::-u v av '1[ E_= 1 D] 2
0 Uv, (n) d, (u) (vp=v) Allvp=vg)(v,-vp)
(" ) Ya (u) B[ﬂ,!, VB"T "’v m V(uv-u) (v ‘VD)]‘“]:
- %H ~da.. -v dv
i N (vp=v) 4 (vp-v2) (vy=vp)
(“) Va(u)
g {®) .
M up(vy) fw ’ u,v,t vB: u; ~+ /\( (ng=u) (¥ -vD)]dvD
+ ‘ua“ Yo-v dv
(w) v,(2) (vv) A (vpvg) (7-7p)

(27a)

669T °ON NI VOVH
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Although equation (27a) looks rather formidable, there are
actually only two types of term. Simple variations are obtained
by changing signs from minus to plus, by replacing bottom-surface
wing slopes by top-surface wing slopes, or by altering the limits
of integration. Simplifications also occur in specific examples,
although the indicated integrations to obtain explicit solutions
are generally difficult to perform.

If the wing slopes in the vioeinity of the wing tip vary con-
tinuously with either time or position, eguation (27a) can de
applied in its present form without altering the limits of integra-
tion. The equations for the wing slops would be ingerted into
equation (27a) and the indicated integrations conduoted. This type
of calculation has been 1llustrated for periodic oscillations of
flat-plate wings in references 27 and 28 when the bottom- and top-
wing slopes are independent. A less complicated example, in which
the angle of attack of all wing elements of a flat plate varies
linearly with time, 1llustrates this type of calculation.

If the angle of attack of all wing elements is changed at &
uniform rate m for all times, the wing slopes may be expressed
as

o‘3=a.+mb--0‘T (29)

where « is the angle of attack of the wing at time + = O,

Thege effective wing slopes may correspond 4o & constant accelera-
tion of mU in the 2z direction. Substitution of equation (29)
into equation (27a) gives

v

Ta du dv
Pp = W ’\/__
u_-u Vv
uz(vw) 71(11)
Uy ) Yy ( V=¥ ¥, "
- ———  —— iy

+ % du 8a___Sc (30)

uy(v,) VA vy (u) ‘\jv"-'
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19
Integration with respect to v produces
. vy u, -‘;i
P =20 (o +mt) @du-_n;. m a
T Mr g 3Bc —
uz v ) ) uz u'ﬂ
Uy
- %6 A (2=0) (%=1 () au (308)
Y2

If the eguation for the leading e&ge of the wing 18 v = » klu,
equation (30a) may be integrated to obtain

Pp = :‘gﬂgﬁmb - —- (ky H')uV"Zp'é 'EI'é)

—sa( - il') ]'\/ (,-up) (v, +Eyu5)
1 ' (i + Dmligug +%)2 | _3 [y (wgup)
P et T e Vﬁf‘%

(31)

The pressure coefficient may be derived from eguation (2) as

¢, - P p° (g ) (32)

Subgtitution of equa:l".ion (31) into equation (32) results in the pres-

sure coefficient on a family of wings in the region influenced by
the subsonic leading edge.

e ——— e e ma -~ vomam e e

o s e -
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e R
m e G+ ol + vy)Y | 2n v)| taa”? 1,51‘_2-_"2_’
+|;J'i; (“m- 2Bok, O 'Elm v N %
. ’v' +kn, (l _ d_“?,)[,_ +ot - __kLi)_q_" - —(— - —)(kluz-v']
u".uz d'r' (Bc kl 3
A% [ ey "’2) _( ),1
Yy + k:.% 3fo 4Bc kl S,

where uy(v) 1s evaluated at v = v,. (Although equation (33) was

derived for the case of constant acceleration nlU in the z direc-

tion, the solution may be combined wilth other equations to evaluate !
the pressure distributions for a variety of wing motions, For

example, & wing rotating with constant rate m about an axis of .

piteh fixed with respect to the wing and lying in the 2 = 0 plane N
would have the pressure distribution given by equation (33) superposed

on the pressure distribution associated with uniform rates of pitch

described in reference 21.)

L6

(33)

The steady-state solution included in reference 18 is obtained
from equation (33) by setting m = O.. The solution for the infinite
swept wing 1is obtained by setting v, = up(vy) = 0 and computing
Cp. The values of C, obtained along the'line vy = 0 are then
constant along lines parallel to the leading edge. The load dils-
tributions of a family of wing plan boundaries may be evaluated by
choosing the desired eguation u = up(v) for the wing-tip plan
boundary.

The general egquation (27a) also includes solutions for which
a finite number of discontinuities can exist in the wing slopes with
respect to either position or time. The procedure is the sane as
in the case of continuous wing slopes, except that the fields
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of integration will be subdivided in accordance with the requirement
of the discontinuity. For example, in the problem of determining
gust loads, the effective angle of attack of the wing will change
discontinuously along a line parallel to the y axis that moves
downstream with the free-stream velocity. If the initial wing slope
1g taken as zero and the increment in wing slope due to the gust is
a, the slopes of the wing at time t - T (as time appears in equa-
tion (27a)) are either zero or o according to the inequalities

§<U(t-‘r), OBB-GTga,
The two-dimensional solution of this problem is presented in ref-

erence 29, The three-dimensional solution of this and other transient
problems within the scope of equation (27a) requires further research.

Flight Propulsion Research Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio , May 18, 1948,
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AYPENDIX A
SIMBOLS

The 'following symbols are used in this report.

P-D
Preassure coefficient, -I—-q
1

2

‘velocity of sound

function

integration function of time (herein considered as
constagt)

[j.ntegra.f;ion function of x-Ut and ¥y
:inbegral ) y
constant greater than gero
free-stream Mach number

'

rate of increase of wing angle of attack

statlic pressure

N (x-£)2 - p2(y-n)? - p2s2
V;Z + ytz + zlz . Q

plan-form area

manipulation variable

time

(1-43 ¢ + X
free-stream velocity, taken parallel to x axis

obligue coordinates whose axes lie.parallel to Mach
lilnes In 2 = 0 plane

974
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X.¥,2

xl,yl,zl

€, 8

T
®
Subscripts:
0
1,2,3. ..

a,b

B

z component of perturbation veloclty, %%P (taken as

positive in direction of an outwardly drawn normal
from plane of wing) -

Carteslan coordinates

transformed Carteslan coordinates
(x* =x, ¥ =«/1-M§y, z' =a/1-M2z)

Cartesian coordinates in x,y,z directions, respectively
angle of attack

cotagent of Mach angle,V M2 -

effective slopes of streamlines (measured in 1 = constant
plenes) in z = 0 plane between wing boundary ani

foremost Mach line, A =%
density

effective wing-gection slopes measwred in 1 = constant
planes (6= w/U)

tlime delay

perturbation=velocity potential

;Eree gtream

numbered areas or wing-pla.n-bomdary equations
time delays 'r'a and Ty

bottam (of wing)

upwash fileld

top (of wing)
wing

W e m e e e e P S ot e ey = — — =
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Examples:

NACA TN No. 1699 ' v
14

ourve v = v;(u) along supersonic leading edge
curve u = uy(v) along subsonic leading edge

wing areas 1 plus 2

derivative of curve “2(71;) with respect to v,

slope at time +~T, plus slope at time ¢ -‘r.b

difference between bottom and top wing slopes at

time t -Ty plus this difference at time t-Ty

Og ~ Op
oblique coordinates of point x,y on wing
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APPENDIX B
EVALUATION OF UPWASH

Origin of upwash. - The fundamental source solution (equa-
tion leii for the three-dimensional veloclty potential of thin
wings moving at supersonic speeds can be written as

£
P = 20 (B1)

~

If this equation 1s partially differentiated with respect to z,
the result is :

3p_dar__p? 3¢
9z Jr Oz, r or (52)

If 2z 1is allowed to a{proach zero, the quantity o9/dz will

approach gero unless L ?g approaches infinity (that is, r
r

approaches zero). The fundamental solution (Bl) can then be integrated
over a surface of sources in the 2z = 0 plane to obtain an extended
velocity potential. Because of the form of equation (B2), the 2z com-
ponent of the perturbation velocity generated by this potential will
arise only from those subelements near r = 0. '

On the wing, the flow must be tangent at each point to a defined
surface. The quantity O0%Jdz is therefore determined at each local
point by the wing. Under such circumstances and because of the wing
restraint, only the gubelements near r'= 0 obtained by assuning
(x-t)=(y-n)=(z- f) ~0 contribute to oP/dz. No such restraint
exists for the upwash field., If the same condition is imposed to
evaluate o%/dz _in the upwash field part of the 2z = O plane, the
trivial answer EE = _b_cg results,

dz Oz

. A fundamental distinction exists between the evaluatlion of
d9/dz on the surface of the wing and In the upwash field. The
wing surface is a restraint and can generate primary impulses that
lead to the velocity potential and hence to the flow distributiona.
The upwash field is unrestrained, however, and can transfer from
the bottom to the top wing surfaces only those impulses that have
already been generated by the wing. ' '



http://www.abbottaerospace.com/technical-library

26 ' : NACA TN No. 1699

The upwash must arise, however, from those subelements near
r = 0. Because the unrestrained subelements in the vicinity of the
point (x-%) = (y-m) = 2 = 0O cannot generate upwash, Jy/dz
(for z = 0) must be generated by those subelements in the vicinity
of the curve (x-£)2 - p2(y- q)z = azza‘g 0. This condition implies
that only those wing slopes along u = up genera;be ‘the upwash for
points on this Mach 1line. The defining equation for A should then
de restricted by aetting u.=uy, for either time-independent or
time-dependent flows. This result was proved directly from the
integral equation (21c) for- 'bima-inﬂ.ependenb ‘casea (reference 11).

Differential equation for }\. --The increment 4A at point
up,vp Gue to the wing elements dv- (fig. 6) of wing slopes

OB .0 : : ~
—B—TT- may be determined from equation .(6) of reference 1l ag

(B3)

where s 1s the manipulation variable and is evaluated at s = Vpe
The integration of dv over an infinitesimal distance results
in the removal of one integration sign. Also, (0Op - OT) may be

considered as constant. Eguation (B3) then becomes

8
Qz GB- O'T -_a- d.VD
dv 2t d8
- A(s - vp)(vp - ¥)

_ (o ~op) Avo -+ —‘ (B32)
2x (s - v),\ra'T"g

Replacement of the manipulation varlable s by p glves equa-
tion (25)

-+ an_ (% - %) V2 - ¥

d.v 2%
(vp - V)\fvp - v

(B3D)

e e —————————— = [ -
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Demonstration by substitution that equation (26) satisfies

equation (24) when u = up. - If the integration variable v 1s

changed to 8 to prevent confusion, equation (26) assumes the
following form:

V2 ( ' .
o, \u,s,t-X=8 /‘/v -8 ds
A(u,v,t) = 1 f B,T\? ? _ "PBc_ 2 (B4)
2«/\/7-72 v ve-s
Therefore
: 2 < TD -S)
Vo - o u,8,t - v, -8 ds
AG,":"" > 3’ - R (85)
Be 2x V=Y, v-s8
vy .

The first member of equation (24) then beccmes

VD}\ D v2 . ( 'D">
a.p3’ _1 a OB,T u,s,t - 56 ,"72-5 ds

v
“ -
vs l\,vD-v . ’V (v=v3)(vp-v) vy v-s

V2 D

:% Op T(u,a,t- v:-e> V-8 ds dv
’ c -
v (v-8) A/(v=v5) (vp-¥)

(B6)

According to integral 195 of reference 30, however,

dv .

(v-8) )\f (v:vz) (vp-7) i l\/ (vp-8)(vp-8)
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Therefore

NACA TN No. 1699

(o] t - —
7\& b dv ) B,T u,s, Bo ds
le

V1

(B7)

2o

Equation (B7) is equation (24) for u = wy,.

Q74
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> Figure 1. - Field of integration for evaluating vélocity potentlal
- (equation (10)) of a source.
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Figure 2. - Relation between time delays T and Tp and
position of wave front. .
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Flgure 3. - Comparison of Cartesian and oblique coordinate systems,

Figure 4. -~ Flelds of integration for evaluating upwash between
wing boundary and foremost Mach wave,
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Figure 5, - Division of external fileld Sp for evaluation of H,
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Figure 7. = Integration limits for equations (27) and (28).
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