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. SUMMARY

A general method of analysis 1s developed for the two-
dimsnsional, steady, compressible flow through mixed-flow compres-
sors in which the center line of the passage generates a right cir-
cular cons about the axis of the compressor. The two-dimensional,
radial-discharge compressor is a special case in which the cone
angle 1s equal to 180°., The variables taken into account are:
(1) impeller tip Mach mmber, (2) compressor flow rate, (3) blade
shape (curvature), (4) passage height, (5) mumber of blades, and
(6) compressor cone angle. Relaxation methods are used to solve
the resulting nonlinear differential equation for the stream
function. Special attention is paid to logarithmic-spiral blades,
of which the straight blade (lying on a conic radius) is a partic-
ular case.

As a result of the analysis, it is concluded that the solution
obtained for a glven cone angle also applles to certain other cone
angles (that 1s, other mixed-flow compressors) with a fewer or a
greater mmber of passages but with the sams included passage angle,
and so forth. It is also concluded that mixed-flow compressors
with the same muber of flow passages as radiasl-discharge com-
pressors and therefore with smaller included passage angles have
lower peak blade loadings and lower maximum relative velocities
than the corresponding radial-discharge compressors.

The general analysis also applies to lmwmrd-flow turbines.
In fact, the solution obtained for & centrifugal compressor with
smooth (shockless) entry is also the solution (with the flow direc-
tion and rotation reversed) for an inward-flow turbine with the
same design characteristics (that is, the same rotor) and with
shockless entry.


http://www.abbottaerospace.com/technical-library

2 NACA TN No. 1744 \

A numerical example is presented consisting of a radial-
discharge compressor (cone angle equal to 180°) with constant flow
area and 20 straight, radial blades operating at a tip Mach number
of 1.5. The results of thls example are given by plots of the
streamlines, lines of constant pressure ratio, and lines of constant
Mach number. For the conditions of this exemple, a wheel-type eddy
forms on the driving face of the blade; the veloclties and pres-
sures at the impeller tip are reasomably uniform; any nommiformity
in the flow leaving the Impeller tip adjusts itself raplidly; the
maximum local Mach number 1s 0.64 and occurs along the trailing
face of the blade at 68 percent of the tip radlus; and the computed
value of the slip factor is 0,90,

In addition, a simplified analysis for straight blades lying
on conlc radii 1s presented that can be used to determine the
streamlines, the pressure distribution, and the velocity profiles
within the impeller except near the tip (and inlet).

-~ )

INTRODUCTION

Increased knowledge of flow conditlons within centrifugal com-
pressors can result in improved compressor performance., For
example, boundary-layer growth and flow separation, which affect
the compressor efficiency, can be controlled by sultable changes
in the compressor design provided the effects of these changes on
velocity and pressure gradients within the compressor are known.

For a given set of operating conditions, the flow conditions
within centrifugal compressors depend upon the geometry of the com-
pressor (three-dimensional effects) and upon the properties of the
" Pluid (compressibility and viscosity). Most treatments of the
problem up to the present tlme have been concerned with the two-
dimensional-flow effects for incompressible, nonviscous fluids (for
example, referemces 1 to 5).

In the analysis reported herein, compressibllity is considered,
which is especially important in centrifugal compressors because
the large pressure retios per stage result in density changes that
affect the f£luild velocities and therefore the streamlines, the
preossure gradients, and so forth., In addition, compressibility is
Important in regions of supersonic flow where shock phenomena may
develop. A method is developed for determining the two-dimensional,
compressible, nonviscous, steady flow through mixed-flow compressors
in which the center line of the passage generates a right circular
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cone., The two-dimensional flow patterm 1s considered to lie upon
the surface of this cone. The radial-discharge compressor is a
special case in which the cone angle is 180°,

The solution of two-dimension2l, compressible-flow equations
ig accomplished by a numerical procedure known as the relaxation
method. This method was first developed by Southwell (refer-
ences 6 and 7) and has been extended to compressible-flow problems
by Exmons (reference 8). It is essentially the procedures outlined
by Emmons that are employed in the numerical solution of the dif-
ferential equation obtained in this analysils.

The analysls 1s first developed for arbitrary blade shapes
and 1is later applied to logarithmic blade shapes of which the
gtraight blade lying on & conlc radlus 1s & special case. A numer-
ical example is presented with constant flow area and 20 stralght
blades operating at a tip Mach number of 1.5. Finally, a simpli-
fied analysis for straight blades lying on conic radii is developed
that checks the results of the relaxation solution except for
regions of flow near the impeller tip (and inlet).

ANATYSIS
General Case

This analysis develops a method whereby the streamlines, the
veloclty profiles, and the pressure distributions can be determined
for steady, two-dimemnsional, compressible flow in centrifugal com-
pressors with arbitrary blade shapes, varying flow areas, and fixed
cone angles. The analysis is limlted to mixed-flow compressors in
which the center line of the passage generates a right clrcular
cone with a cone angle « (fig.sﬁs. (A1l symbols are defined in
appendix A.) The two-dimensional flow pattern is considered to lie
upon the surface of this cone. A developed view of the conlc sur-
face 1s shown in figure 2. For the speclal case in which o 1is
1809, the cone surface becomes plane and is normal to the axis of
rotation. Such compressors (o = 1809) ghall be designated radial-
discharge centrifugal compressors. For the special case in which
o 1s 0O, the cone surface becomes cylindrical and is concentric
with the axis of rotation. Such compressors (a = 0°) -are designated
axiel-flow compressors and are not considered in this report.

Coordinate system. - et R and 6 be the dimensionless
conical coordinates of a fluid particle relative to the rotating
impeller (fig. 2). The conic-radius ratio R is defined as
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R%;I'T— (1)

where

r conic radius (distance along conic element from apex of cone)
Subscript

T impeller tip

The coordinate system (R, 6) rotates with the angular velocity of
the impeller w. A particle of fluild located on thlis coordinate
gsystem 1s shown in figure 2. The passage-height ratio H of the
particle in the direction normal to the conic surface (fig. 2) is
a contlnuous function of the conlc-radius ratio R.

H=X - £(R) 2
B (2)

where h 18 the passage height at any conlc-radius ratlo R. The
shape of the blades on the conic surface is arbltrary.

Assumptions and limitations. - This analysis assumes that the
flow varies only along the surface of the cone, that is, that flow
conditions are a functlon of the two variables R and 6. In
order that the aassumption of two-~dimensional flow on the conic sur-
face be valid, it is necessary that the flow be uniform across the
flow passage normal to the conic surface. In order to satisfy this
flow condition, it is necessary that: (1) the gradient of h with
respect to r be small, and (2) the cone angle a (fig. 1) be
sufficiently large. The allowable variation in o from 180° will
depend upon the relative magnitudes of h and r and upon the
desired accuracy. For the hypothetical limiting case in which the
ratio h/r approaches zero everywhers along the conic surface,
the analysis 1s accurate for all values of «. In most practical
centrifugal compressors, the ratic h/r 1is smallest near the tip
of the impeller; therefore, the analysis is most accurate in the
region near the tip.

The assumption of steady flow-relative to the impeller applies
within the impeller and for the distances upstream and downstream of

S10T
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the impeller required to set up the boundary conditions. Stationary
prerotation vanes (ahead of the impeller) and staticnary diffuser
vanes (after the impeller) introduce pulsations relative to the
rotating impeller and thus make the flow unsteady. However, these
pulsations rapidly diminish upstream and downstream of the vanes so
that the flow can be treated as steady within the region near the
iImpeller provided the vanes are not too close to the impeller.

Continuity and the stream function. - A fluld particle is
shown In figure 2 on a developed view of the conlc surface. If u
and v are the tangential and "radial" (along the conic element)
camponents, respectively, of the velocity relative to the impeller,
then, from continuity considerations for steady flow, the following
expression 1s obtained:

i

2 (ovER) + 3 (o) = O - ()

where p 1s the weight density of fluid.

A dimensionless stream functlon ¥ is defined such that

=_PV_ ’
\ue PoCa HR (4)
and
=. P
Vg = 5o & (42)
where

c local speed of sound

Subscript
o absolute inlet stagnation condition

and where the coordinate subscripts (R and 6, in this case) refer
to partial derivatives with respect to the coordinates.

The continulty equation (3) then becomes

U —— e e
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= (copo\lfe) - ’685 (Gopo‘bR) =0

or
Ver - Yro = 0

where the double coordinate subscripts (6R and RO, in this case)
refer to second partial derivatives with respect to the coordinates.
Therefore, the stream function VY satisfies the continuity condition.

Irrotationality. -~ In the absence of vlscosity, shock, non-
uniform heat addition, and so forth, the absolute motion of the fluild
particle is lrrotational. Therefore, the absolute circulation 7T
about the particle is zero and, from figure 2,

I‘=o=-a%|:(erR sin%‘+u>me:|d3-g%(vd3) e

where ((an‘R gin %‘ + u) is the tangentlal component of the absolute
velocity. After simplification,

oy sin =3+ G- 555 =)

Substitution of the stream function VY as defined by equation (4)
gives

Yp V¥
ZMIB%H—WRR+-R§+—;-§-WR(1039H)R
. ‘
- loge £ -_€<103.2. (6)
ﬂJR(ogepoR R? epoe

where the impeller tip Mach number Mp 1s defined as

1015
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umrsin%

%o

Mp (7)

Denslty ratlo. - The general energy equatidn is used to deter-
mine those terms in the differential eguation (6) involving the
density ratio p/po. '

JegT + -§l§ [(erB sin 5 + u)z + vz] = JegT,

R sin & (R sin & + u
2<g 2 )-JcPATv (8)

+

where

J mechanical equivalent of heat

Cp specific heat at constant pressure
T absolute temperature

g acceleration due to gravity

AT, temperature correction for whirl ahead of impeller

The term

[o 4 51
wnIRsinE(erR sin-2-+ﬁ
g -

is the work done by the impeller upon the fluid particle if the
fluid particle possesses no whirl (radius, r sin a./z » times tan-
gential component of absolute velocity) ahead of the impeller, and

the term o o
wrpRy sin 3 (wl\laRI sin 7 + uI)

JepATy = Z "~ (8a)

is the reduction In work that results from the whirl ahead of the
impeller. The subscript I refers to Impeller inlet. These same
expressions for the work done apply in the vaneless portion.of the
diffuser, where the tangential component of the relative velocity u

decreases (takes on larger negative values) in such a manner that the
work terms remain constant.
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Rearrangment of equation (8) and solution for the temperature
ratio T/T, results in

T -1 2 2 _ATw
?E_;:—_1+Z.é_|:(mar) -(.595> l o (9)
vhere

y ratio of specific heats
g veloclty relative to impeller

q = A/ ul +1:’2 (20)

From equation (8a), the correction term in equation (8) for the
whirl ahead of the Impeller becomes

, %OE - (771) RpMp |Rpp + (—5—‘;)1] (9a)

For an isentropic process, the density ratio is related to the tem-
perature ratio by

2L
e _(zyt
po = <T0
so that
2
-1
R P} 2 _(a 2] e 184
2o o - 2] - 2 o
Algo, from eguations (10) and (4), ,
L1
Vp\2 Vg2 |2
oo [(‘f> +(m (12)

Equations (11) and (12) together with the generel differential
equation (6) provide three equations with three unknowns: V,
a/cy, and p/po. The solution of these equations determines the

steady flow of compressible fluid through centrifugal compressors
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with arbitrery blade shapes, with arbitrary variations in the

passage-height ratio, and with & constant cone angle. Equation (6),
which is nonlinear, can be solved (together with equations (11) and
(12)) by relaxation methods.

-
A

Relaxation methods. - The relaxetlion solution of the differ-
entlal equation determines the value of Y at each point of a grid
placed within the boundaries of the problem. Values of V are
first assumed, and the residuals Q, which result from the assumed
values of V¥, are camputed for each point of the grid by expressing
the differential equation (for example, equetion (6)) in finite-
difference form with the sum of all terms equal to Q instead of
zero, The final solutlion 1s obtalned by systematically varying
(relaxing) the interior values of V¥ until the values of Q at
each grid point approach zero. For the numerical solution of thils
problem by relaxation methods, it is convenient to transform the

"R,0 coordinates so that the arbitrary blade shapes become straight
and parallel, thus a grid of equally spaced points between the
blades is possible (reference 8, p. 13).

Transformation of coordinates. - The transfomation of
coordinates is glven by the analytic function

~

£(z) = £(Re?®) = {(R,6) + in (R,6) (13)
where z 1s a complex variable and the { and 7 coordinates (Cartesian
coordinates in transformed plane) are the velocity potential lines

(€ = constant) and streamlines (7 = constant) in the physical

Ro-plane for incompressible flow through the stationary impeller

(v = 0) with constant passage height (H = 1). It is convenlent to
choose the £, 7 coordindtes to correspond to emooth (shockless)
inlet and exit conditions with respect to the Iimpeller blades.

The transformation results in straight parallel lines for the
impeller-blade boundaries as these boundaries correspond to comstant
values of the incompressible stream function 7. The £; g
coordinates are given for certain blade shapes by simple analytic
expressions (p. 17) but, for arbitrary blade shapes, it 1s conven-
ient to solve the well-known differential equations for the incom-
pressible stream function and veloclty potential by relaxation
methods (reference 8).

Equation (6) is now expressed in terms of the new variables ¢

and 1. .This change of variables is described in appendix B with
the followling result: )
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% g ne g e ) - (),

- L5 vy - Vyuy) [ Cloge ), s - (ogo By | (10
‘11

where H is now a functionof ¢ and 7 and

a4 veloclty for incompressible flow relative to stationary
impeller with constant blade height (R6-planse)

uy, vy ‘tangential and radial components of velocity aqj, '
respectively

The incompressible velocities wuvy, vy, and gy are related to
the incompressible stream function 1 by the following equations:

ui = e ‘l]R (15)

y
v =g (152)

]
1“:3 +—-9— \ (15b)

Equation (14) is the general differential eguation expressed in £,
coordinates £or the flow of compressible fluid through cemtrifugal

compressors with arbitrary blade shapes, with arbitrary variations

in the passage-height ratio, and with constant cone angles,

Also, equation (12) in terms of the transformed coordinates ¢
end 7 (see equations (46) and (47) in appendix B) becomes

——9-;--(1—1-< - > (16)

Po%

where H is a functionof { and 1.
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Finite-difference equation. - In order to solve the system of
equations (equations (11), (14), and (16)) by relaxation methods,
equations (14) and (16) must first be changed to finite-difference
form. This change is accomplished with the ald of the following
equations (reference 7, p. 19):

3\

(Fy - F3)

-

ng

Fi

Y

e

(F4 - Fz‘)
(17)
F .

n

dm""

e (P, + F5 - 2F)

- 2F)

(1?‘2 +F

dml"‘

m o 4

J
where
F any twice-differentiable function of variables ¢ and 7
b grid spacing

Subscripts

l, 2, 3, 4 four points adjacent to grid point being consid.ered.
(F with no subscript)

A sample grid 1s shown in figure 3. The grid spacing b 1is arbil-
trary. However, the smaller the valus of b, that 1s, the larger
the number of grid polnts, the greater is the accuracy of the
approximate, finite-difference equations (17).

With the ald of equations (17), equation (14) becomes
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(Y, - ¥3) p P
W1+¢2+¢3+¢4-4\U-—‘£1—r-3—-<logep—z-logep—5
(b, = ¥o) Py P2 1
P (e, s ) Lt

) "—1] [(1089 Hy - loge ) vy = (1oge Hy - log, Hp) u |

—Eir-é-be-ﬁban . (18)
Q4 ©

Tquation (18) 1s the finite-difference squation used to compute the residual Q at each
grid point from the estimated values of Y- at the adjacent grid points.

Fquation (16) in finite-difference form beccmes

o

= %ﬁ l:(\hl ""l"s)z + (¢4 - \l“a)z] (19)

Po%

The density ratios in equation (18) cen now be determined in the following menner:
From equation (ll), for fixed values of RMI., curves of logg p/po plotted against

pa/PoCe ©an be computed for a constant value of AT, /T,. These ourves have been plotted
in figure 4 for ATy/T, equal to zero, that is, for the case in which there ia no

1015
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whirl in the fluid ahead of the impeller., The logaritim of

the density ratio logg p/p, &t each point on the grid is there-
fore determined by first obtaining the flow-rate ratio pa/p,c,
from equation (19) after which logg p/p, ocan be obtained from
plots of equation (11), such as figure 4.

Boundary considerations. - The solution of equation (18) depends
upon the boundary values of the stream function VY, which are
determined from the compressor design characteristics and operating
conditions. The boundary velues of V along the blade surfaces can
be determined from the following considerations.

The differential flow rate between adjacent streamlines is
shown in figure 5. The radial component of the flow rate is

pVhprpHRA6
and the tangential camponent of the flow rete is

- pubprHAR

The differentlial flow rate is therefore given by

@v = PVigIyERIO - pubpryHAR -

where w 1s the flow rate between streamlines, From equa-
tions (4a) and (4b),

dw = pocobqry (Vgdo + VpdR)

bub
a¥ = Ypdo + YpdR
Therefore
dw = pc.>°ohTer‘¢ (20)
or

% = poghgpAY (200)
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From equation (20a), the stream function V must be constant along
the blade surfaces (because the flow rate between blades is
constant).

1015

By definition, the driving face of a blade ls the face in the
direction of rotation, and the traliling face is the opposite side of
the blade. Integration of egquation (20) across the impeller passage
from the driving face of one blade and the arbltrary setting of w
and V¥ equal to zero along the driving face results in

w = pocohTrTw (21)

The value of VYV at any point in the flow field is therefore a

measure of the flow rate between the streamline at that point and
the driving face of the ilmpeller blade. In particular, along the
trailing face of a blade, VU is constant and equal to V; where

the subscript + refera to the trailing face, and w 1is equal to
W/B where W is the compressor (total) flow rate and B is the
number of compressor passages (or blades).

Equation (21) then beccmes .

¥ = posotrrhy | (22)
This equation can be simplified by the followlng consideratlons:
The flow area at the impeller tip agp is glven by
= BOpophy (23)
where ¢ 1s the included angle of the passage defined by
=6y~ 63 (24)

where the subscript d refers to the driving face of a blade.
Combining equations (22) and (23) to eliminate Bhgprp results in

W Yy
PoB1%% O

The boundary value of ¥ along the trailing face of the blade is
.therefore given by
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\l»'-t =®0m (25)
where the flow coefficient @ is defined as

W
Pof1C

The boundary velues of V¥ in the diffuser are determined from
the Kutta condition, which requires that the streamline along the
blade surface in the impeller be tangent to the blade at the tip.
The effect of the Kutta condition on the boundary values in the
diffuser will be discussed later in connection with the numerical
example of this report.

@ - (26)

The boundary values of Y ahead of the inlet to the impeller
depend upon the whirl of the fluld approaching the inlet. This
whirl determines the gradients of V¥ with respect to £ and 1q
along the boundaries rather than the values of VY itself. If the
flow for eamooth entry is desired, this condition can be obtained
in essentially the seame way as the Kutta condition at the outlet.
The whirl ghead of the inlet is then uniquely determined by the
smooth inlet condition.

Equivalent mixed-flow compressors. - As previously stated,
this analysis applies to mixed-flow compressors with any fixed
cons angle including the special case of the radial-dischargé com-
pressor in which the cone angle is 180°, However, as a result of
the assumption in this analysis that the flow varies only along
the conic surface, which can be developed into a plane (fig. 2),
the solution obtalned for a given fixed cone angle also applies
to certain other mixed-flow compressors with a fewer or greater
number of like passages with the same included passage angles,
blade-thickness distributions, and so forth, For example, the
included angle of the developed view of a mixed-flow compressor
(figs 2) is given by (assuming the blade thickness at the tip is
Zero

12314 sin%’=BJT

which, for a radial-discharge compressor (o = 180°) with 20 blades
(for example), beccmes '

2t = 20 O'T
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The ratio of these equations resulis in an expression for the mixed-
flow cone angle o as a function of the number of impeller flow
passages that are similar to the flow passages (20) in the radial-
discharge impeller

=2 einnl B . (27)

From equation (27), the mixed-flow compressor cone angle o has
been computed for several values of B and the results are given
in the following table: .

Cone angle, o Number of passages, B
(deg) '

180 (radial) . 20

143.6 19

128.4 18

116.4 17

The flow in a mixed-flow compressor 1s therefore equivalent to
the flow In a radial-discharge compresgor with a greater number of

" blades (but with the same included passage angles 0©). Increasing

the number of blades In a radial-discharge compressor decreases the
blade loading and the maximum local Mach number and increases the
impeller slip factor. The blade loading and the meximum local Mach
number are therefore less and the slip factor is greater for a
mixed-flow compressor than for a radial-discharge compressor with
the same mumber of blades (because J is less for ‘the mixed-flow

compressor) .

Equivalent inward-flow turbines. - The reversal of the flow
direction through & centrifugal compressor and the reversal of the
direction of impeller rotation results in an inward-flow turbine,
The general analysis presented in this report therefore also applles
to Inward-flow turbines with arbitrary blade shapes, with arblitrary
variations in the passage-height ratlio, and with constant cone
angles. In fact, any solution obtained for a centrifugal compressor
with smooth (shockless) entry is also a solution (with the flow
direction and the impeller rotation direction reversed) for an
inward-flow turbine with shockless entry. The shockless entry
for the compressor corresponds to the Kutta condition for the tur-
bine and vice versa.



http://www.abbottaerospace.com/technical-library

NACA TN No. 1744 17

Particular Case - Thin Logarithmic-Spiral Blades

In the general case of this analysis, the differential equa-
tions governing the flow through compressors with arbitrary blade
shapes have been developed in terms of the transformed coordinates ¢
and 17, which can be determined by relaxation methods.

In the particular case of this analysis, a simple analytic
expression that determines a particular thin-blade shape is
congidered. Such an analytic expression is desirable becauge it
specifies the transformed coordinates £ and 17 1n terms of R
and 6 and therefore eliminates the additlional relaxation solution
otherwise required to obtain £ and 7. .

Logarithmic-spirel blades. - This class of blade is given by
the analytic function

£(z)

(¥ + 1K) loge 2

(v + iK) log, (Reie)

(N + IK) (logg R + 16)

(N logg R - K8) + 1 (K logg R + NO) (28)

where N and K are constants to be determined by boundary con-
ditions. From equations (13) and (28),

£ = N(log, R - X 6) (29)
= N(—% loge R + 6) (29a)

Any incompressible streamline (n = constant) or portion thereof

may be replaced by an infinitely thin blade without disturbing the
flow pattern. Equation (29a) with 7 constant therefore represents
a thin-blads shape. Any number of blades may be selected corre-
sponding to different constant values of 7.

The constants N and K ars determined in appendix C from
the boundary conditions,
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T]=\l’_b
when
and

R =10

(from which the zero point for 6 is at the tip of the driving
face of the blade). Equations (29) and (29a) become

¢

1

@ (loge R + 9 tan B) ~ (30)

® (6 - tan B logg R) . (30a)

where B 1is the blade curvature angle between conic-radius ratio R
and tangent to blade surface (fig. 6).

The blade shape in the RO-plane is given by equation (30a),
which, with 7 constant, determines a logarithmic spiral (fig. 6).
In appendix C, the angle B 1is shown to be constant for a given
logarithmic spiral. Foxr positive values of B, +the blades are
curved forward (in the direction of rotation); for negative values
of B, the blades are curved backward; and for B equal to zero,
the blades are straight and redial along conic radii (fig. 6).

Equations (30) and (30a) relate every point in the R@-plane
to a corresponding point in the §1]-plane. Solving these equations
for R and 6 in terms of £ and 7

tp.sectanéﬁ

R=oe (31)
g1+t tanp (31a)
® sec? B

In terms of the particular transformed coordinates given by
equations (30) and (30a), the differential equation for the flow of
compressible fluid through centrifugal compressors with logarithmic-
splral blades beccomes
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2(E-1 tan B)
£ g P8 v ) P
H =V, + -V <1og ) -V (log =
i Po (¢ sec B)2 3 mot ° pog 1 P 1

- (¥ cos B -V, sin B) I:(loge m)y cos B - (log T, otn a:l (32)

Passage-height ratio H. - Instead of the arbitrery function
for the passage-height ratio given by equation (2), let the varia-
tion iIn H be given by

| , E=R (33)

where m 1s an arbltrary exponent.

If o equals op for all values of ‘R, the variation in the
flow-area ratio with R becomes, from equations (23) and (33),

A:—%;:_\:RH:RHH-I (34)

where A 1s the flow-area ratio. This relation between A and
R 1s plotted in fligure 7 for several wvalues of the exponent m.
For m equal to zero, the passage helght remains constant; for
m equal to -1, the passage area remains constant.

For logarithmic-spiral blades, equation (31) is combined with
equation (33) and the passage-height ratio H becomss
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m(E-q tan B)
H=o ®Becp (332)

from which equation (32) reduces to

(m+2)(E -1 tan B)

: 2
P gec B
£ e = - L
2 o6 (P sec B)2 Ver *Vmn ¥ (1°8° po>§
- £y .8 - tan 5
¥, (108 p°>n 2 (V- wa ¥y (35)

Straight radial blades. - For stralght blades along conic
radii, the blade angle P 1is zero (fig. 6) and equation (35)
reduces to !

gm +22§

)
?Mrap;e qu__=\l1§g+\l',m-\l'§ (logebﬁ’->g

o

-V, (1ogg &) -2 ¥ 36
q(BePOH P g ()

Incampressible flow. - For incompressible flow, p/po is
equal to 1.0 and equation (36) becomes

gm+2)§
e @ m

where Mp 1s now a fictious tip Mach number based upon a constant
fictious speed of sound, which also appears in the definitlons
of V, £, n, and o.

Constant blade height., - For constant blade helight, the expo-
nent m 1is zero (equation (33)) and equation (37) reduces to

1015
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s =\|J§§ +¢qn ) (38)

Detailed solutions to this equation (in slightly altered form) have
been obtalned by & number of investigators. (For example, refer-
ence 1,)

Sumpary of equatlons. - Special forms of the basic differential
equation (14) for steady flow through conical centrifugal compres-
sors have been developed for various designs and operating conditions.
The equations are listed in the following table:

Equation | Blade shepe | Passage height Flow

(32) Logaritmic | H = £(R) . Compressible
spiral

(35) Logarithmic | H = RO Compressible
spiral

(38) Straight H=R0 Compressible

(37) Straight H=RD Incompressible

(38) Straight H = constant | Incompressible

These differentlal equations express the stream function V
as a function of the transformed coordinates £ and 7. The equa-
tions are changed to finite-difference form and solved by relaxation
methods. This form is obtained with the aid of equations (17) and
has been obtained for equation (14), the finite-difference form of
which is given by eguatlon (18). The density ratio p/fp, is deter-
mined from figure 4 or from equation (11) with the aid of equa-
tion (19) in which the parameter gy is obtained from equations (10)
and (47) or from equation (52b) in appendix C and in which the
vz;.riable E is a given function of R (which is related to £ and
7). ‘

NUMERICAL PROCEDURE

A detailed outline of the numerical procedures for the -relaxa-
tion solution of campressible-flow problems is given in reference 8.
The emphasis is placed hereln on those features of the solution that
are pecullar to the flow in centrifugal compressors.
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The solution of each differential equation developed for the
stream function ¥ (equations (14), (32), (35), (36), (37), and
(38)) requires special treatment depending upon the compressor
design characteristics and the flow conditions that the equation
represents. However, the numerical procedure is in many respects
similar for all equations. The remainder of this gection will
therefore be concerned with the numerical solution of equation (36),
which is the equation used in the numerlcal exmmple of this report
(straight thin blades along conic radii). ’

Parameters. - An inspection of the differential equation for
the stream function V¥ (equation (36)), together with the auxiliary
equations (7), (9a), (11), and (25), indicates eight parameters,
which, together with the blade angle B (equal to zero in equa-
tion (36)), specify the design characteristics and operating condi-
tions of the compressor.

- Design parameters:

(1) Passage-height exponent m, which relates passage-height
ratio H to conic-radius ratio R

H=%0 (33)

In the more general case, H can be glven as an arbitrary
function of R. ’

(2) Cone angle a, which is constant (fig. 1)

(3) Blade curvature angle B, which for a logarithmic-spiral
blade remains constant and for straight bladés (along
conic radii) is equal to zero ,

(4) Included a.ngleAOf impeller passage on conic surface O,
which is measured from driving face of one blade to trail~
ing face of next blade

(5) Inlet conic-radius ratio Ry, which is ratlo of blade-
inlet conic radius to blade-tip conic radlus

(6) Initial whirl of fluid ahead of impeller, which is des-
ignated by ratio AT,/T, and which is determined by design

configuration of compressor ahead of impeller and by flow
rate (operating parameter) through compressor

STOT
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Operating parameters:

1

(7) Tip Mach number Mp, which is defined as

@
_ Orm sin.E (1)
MI' - Co
(8) FPlow coefficient ®, which is defined as
W
P = (26)
pOaTcO

For a glven compressér, this coefficient is easlly shown to
be proportional to standard egquivalent-flow-rate parameter

WA/6/6 (reference 9)
where

6 ratio of inlet stagnation temperature to standard sea-
level temperature

'8 ratio of inlet stagmation pressure to standard sea-
level preessure

(9) Ratio of specific heats v, which determines variation
in density ratlo o /po as glven by equation (11)

Boundary conditions. - The boundary values of the stream
function V are determined by the parameters previously outlined
‘and by the Kutta condition for tangency of flow at the blade tip.
The various boundary values of V¥ are shown on the relaxation grid

in figure 8. The mamner in which these boundary values are obtained
is sumarized as follows:

_ (1) The value of the stream function along the driving face of
the blade V3 (fig. 8) is arbitrarily set equal to zero. (See
p. 14.)

(2) The value of the stream function along the tralling face
of the blade V; (fig. 8) is constant and is given by

\pt =®0m (25)
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(3) The values of the stream function along the boundaries
ahead of the impeller-blade inlet depend (among other things) upon
the inlet design parameters Ry and ATV/TO. For the particular
case (used in the mmerical example) of straight blades (B = 0)
extended to the origin, at which a point source is assumed (p. 27),
the values of Ry and AT./T, are zero and the left bound of the
relaxation grid (fig. 8) is located at some radius ratio R within
the impeller passage. The value of the stream function along the
left bound V; (fig. 8) is computed for this particular case from
equation (41). This eguation has been found to be quite accurate
for values of R = £(£) 1less than 0.65. (See p. 32.)

(4) The values of the stream function along the upper bound
of the diffuser Vo (fig. 8) are estimated by equation (54)
developed in appendix D. These estimated wvalues of \lJe ares cor-
rected by the relaxation methods to be subsequently discussed.

The value of the stream function at the upper right cormer of
the grid V. (fig. 8) is first determined by the estimated values
of Vg. However, to satisfy the Kutta condition, the value of V,
must be of such a magnitude that the flow leaves tangent to the
blade surface at the blade tip., If the resulting relaxetion solu-
tion for the streamline configuration in the compressor does not
satisfy the Kutta condition, a new value of VY, 1s selected, the
estimated values of Vo adJjusted accordingly, and the solution
repeated as many times as 1s necessary.

(5) The values of the stream function along the lower bound
of the diffuser Vp (fig. 8) are, from symmetry considerations,

Yy less than V.
Vp = Vg - Uy (39)

(6) The values of the stream function along the right bound of
the relaxatlion grid are determined by \lfr and. by the assumption’
that, along this bound, AV/An is a constant. For the numerical
example, this assumption has been found to be accurate enough for
values of R = £(&) somewhat greater than 1.20. .

Grid layout. - Having determined the values of V at each
point on the grid boundary, the values of V¥ at each of the
Interior points is estimated and recorded upon the grid sheet
(fig. 8), which should be sufficlently large to accommodate the
caloulations required by the relaxation procedure. After estimating
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the interior values of V¥, the problem resolves itself into two
parts: (1) calculation of the residusl Q resulting from the
estimated values of V, and (2) relaxation (elimination) of the
regldual by sultable adjustments in the estimated values of V.

Residuals. -~ In order to determine the residual at each point
of the grid system, the partial differential equation (for example,
equation (36)) is expressed in finite-difference form by methods
outlined in the analysis. All terms of the equation are placed
equal to the residual Q, as has been done in equation (18). The
terms involving the density ratio p/p, are determined from fig-
ure 4 or equation (11) with the aid of equation (19). In order to
determine the value of the density ratio at the boundary points in
the impeller, it 1s necessary to extrapolate the values of the
stream function VY by graphical or numerical methods to obtain
the velocities at the boundary. In the diffuser, however, this
extrapolation is not reguired because the values of V¥ repeat
themselves in a continuous manner from passage to passage. If the
estimated values of ¥ at all grid points are correct, the value
of Q 1s zero at all polnts. If, however, the estimated. values
of V¥ are incorrect, the values of Q are finlte and may be
positive or negative.

Relaxation., - With the residuals at each of the grid points
computed, 1t remains to relax (that is, reduce) these residuals by
suitable changes in the values of V. In order to determine the
magnitude of the required changes in V¥, all terms of the finite-
difference equation (equation (18), for example) are assumed to
remain constant except the term 4V . A change in the value of V¥
wlll therefore cause a four-fold change of opposlte sign In the
value of Q. This change 1n the value of ¥ will also cause an
equal change in the values.of Q at each of the adjacent grid
points (fig. 3). These changes in ¥ and Q are recorded on the
grid sheet as the work progresses. By contlnually relaxing the
larger residuals any deslred amount, the values of all residuals
gradually approach zero. When this condlition ls reached, the
residuals are recomputed using the finlte-difference equation and
taking Into account the new values of the density ratio. When
the new values of Q have been camputed, the relaxation procedure
1s repeated as often as necessary to achleve the desired accuracy.

Accuracy. - No quantitative evaluation of the accuracy of
relaxation solutions is avallable (reference 10, p. 176). However,
because the computed velocities (and pressures) depend upon dif-
ferences in the values of the gtream function V¥ at adjacent grid

B et e e T e R ———
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points, that is, the small difference of large numbers, it is
important to know the values of V¥ with sufflicient accuracy to
assure the desired accuracy for the pressure and velocity calcula-
tions. In this report, the values of V¥ were computed to the
nearest 0.0001 compared with the meximum value of V¥ at the trail-
ing face of the blade of 0.1570. The resulting values of pressure
and velocity are estimated to be accurate within 1 or 2 percent.

Final solution. - The streamline configuration can be deter-
mined from the final values of V¥ at each of the grid points.
(Streamlines are lines of constant V.) If the streamline leaving
the tip of the impeller is tangent- to the blade at the tip, the
estimated value of V¥, (p. 24) is correct; otherwise a new value
of \l»'r must be selected and the entire solution repeated.

After the correct distribution of ¥ on the grid is obtained,
the preesure distribution can be determined from the density dis-
tribution and the Mach number distribution can be determined from
equation (19), the density ratio, and the speed of sound ratio
c/cy, which is related to the denslty ratlo by

xr1
2
< _ ([
Co <po>
From the preceding informetion, such quantities as the impeller

slip (appendix E), the boundary-layer growth, and the blade loading
can be estimated.

NUMERICAL EXAMPLE

Design and operating parameters. - A numerical example has been
computed for the following design and operating parameters:

Design parameters:

(1) Constant flow 8re8, I + o « o« « o o o o o o o o o o o« o o o =1
(2) Cone angle, o, G6ZTOEB ¢« & o« « o + o« ¢ o o « + o « o o o 180
(3) Straight blades along conic redii, B . . ¢ ¢ ¢ ¢ v ¢« « o o O
(4) Included passage angle, O =Om « + « « « « o o o « o o 2n /20

(20 thin blades)
(5) Inlet conic-radius ratio, By « « « ¢ o « o ¢ « s o ¢« o« o O

(6) Initial whirl of fluld approaching impeller
inlet’ ATW/TO [ ] - * . * * *° * L] * L ] . . L ] L] L ] L2 L ] L] L] > L] O
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Operating parameters: .

(7) Tip Mach mumber, Mp « « « v « 4 ¢ 4 4 4 4 s s o 4 o . . 1.5
(8) Flow coefficlenmt, @ « « « « o o o ¢ o o o o « o s o« o o « 0.5
(9) Ratlo of specific heatB, 7 . v ¢ v eie o o « o o o o o » 1.4

1Y

In order to insure steady-flow conditions, a vaneless diffuser
has been selected although a vaned diffuser located far enough down-
stream of the impeller would also be satisfactory. (See p. 5) A
diagram of the impeller and the veneless diffuser is shown in fig-
ure 9. The passage-height ratio H varies in such a mammer that
the radial-flow area remains constant. The straight impeller blades
are extended radially Inward to the center where a point source has
been assumed. A point source at the center of the impeller or a
circular line source at some conlc-radius ratio R must be assumed
in the two-dimensional analysis in order to supply the impeller with
the necessary flow rate., In this example, the straight blades have
been extended to the cemter (Ry=0) to obtain smooth (shockless)
entry to the straight blades (without providing inlet whirl). In
practice, smooth entry to straight blades without inlet whirl is
obtained by curved inducer vanes involving flow that is not along =a

conic surface.

The results of the numerical example are presented in fig-
ures 10 to 15. These figures are discussed.

Streamlines. - The streamline configuration relative to the
rotating impeller 1is shown in figure 10, The grid lines on the fig-
ure indicate the grid spacing used to obtain the final relaxation
golution. The streamlines are designated in such a manner that the
value of the streamline indicates the percentage of flow through
the passage that lles between the streamline and the driving face
of the blade (right side of passage). For example, 20 percent of
the flow through the passage lies between the streamline 0.2 and
the drlving face. It is interesting to note that 20 percent of the
flow occupies more than 50 percent of the flow area at a radius
ratlo of 0.86. The spacing of the streamlines is indicative of the
velocities in the compressor; the smaller the spacing, the higher
the velocity. The highest velocities therefore occur along the
trailing face of the blade, the lowest velocities near the driving
face,

As a result of the irrotationality of the absolute.fluid motion
in the veneless diffuser, the absolute tangential velocity of the
fluid decreases as the radius ratic R increases. The tangential
velocity of the fluld relative to the rotating R,6 coordinate

s m e ea crmm L e | e W W+ e v e Ty o oA % S e i L e e < e men— A M. e m e ot — o ne —
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system therefore, decreases repidly (tekes on large negative values)
in the diffuser and the relative gtreamlines in the diffuser are
steeply sloped in the direction opposite to the impeller rotation,
as shown In figure 10,

Eddy formation. - For the design and operating conditions of
this example, a wheel-type eddy forms on the driving face of the
blade (fig. 10). This eddy is attached to the blade and Totates with
an angular velocity equal and opposite to the rotational wvelocity of
the impeller ®, (The motion is not a simple rotation but a com-
bination of rotation and deformatlion required to satisfy boundary
conditions.) Such eddies form at low flow rates and result from
the condition of lrrotationality relative to an absolute system
of coordinates.

An expanded view of the eddy is shown in figure 1ll, The flow
rate within the eddy amounts to less than 2 percent of.the flow
rate through the impeller (as indicated by the designation of the
streamlines). This low flow rate indicates low veloclties within

the eddy.

It appears that, in an actual compressor under the influence
of viscous shearing forces, the size and the position of the eddy
might be unsteady. Under these conditions, the pressure forces
are not in equilibrium and the flow is unstable. It may therefore
be desirable to eliminate the eddy by proper changes in the design
-and the operating condltlions of the compressor.

The eddy can be eliminmated by the following methods: When
the flow rate through the rotating impseller is zero, the eddy
occupies the entire flow passage (reference 1, p. 1000). The eddy
1s therefore reduced and finally eliminated by increasing the flow
rate through the lmpeller. The increase in the flow rate, however,
is limited by choke in the compressor. In this event, 1t may be
desirable to replace the eddy by a solid plug of light materlal
attached to the impeller blade and disk.

Kutta condition. - Gensrally, several attempts are required
to satisfy the Kutta condition. The second attempt is shown in
figure 12(a). This figure is an expanded view of the region in the
vicinity of the blade tlp. Streamline 1.0 does not leave tangent
to the blade tip. In this casse, to satlisfy the Kutta condition of
tangency, it is necessary to reduce the circulation around the com-
pressor by increasing the assumed value of V., (See fig. 8
and p. 24)

S10t
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The third attempt to satisfy the Kutta condition is shown in
figure 12(b). Streamline 1.0 is very nearly tangent to the blade
tip. This solution was considered satisfactory.

Slip. - The computed values of the glip factor (appendix E)
as determined from the streamline configuration were 0.91 for the
second attempt to satisfy the Kutta condition and 0.90 for the third
(final) attempt.

Constant Mach number lines. - Lines of constant Mach number
relative to the impeller are shown in figure 13. A maximum local
Mach number in the impeller of 0.64 occurs on the tralling face of
the blade at a radius ratio of 0.68.

The maximum relative Mach number at the impeller tip 1s less
than 0.30. The low relative Mach numbers at the tip result from

the high tip speed of the impeller, which Increases the density and
therefore reduces the velocity.

The somewhat lrregular velocity proflle at the lmpeller tip
becomes gquite uniform within 6 to 8 percent of the impeller radius
beyond the tip. This rapid adjustment of the flow indicates that,
provided the absolute leaving velocity is subsonic, vaned dif-
fusers can be located quite close to the impeller tip wilthout
appreclable losses resulting from poor (unsteady) velocity distri-
bution relative to the stationary diffuser vanes. However, in the
presence of boundary layer and separation, the velocity profile would
be considerably more irregular than obtained In this solution. The
relatively close spacing of the Mach number lines along the trailing
face of the blade near the tip indicates rapldly decelerated flow,
which is conduclive to boundary-layer separation.

Constant-pressure-ratio lines., - Lines of constant pressure
ratio are shown In figure 14. Within the Impeller, the pressures
on the driving face of the blade are higher than the pressures on
the tralling face. This difference in pressure across the blade
accounts for the impeller torgue.

An expanded view of the pressure ratios in the viclnity of the
blade tip is shown in figure 15. As a result of the Kutta ¢ondi-
tion, the pressures (and the velocities) are equal on both sides of
+the blade tip. Thils unloading at the blade tip deoocreases the
impeller work and therefore decreases the Iimpeller slip factor.
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SIMPLIFIED ANALYS3IS

The relaxation solution presented in this report 1s lemgthy.
It would therefore be advantageous to have a quicker, although less
accurate, means of estimating the flow conditlons within.the impeller.
In this section, a simplified analysis developed in appendix F for
radial-discharge and mixed-flow impellers with straight blades (along
conic radii) is discussed.

Yolocity distribution., - The simplified analysis 1s based on
the egssumption that the tangentlial component of the velocity rela-
tlve to the impeller is zero at all radil within the impeller. This
simplified analysis includes blades of varylng thickness provided
the variation is not sufficlently great to result ln appreclable
values of the tangentlal component of velocity to the lmpeller u.
The irrotationality equation (5) reduces to )

@ _19v
in 2 = 5 —
2omp 810 3 = X 36
which, when integrated between limits, and so forth, becomes
v L]
v _Ta
o "ot 2RMp © (40)

vhere v 1s the velocity along the driving face of the blade
(6 =0), which is determined from continuity considerations in the

following paragraph.
Streamline distributlon. - From continuity conslderations and

from the velocity distribution given by equation (40), the follow-
ing expression is obtalned for the streamline distribution

(appendix ¥):

HR - -1 V, 2 Afﬂw 7-1
vl | @] £
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vhere the constant term AT,/T, is evaluated by equation (Sa). The
velocity ratio vg/c, 1s obtained by eguation (41) from the condi-
tion that

Ll

V=Y =@op
when
8=o¢0

When the velocity ratio vg/c, is determined, equation (41)
expresses the streamline distribution as a function of the coordi-
nates R,60 and the tip Mach number My.

Discussion. - The veloclity ratio along the driving face of the
blade Vd.7°o has been computed from equation (41) for the same con-
ditions used in the relaxation solution of this report. The results
of this computation are shown in figure 16 and are compared with the
results obtained from the relaxzation solution. The agreement
between the relaxation solution and the approximate solution 1s
gatisfactory up to a radilus ratio of about 0.85. For radius ratios
greater than 0.85, the assumptlon that the u component of the
velocity, and its derivative, may be neglected is no longer wvalid
because appreciable changes in the u component near the blade tip
are required, from momentum considerations, to unload the blade.

In comparing the flow characteristics across the passage
obtained from the relaxation solution and the approximate solution,
the radius ratios 0.675 and 0.855 shown in figure 16 will be used.

The eddy formed on the driving face of the blade (fig. 10) has
two stagnation points on the blade. The wveloclty along the driving
face of the blade is zero at radius ratios corresponding to these
stagnation points (fig. 13). The asmaller radius ratio can be pre-
dicted by the approximate solution from the plot of vd/co in fig-
ure 16. The estimated value of the radius ratio is 0.703 compared
with a value of 0.713 obtained by the relaxation solution. It
therefore appears that the presence of the eddy can be predicted
with fair accuracy provided the eddy occurs at a radius ratio for
which the simplifled analysis is valid, that is, for a radius ratio
at which the u component of the veloclty may be neglected.

The velocity distributlion across the passage has been computed
from equation (40) with the computed values of vd_/c° gliven in

figure 16. This velocity distribution is plotted in figure 17 for
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radius ratios of 0.675 and 0.855 and is compared with the corre -
sponding velocity distribution obtained by the relaxation solution.
The velocity distribution at a radius ratio of 0.675 1s nearly the
same for both solutions. At a radius ratio of 0.855, the agreement
is still satisfactory although the slopes of the two curves have
begun to deviate. This deviation between the solutions results
from the blade unloading.

The streamline distribution across the passage has been com-
puted from equation (41) with the computed values of v4/c, &lven
in figure 16. This streamline distribution 1s plotted in figure 18
Por radius ratios of 0.675 and 0.855 and is compared with the corre-
sponding streamline distribution obtained by the relaxation solution.
The fact that the streamline distribution at a radius ratio of 0.675
is nearly the same for both solutions indicates that the boundary
values of V at the left bound V; (fig. 8) can be computed by
the approximate method for radius ratios at least as high as approx-
imately 0.65. At a radius ratio of 0.855, the streamline distribu-
tion, although satisfactory in a qualitative manner, has begun to
deviate appreciaebly from the more rigorous relaxation solution.

Pressure ratio. -~ The pressure ratio in the impeller passage
is given by (eppendix F)

Z_
7-1

2
-1 a4 ATy
i%: 1+z'2—|:(RMI)2'<°—O‘+ZRMT9> " T (42)

where vz/c, 1is determined from contimuity considerations as
described on page 31.

The pressure ratio across the passage has been computed from
equation (42) with the approximate values of Vd/co given in fig-
ure 16. This pressure distribution is plotted in figure 19 for
radius ratios of 0.675 and 0.855 and is compared with the corre-
sponding pressure distribution obtained by the relaxation solution.
The pressure distribution at a radius ratio of 0.675 is nearly the
game for both solutions and at a radius ratio of 0.855 the agree-
ment 1is satlsfactory.

Blade loading. - The blade loading at any given conlc-radius
ratio 1s glven by the difference in pressure between the driving
Pace and the trailing face of the blade. From appendiix F, this
difference is given by
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Pq =Py 2yRMp '
po - ER CPGT , (43)

The blade loading has been computed from equation (43) and is
plotted 1n figure 20 together with the corresponding curve obtalined
from the relaxation solution. The two curves are in good agreement
for radius ratios less than 0.825. At higher radius ratios, how-
ever, the blade unloads for the relaxation solution whereas the
blade loading continues to increase for the approximate solution.
In order to correct equation (43) for the blade unloading, the fol-
flowing relation is assumed:

Pg= Py _ Z2yRMp
50 Tm T (1-79) o (a8)

where the exponent x 1s determined by the slip factor ©u from
consliderations given In appendix F

X = Tg-]-l_u (45)

In the numerical example, the value of p obtalned from the
relaxation solution is 0.90, for which, from equation (45), the
value of x is 18.0. ZEquation (44) for the blade loading there-
fore becomes ‘ g

Pg-Py 27RM; 18
" == P0p (1-R18) ‘(44a)

CONCLUSIONS AND SUMMARY OF RESULTS

A general method of amalysis has been developed for two-
dimensional, steady, campressible flow in centrifugal compressors
with arbitrary blade shapes, arbitrary variations in the passage
height, and with fixed cone angles (right circular cones generated
by the center line of the flow passage). From this analysis the
following conclusions can be drawn: i
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The solution obtained for a given cone angle also applies to
other cone angles (that is, other mixed-flow compressors) with a
Pewer or a greater number of passages but with the same Included
passage angle, and so forth. Mixed-flow compressors with the
sams mumber of flow passages as radlal-discharge compressors and
therefore with smeller included passage angles have lower peak
blade loedings and lower maximum relative velocities than the
corresponding radial~discharge compressors.

The general analysis also applies to inward-flow turbines.

The solution obtained for a centrifugal compressor with smooth
(shockless) entry is also the solution (with the flow direction and

rotation reversed) for an imward-flow turnbine with the same design
characteristics (that is, the same rotor) and with smooth (shockless)

entry.

From a mmerical example,of a radial-discharge compressor with
20 stralght blades lyling on conic radii, constant flow area, an
Inlet radius ratio of zero, a tip Mach number of 1.5, and a flow
coefficient of 0.5, the followlng results were obtained:

1. A wheel-type eddy formed on the driving face of the impeller.

2. The velocitles and pressures at the impeller tip were
reasonably uniform and any nommiformity in the flow leaving the
impeller rapidly adjusted itself.

3. The maximm locel Mach number relative to the impeller was
0.64 and occurred along the trailing face of the blade at 68 per-
cent of the tip radius.

4. The computed slip factor was 0.90.
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In addition, a simplified analysis for stralght blades lying
on conic radii is presented which can be used to determine the
_astreamlines, pressure distribution, and velocity profiles within
the impeller except near the tip (and inlet).

Iewis Flight Propulsion Iaboratory,
National Advisory Committee for Aeronautics,
Oleveland, Chio, August 18, 1948.
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APFENDTX A
SYMBOLS

The followlng symbols are used in the analysis:’
A flow-area ratio, afap

a flow area, normal to conic surface
B number of blades (or passages)

b grid spacing (fig. 3)

c local speed of sound

c specific heat at constant pressure

]

any twice-differentiable function of two variables
acceleration dus to gravity

passage-height ratio, h/hq

passage height, normal to conlc surface
mechanical equivalent of heat

congtant

wr,

P s8in

c

oo s oW o
oolg

impeller tip Mach number,
(o]

B

passage-height exponent

=

constant
static pressure
residual

velccity relative to 1mpeller,‘Vu2 + ve

g o © o

conic-radius ratio, r/rp

]

H

conic radius (distance along conic element from apex of cone)

T absolute temperature

1015


http://www.abbottaerospace.com/technical-library

STOT

NAcA

B R H v a

.=

€ = 6

TN No. 1744 37

s

tangential ccomponent of velcclty relative to impeller (positive
in direction of rotation)

radial (along conic element) component of velocity
compressor flow rate (total)

Tlow rate between streamlines

exponent for blade-loading correction

complex vériable

cone angle (fig. 1)

blade curvature angle (fig. 6)

‘absolute circulation

ratlo of specific heats
finite Increment

ratio of inlet stagnation pressure to standsrd sea-level
Ppressure -

transformed coordinate (inccmpressible stream function)
engle, radians (fig. 2)

ratio of inlet stagnation temperature to standard sea-level
temperature

8lip factor

transformed coordinate (incompressible velocity potential)
welght density of fluid

included passage. angle, (6y - 63)

impeller torgue

—_v_
OaTOO

flow coefficient,

campressible stream function

Impeller angular velocity
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Subgcripta:
av

d

H

S
T.
t
w
R, 6, ¢, and 7

RR, 60, R, §§,
M, and £q

1, 2, 3, and 4

TACA TN No. 1744

average
driving face of blade (fig. 8)
upper bound of diffuser (fig. 8)
lower bound of diffuser (fig. 8)
impeller inlet

incompressible flow

left bound (fig. 8)

abgolute inlet stagnation conditioﬁ
right bound (fig. 8)

simplified solution

Impeller tip

trailing face of blade (fig. 8)
whirl ahead of Impeller

partial derivatives with respect to R, 6, £, and
1, respectively

gecond partials with respect to R, 6, R and 6,

£, 7, and £ and 7, respectively
Q

grid points adjacent to point in question (fig. 3)
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APTENDIX B
TRANSFORMATION OF GENERAL, DIFFERENTIAI. EQUATION

FOR FLOW IN CENTRIFUGAIL COMPRESSOR

FROM R,@ TO ¢,n COORDINATES

39

The conformal transformation (except for singular points) from

the R6- to the {n-plane, where- { and 0 are the velocity potential

and stream function, respectively, for incompressible flow through

the stationary impeller (w = 0) with constant passage height
is given by the analytic function

£(z) = £(Re1®) = ¢ (R,0) + 1n (R,6)
where { and 7 are functions of R and 6. Therefore,
FR=F§§R+F.,'T|B
Fop = Fep £p2 + 2Fp, & +F 0ol + B fpo + Fo o7
RR = “ft °R En SRR Py IR+ % SRR * Pn TRR

Fean §9+an9

2 2
FeezFEgge +2an £9n9+FTm g +FE §99+F,q “ee_}

(E = 1),

(13)

‘( (46)

The velocity potential § and the stream function 1n are related

by the Cauchy-Riemann differential equations
—
R ™R

g L

(2]
U1=T=-1]R

(47)

After equations (46) and (47) are combined the ﬁ.rst three

terms of the right side of equation (6) become
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WRR"'—"‘_'(\Vgg +V - ( = + “R) +V (“RR*“'—*Rz)
But, because f(z) 1is amalytioc,

MR . Meg b

+— ==

R R
and from equation (47),
n.2

6 2 2 2 2
‘;z"“‘n =V vy =qy

where q4 1is the velocity for incempressible flow through the station-
ary impeller (w= 0) with oconstant blade height (H = 1). Therefore,

Vo ¥,

Vg + -f + ;%9- = qiz (\llgg +\l»',m (48)

The fourth term of the right- side of equation (6) beccmes

Vg (Log, B = (wg"—; iy nR> (10g, B 29 4 (108, By g

—

= ("l’gvi -VYq “1) L_(Sl.cge H)g vy - (log, ‘H),..I u:-l_

(49)
where H 18 now a function of ¢ and 7 1Instead of R alone,

The last two terms of equation (6) in like manner beccme
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e

g2
‘Val%) % (1059;: %ﬁ(l%%) + ¥y Q-"SO‘E;)A(B% "R
=y %%Qmep +¢ 1wep>l

. 7

.i.m_"g-ﬁ—g

LB} po

I ?!-08o - G—ose-a')
""”gg“"m\ 3 Po )¢

o logeﬂ) u;x
H 71\ n
- wvi—\v 1){103,
‘112

LT *OH WL ¥OYH

(50)

(14)
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APPERDIX C

DIFFERERTIAL EQUATION FOR FLOW THROUGH CENTRIFUGAL
COMPRESSORS WITH LOGARTTHMIC~-SPIRAL BLADES

Consider the analytic function,

£(z) = (N + 1K) log, z

= (N + 1K) log, (Relf)

/

(F + 1K) (logg R + 16)

(N log, R -~ K8) + 1(K log, R + N6) (28)
where N and KX are constants to be determined by the boundary con-
ditions. From equations (13) and (28),

£ = N(logy R - = 0) " (29)

K
M= N(-ﬁ log, R + 9) (29a)

The blade shape in the R6-plane 1s given by equation (298.),
which, with 17 constant, determines a logaritlmic spiral (fig. 6).

In order to determine the constants N and K, equation (29a)
is differentiated with 1 constant,

K dRr
Oc-ﬁ-§-+d9

or

But, from figure 6
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- tan-1 B26
BtandR

where B 1is the angle between blade surface and conic-radius ratio R

- on Ré-plane (and on conic surface). Therefore,

%:-tanﬂ:constant

and equation (29a) becomss
N = N(6 - tan B logy R) (51)
In order to determine the constant N, 1let

| n =V,
when
6 = Op
and
R = 1.0

(from which the zero point for 6 1is at the tip of the driving face
of the blade). Therefore, from equation (51),

vhich, from equation (25), is equal to the flow coefficient ¢ and
the final expressions for £ and 7 become

¢ = 9(log, R + 6 tan p) (30)

n = ©(6 - tan B log, R) (30a)

These equations relate points in the R6-plane to corresponding points
in the {n-plane. Solving equations (30) and (30a) for R and 6 in
terms of £ and n glves
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g_n ta_nE 4
q)sec2 <]
R=oe (31)
g _N+tftanp (31a)
©® slec2 g
From eguations (153, (30a), and (31),
n tan B -¢-
2
u = Qtanp e PBOC B (s52)
and
n_tan E-g ‘
2
v = o P5° P (52a)
go that

9y = /\/ uiz + viz (10)

10 tan B -t

2
=Pgec p o P B°C B (52v)

From equations (14) and (52) to (52b), the differential equation for
the flow of compressible fluid through centrifugal compressors with

logarithmic-spiral blades becomes, in terms of the transformed
coordinates { and 1,

2(E-n;&rﬂ) -
@ sec” B
eMp £ g 2 = Ve + Voo =V (10 -E-> -V (103 -2->
Po -(psec B)z ee” m £ 3ep°§ K ® Po/y

- (\pg cos B -V, sin B) [( log, H)g cos B - (log, H).q sin B] (32)

STOT
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APPERDIX D

PROCEDURE FOR ESTIMATING BOUNDARY VALUES OF STREAM
FUNCTION V IN VANELESS DIFFUSERS

. Egtimated boundary values of the stream function VY 1n vaneless
diffusers can be obtained by assuming, as a first approximation,
that the flow in vaneless diffusers is one dimensional, that isg, &
function of R only. From the conservation of the mcment of momentum,

rein.g.'(wrsin%+u)-rTsing' s:ln"’)

where u, the slip factor, is defined in appendix E, Therefore s
solving for u, dividing by Cyy and expressing in terms of R

2t

)

In general, the slip factor p depends upon the blade shape and
upon the operating conditions of the compressor. Ccmbining equa-
tions (4a.) and (53) gives

¥ =°HMT(R-§) (54)

R Po

This equation gives the variation in the stream function with the
radius ratio R for a constant value of 6. Because the density
ratio is also a function of R, bquation (54) is solved by numerical
point-by-point methods., In ord.er to obtain this solution, it is
Pirat necessary to know the density variation with R.

The density ratio is given by

o}

7-1
£ e e (- (&) -] )
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where

a4 2 = (R 2 + (L 2

%o ) %o
which, from equations (26) and (53) and from continuity consider-
ations, assuming ap = 2x sin%’ by oy,

@ (- (35)

80 that the density ratio becomes

-1
g2 _(_ o )27 (55).

-SSR = S VL
o 2 R -E—HRMT
(o)

The upper or lower boundary values of the diffuser VY, or Ve
(fig. 8) are therefore estimated from equations (54) and (55) using
agsumed values of the slip factor. These estimated boundary values
are not generally the correct values and provision must be made in
the relaxation solution for thelr correction in the same manner
that any other estimated values of { are corrected.

ST01
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APPENDIX E

FROCEDURE FOR COMPUTING IMPELLER SLIP FACTOR

" The impeller slip factor is defined as the ratio of the average
absolute tangential velocity of the air ag it leaves the impeller
tip to the tip speed of the impeller.

slip factor s p = (er Bin% b u)av el +—tBY
o W T sh‘l% ZDI'T sin-‘-a'.'
. )
o1 4 \oo/av (56)
N ¥p

The average value of the tangential velocity relative to the impeller
at the impeller tip is given by

28
u
(E_) pvhp rp 46
@), -
co av e‘b
pvhqp Tp 46
8a
e‘b
- Po% by Tp (.B.) (_e.) (.l’_) ae
% gz %0/ \Po/ \%

which, from equetions (22) and (25), reduces to

OO0t e

-Bl
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Equation (58) gives a weighted average value of u/c . This
welghied average wvalue of u/c.o is also equal to the unwelighted

. 0
average value of ufcg, which is equal to o—l— (51—1-) d8. This fact
T (o}
%

can be shown from conslderations of the conservation of angular
momentum in the diffuser, which is based upon the weighted average
value of u/o, and from considerations of constant absolute cir-

culation in the diffuser, which is based upon the unweighted aver-
age value of u/c,. Combining equations (56) and (57) results in
the followling expression for the slip factor:

[ QREED @

The value of the integral 1s cbtained from the area uwnder a curve
of the Iintegrand evaluated at the impeller tip as a function of the

‘9 - 8
angle ratio d (fig. 21).. The value of the integrand is
Orp . :
obtained from the relaxation solution. l
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APPENDIX F
SIMPLIFIED ANALYSIS FOR RADIAL-DISCHARGE AND MIXED-FLOW
CENTRIFUGAL OOMPRESSORS WITH STRAIGHT BLADES
ATONG CONIC RADIT

Velocity distribution. - This simplified analysis is based on the
essumption that for centrifugal compressors with stralght blades along

conic radii the tangential ccmponent of the veloclity relative to the

impeller is zero at all radii within the impeller. The irrotationality
oequation (5) therefore reduces to

e _10v
dunp 8ln 3 = 5 35
which, when integreted with respect to 6 bDetween limits, becomes

v:vd+2lxm1.singRe

/

which, in turn, divided by the speed of sound at inlet stagnation
conditions becomes

v

='é%+2m'5119 (40)

X

Co
where ,v5 1s determined from continuity considerations in the fol-
lowing paragraph.

Streamline dlstribution., ~ Neglecting the u component of
velocity, the continuity equation becomes (fig. 2):

dw = pthrTERd.G

The density p i1is obtained from equation (11) with q/co equal to

v/c, and the velocity ratio v/c, 1s obtained from equation (40),
so that
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= ER Q1 + 251 | ()

ohTrT

..(.E% + zm&e)z] Ay 7’1< + zmare> o (59)

where the constant term AT, /T, is evaluated by equation (%a).
Integrating the right side of equatlon (59) bpetween the limits O
and 6 and noting from equation (20) that the left side of equa-
tion (59) is equal to @&V, which is integrated between O and V,

glves
2z
2 A -1
HR r-1 d Tw 4
Vo= 2yRMp L+ l:(mar)z "i%)]' To

2 71
- 1+L;3l (RMT)2-<-Z£+ZBMIG> -% (41)
(o]

(o]

Bquation (41) expresses the streamline distribution as a function
of the coordinates R,0 and the tip Mach mmber Mp. The velocity

ratlo vz/c, 1s obtained by equation (41) from the condition that

V =VYy = @®O0p

e=0

Pressure ratio. - The pressure ratlo is directly determined
from the temperature ratio by the thermodynamic relation

A
7-1

()
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The temperature ratio is given by equation (9) in which the velocity
ratio q/co 1s equal %o v/co given by equation (40) so that

-1 2 Ya é Amw;ﬁ
i%’: 1+ 222 | (RMp) -(3.;+2RMIG> " (42)

where 1;'(-1_/¢;>o is determined from continuity considerations as pre-
viougly described. ) -

Substituting equation (42) into equation (41) results in

R [Pa
= SHRE (5; - -}?) (60)

o

The streem function VY and the pressure ratio p/p, are there-
fore related by the simple equation (60).

‘Blade loading. - The blade loading at any given redius ratio
is given by the difference in pressure between the driving and
tralling faces of the blade. From equation (60) this difference
is

Pd-pt _ 27RMI' v
P, HR &

which, from equation (25), beccmes

DP.~D ZyRMI,
d =t
3, I PO (43)

The blade loading has been camputed from equation (43) and is
plotted against the conic-radius ratio R in figure 20 together
with the corresponding curve obtained from the relaxation solution.
The two curves are in good agreement for radius ratios less than
0.825. At higher radius ratios, however, the blade unloads for the
relaxation solution, whereas the blade loading continues to increase
for the approximate solution. In order to correct equation (43)
for the blade unloading, the following relation is assumed,
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Py =Dy 27 .
"*po b T sy (1) (44)

where the exponent x 1s determined by the slip factor from the
following considerations:

The impeller torque T 18 obtalned from the differential
equation

P, - D :
d7=3p0<—-‘1T-1’>hrsmgdr
(o]

which expressed in terms of the dimensionless coordinates H and
R and combined with equation (44) results in

a7 = Bp, 2yMy QOghmp? sin g R(1-RX) ar

Integrating between the 1limits of R equal to O, assuming the
blades extend to the origin, and R equal to 1.0 glves

T = By, Mo’ stn § () (1)

The torque can also be obtalnsed from an expression for the
impeller power, which includes the alip factor u,

B a\2
OT ==(w in - W
e(rTs z)

which, after baving been combined with equations (7), (23), and
(26), the terms being rearranged, becomes

T = Br, MpPOqhpry” sin § (1) (62)

From equations (61) and (62), the exponent x 1s obtained as e
functlon of the glip factor u.
3

x = 2 (45)

l-p
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The value of u obtalned from the relaxation solution is 0.90
r which, fram equation (45), the value of x is 18.0. ‘Equa-

ion (44) for the blade loading therefore becomes

S.

Pd. = P‘b 27RMI|

,jpo HR

®op (1-R8) (44a)
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Figure 1. ~ Fluid particle on rotating coordinate system of impeller. Center line of flow
pagsage generastes right circular cone with cone angle «.
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Figure 2, - Fluld particle on developed view of conic surface. R, 6, and H} dimensionless coordinates
relative to Impelter; u and v, tangential and radial components of velocity relative to impeller,
respactively.
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Y

Figure 3. - Sample grid showing grid spacing b and numerical
subscript convention for adjacent grid points.
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Figure 4, - Natural logarithm of density ratio loge p/p, as function of flow-rate ratio
pq/poc, for various values of RMy. Equation (1), ratio of specific heats equal to
1.4; whir]l ahead of impeller equal to zero.
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Figure 5, - Fluid particle between adjacent streamliines.
Radial componeﬁt of flow rate, pthrTHRdO; tangential
component of flow rate, ~puhyrpHdR.
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/—Logarlthmic spiral
(n = constant)

‘ﬁ‘mE’F’

Figure 6. -~ Logarithmic-spiral blade shape,

Backward-curved blade, B < O
Straight radial blade, f = O :
Forward-curved blade, B >0
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A = pOYI ‘ \ \

'1‘ME’P’

.2 , .4 .6 .B I.0

Conic-radius ratio, R

7

-

Figure 7. - Flow—area-ratio variation with conic-radius
ratio for several values of exponent m. Blade thick-
ness assumed to be a constant percentage of passage
width at all conic~radius ratios.
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Figure 9. - Compressor design characteristics for numerical example.
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flow coefficient ¢, 0.5; constant flow area (m, -1.0),
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Figure 1l. - Vortex on driving face of blade. Relative stream!ines
for every 0.2 percent of flow through impeller passage. Pagsage
angla, 18 degrees; impsller tip Mach number W, 1.5; flow
coefficient ¢, 0.5; constant flow area (m, -1.0).
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Figure i3. - Lines of constant Mach nﬁmber reiative to impeller. Passage angle,
I8 degrees; impsller tip Mach number M1, 1.5; flow coafficient ¢, 0.5; constant
flow area (m, -1.0).
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Figure 14, - Lines of constant pressure ratio.
tip Mach number My, 1.5; flow coefficient ¢, 0.5; constant flow area (m, -1.0).

NACA TN No.
&)
1
Pressu’.e
ratlo, p/po
4.4
4.2
— 4.0
H
3.8
.\\\L
1 | B —— 3.6
[ ———
L ] 3.4
\\ 3.2
\\ ’
\\ 3.0
el [
—~— I I [“7 2.8
~ [ ] ,
\ ' 2-6
[~~~
S~
y 2.4
I
~
\\\‘\\ 2.2
\ 2.0
N 1.8 1.9
\
\ e :
— 12 10 8 6 4 2

Angle, deg

e

1744

Passage angle, 18 degrees; impeller

STOT


http://www.abbottaerospace.com/technical-library

1015

NACA TN No. 1744

R

Conlc-radius ratio,

69

@
Pressure ratio, p/p,
1.04 3.85 3.80
_—#_/////—— 3.70
102 == T - ——
1.0l //// /; £ 3.60
i\r\//f/// 3.55
1,00 // V;/
\\\JN_/ 3.50
I N 3.45
.98 ——
\
1 | 3.55 --~§§t::::::-_§___:::::::3.«
]
3.45 EQ\E 3.3
.07 — EEQ 3.25
- 3.35 |~ T ]
| . ‘<:::::§Z;:;?
] [l . ! | 1 1 ! 1
2.0 1.5 1.0 .5 0 -5  -1.0 -I.5  -2.0

Angle, deg

Figure 15. - Expanded view of pressure-ratio lines in vicinity of blade tip. Passage
angle, I8 degrees; impelier tip Mach number My, 1.5; flow coefficient o, 0.5;

constant flow

area (m, -1.0}.
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Figure 16. — Comparison of velocity ratio along driving face

Conic-radius ratio, R

of blade for approximate and relaxation solutions.

70 NACA TN No. 1744
.04 I\ Q
N /
\ /
NN /
0 N
g \ 7
< Q
> \Q y
o -.04 q
3 N\ /
: R s
o NN
- N\
£ 2 N
> N
2 Y
o N\
- N
® .16 AN
° N
- N
< N
> -.20 Approximate solution AN
E’ O——— Relaxation solution \
® N
7 .24 AN
-.28
-
.65 .70 .75 .80 .85 .90 .95

STOT


http://www.abbottaerospace.com/technical-library

NACA TN No. 1744

v/co

Velocity ratio,

.8
D
Approximate solution | o
.6 O——— Relaxation solution V///A;///
::>/’//’
.4 1//’Z
Conic-radius 7///,ﬁ5;;/
ratio, R/( /
v ?7
.jZE/LY
.2 //13,' 855
0 /////
c&/
-2
0 | .2 .4 .6 .8 1.0
Angle ratio across passage, 6-64
c
Figure 17, — Comparison of velocity distribution

across passage for approximate and refaxation

solutions.
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