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SUMMARY

Analytical expresslons have been derived for the downwash
throughout the entire induced flow field of 1lifting triangles of
Infinite chord with leading edges elther in front of or behind the
Mach cone. These expressions have been determined from the line~
pressure source theory of R. T. Jones and the lifting—triangle
investigation™of H. J. Stewart. Based on these analytical results,
downwash charts have been prepared from which the downwash field
may be determined for any practical combination of leading-edge sweep
angle and flight Mach number. These charts for the 1lifting triangle
of infinite chord are basic to the solution for the dowmwash fileld
of any finite swept wing whereln the contributions of the tips and
the trailing edges are to be determined by the method of 1ift can—
cellation as employed by Lagerstrom and others. The conical part
of the downwash is obtained from the charts, and the nonconical
part must be obtalned by other means such as the lift—cancellation
method.

IRTRODUCTION

One of the principal requirements for a ratlional analysis of
the longltudinal stability of aircraft is a knowledge of the down—
wash fileld behind 1lifting surfaces. Theoretical methods based on
lifting~1ine theory for determining downwash for conventional 1ifting
surfaces at subsonic speeds are well known. However, before satls—
factory agreement between experiment and theory was obtained, the
theoretical downwash had to be corrected for the local effects of
the wake and the vertical displacement of the tralling vortex sheet
(e.g., reference 1). The methods of reference 1 are applicable to
conventlonal alrplanes throughout the subcrilitlcal speed range by
use of the Glauert—Prandtl rule (reference 2). No practical method
oxlats at present for the caloulation of downwash in the supercritical

speed range.
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Several methods hased on solutions of the linearized differ—
ential equation of compressible flow are avallasble for determining
the theoretical downwash at supersonic speeds. By the use of the
conical flow theory of Busemann (reference 3), Lagerstrom in refer—
ence 4 has developed analytical expressions for the downwash field
of certain uniformly loaded 1lifting surfaces. By superpositiom of
these 1lifting surfaces, Iagerstrom has determined the downwash fileld
of a flat rectangular wing and a flat trapezoldal wing. In addition
be has indicated a method for determining the effect on the downwash
field of adding a tralling edge to a 1lifting trilangle of infinite -
chord to form & finite wing. Heaslet and Lomax (reference 5) have
determined the downwash for points along the intersection of the
chord plane with the vertical plane of symmetry behind & finite tri-—
angular wing with subsonic leading edges. They have also determined
an approximate solution for the downwash in the vicinity of this line
at an infinite distance behind the wing. The Schlicting vortex theory

.can be used to calculate the downwash Iinduced by varlious span load

distributions. The concepts employed are analogous -to the Prandtl
1lifting—iine theory and as such consider only the spanwise 1ift
distribution  and hence neglect eny possible effects of chordwise 1ift
distribution.

No determination has been made of the downwash throughout the
induced- flow field of a swept wing in supersonic flow. The solution
for the downwash field for & lifting triangle of infinite chord 1s

basic to the solution for the downwash field of any finite swept

wing wherein the contribution of the tips and the trailing edge are
to be determined by the method of 1ift cancellation as employed by
lagerstrom in reference 4. For a finite swept wing, the conical
downwash field of the lifting triangle of infinite chord represents
the entire downwash field except for the regions of influence of
the tips and trailing edge. Within these regions, it represents
sn apprecisble contribution to the downwash.

The purpose of the present investigetion was to determine
analytical expressions for the downwash throughout the emtire induced
Plow field for flat 1lifting triangles of infinite chord with either
subsonic or supersonic leading edges. These expressions are used in
the construction of nondimensional downwash charts, which, when used
in conjunction with the lift—cancellation method, provide a practieal
means of determining the downwash field for finite swept wings. Although
the anplysis was carried out for Mo"2 = 2, the charts are presented
in a form meking them applicable to any supersonic Mach number. The
charts are subject to the usual limitations of linear theory.
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STMBOLS
Primary Symbols
angle of attack
real part of a complex function

free—stream velocity

free—stream Mach number
cotangent of the sweep angle of the wing leading edge

slope of the surface of the wedge section in the
gtreamwise direction

longitudinal, lateral, and normal coordinates with the
origin at the apex and the % = 0 plane coincident
with the chord plane of the wing. (The positive
directions are indicated in fig. 1)

obligue coordinates, x! = x-my, y' = y-mx, z' = z4/1-m?

potential of the perturbation velocities

perturbation velocities in x—, y—, and z—directions,
respectively

downwash function (w + iW)
harmonic conjJugate of w
complex variable (self)

W (3/x)%4(z/x)?
L+n/1(3/x)°~(2/%)*

v (3]

1—a/1—m2
1+,/1-m2

downwash angle (-wfV6)
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E(A/l—mz) complete elliptic integral of the second kind with
. modulus A/1-m

£, complex varisbles

F(§,/\/l—soz) incomplete elliptic integral of the first kind with
modulus 4/1—964 and sine amplitude ¢

3 a ' ]
' 471—5.2 271—( 1—305 &=

E(E,q/l—so;) incomplete elliptic integral of the second kind with
modulus 4/1—50; and sine amplitude ¢

[j;\/l—(l—so*)gz ag]
nf1-£2

c constant of integration

T real part of a complex variable

s} imaginary part of a complex variable

Fr real part of the incomplete elliptic integral of the
first kind

Fi imaginary part of the incomplete elliptic integral of
the first kind

E. real part of the incomplete elliptic integral of the
second kind )

Ey imaginary part of the incomplete elliptic integral of
the second kind '

k modulus of elliptic integrals (A/1-so%)

k? comodulus of elliptic integrals ('\/l—kz)

sn Jacobian sine amplitude elliptic function

cn Jacobian cosine amplitude elliptic fumction
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dn Jacoblan delta emplitude elliptic function

AN sn(Fy, k)

q/; sn(Fi,k?)

K incomplete elliptic integral of first kind of sine

amplitude E& and modulus k

Subscripts
P . value st point P
Q value at point Q
c. value at Mach cone
we value between plane wave and Mach cone
1 refers to complex variable ¢
2 refers to complex variable 73
r refers to real part of a complex varisble
i refers to imaginary part of a complex variable

LIFTING TRIANGIE OF INFINITE CHORD WITH
SUPERSONIC LEADING EDGES

In the theory of supersonic conical flow, the downwash field of
a flat lifting triangle is symmetrical about hoth the chord plane and
the vertical plane of symmetry. The downwash field above or below the
flat 1lifting trlangle at angle of attack a is the same as the down—
wash fleld below & nonlifting triangular wing of the same plan form
with a streamwise wedge—shaped section of half angle «, since the
flows above and below the wings are independent. (See fig. 1.) The
downwash field for this nonlifting triangular wing may be determined
from its streamwise perturbation velocity field which may be obtained
from the results presented by R. T. Jones in reference 6. The stream—
wise perturbation veloclity field, or the u—field, for the nonlifting
triangular wing 1s the sum of the u—fields for two line pressure
sources coincident with i1ts leading edges. Similarly, the downwash
field for the wing is the sum of the downwash fields for the two lire
pressure sources. However, since the downwash field for ome line

B i e MU UGV AR e — —_ -
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source is the reflection in the =xz-plane of the downwash field for
the other line source, 1t is sufficlient to determine an expression
for the downwash of a single line source. The complete downwash field
is then determined as the sum of the fleld given by this expression
and the fleld given by this same expression with the sign of the
lateral dimension reversed.

R. T. Jones in reference 6 gives the following equation for the
perturbation velocity u at any given point in the field for a line
pressure source in front of the Mach cone.

u=—r.p.IQm —1

QEI cos X %) (1)
t, /w2 9% JT1E4213

In this eguation |dz/dx' is equal to a as previously discussed.
It should also be pointed out that the positive root of the radical

~J3'2 + 2'2 ghould be used in conjunction with the principal value

of the inverse cosine. In the succeeding analysis, the downwash
field for the upper surface of the nonlifting wing will be determined.
However, since the downwash field for this wing is antisymmetric about
the chord plane, it will be necessary to reverse the sign of.che
result for application to the upper surface of the 1lifting triangle.

. The perturbation potential @ at any point P may be evaluated
as the line integral of u along the line parallel to the X-axis

through the point P.
fx
Q= udx
o (2)

for which the lower limit =xj; corresponds to a point outside the

region of influence of the line source where the values of ¢ and u

are zero. The region of influence of the line source is bounded by

the Mach cone and the plane waves from the line source tangent to the

Mach cone. (See fig. 1.) Figure 2 shows two possible paths of integration
for equation (2). The path corresponding to point P of this figure
intersects only the Mach cone; whereas the path corresponding to point

Q 1intersects both the plane wave (y'2+z72 = 0) and the Mach cone

(%2 = y2+22). Consider first point P: The perturbation potential

is given by

0 =[x 8

V/72+22
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The vertical velooity component is obtained by differentiation
of Pp- Thus

X .
v =2 Sax (%)
: A ye+z2a

since at the lower 1limit u = 0 1n acoordance with equation (1).

In considering point Q, it is convenlent to evalua'ge equation

(2) in several steps: first through the plane wave, then from the

plane wave to the Mach cone, and finally from the Mach cone to the

point Q. In pass through the tengent plane, the value of the

term cos > (x'/n/y'2+2'2) in equation (1) Jumps from O to x; thus,

the discontinuity in u 18 finite, and there is no discontinuity

in ¢. Hence, the lower 1limit of the in;hjg_g;s may be taken as the
1

z
value of x at the plane wave, y/m + ————. Between the plane

wave and the Mach cone the value of u is constant at — Vomu/a/m2~1
8o that within this region the potential is

Ry =‘/1x udx_—__v._..__° X-Z;i__~1‘*1 (5)
(] [y m m
. 2_: me—l
Z+z./m 1
m m
9
=._2=voq, (6)

Vwo oz

This equation shows that the vertlcal velooclty 18 constant in the
whole reglon between the plane wave and the Mach cone. .

When the integration 1s carried from the Mach cone to point Q,
it 1s noted from equation (5) that the potential at the Mach cone is

ﬁFE>

_ _ Yoo _I_
% =~ I — g e 7

and therefore the potential at point Q is

Voo .Y rafmE1 x
ch =." Wl W—E—mL> +fy2+22 udx (8)

T T e e T e e e e e e — e—— e -
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Differentiating to obtain the vertical velocity
wq = Voo + X ég'dx
oz (9)

Equations (4) and (9) give the value of the vertical velocity at
points P ands Q. Although both equations contaln the same integrael,
the actual value of the integral will depend on the path of integration.
The integral is evaluated in Appendix A for each path; thus, for
point P

fx %:- dx = ‘_’32 cos—1 ,/yayy;hiz[ | (10)
‘\/;2':2‘5' +Z y'2+z'2

and for point Q

V2 -
O gy = YO og2 Iy 2% ‘>-—'Vom (11)

"6;.24,—22 oz _ x <4,/y2+z2,‘/y'2+z'

If the values of the integral given by egquations (10) and (11) are
substituted into equations (4) and(9), respectively, identical results
for the vertical velocities at points P and Q are obtained. Thus

. Voo yy' o+ 22 )
= = = 12
Wp = Wq = —x— cos—1 NTE+22 Afy'2ez'2 (12)

Equation (12) represents the vertical velocity due to one line-—
pressure source. The vertical velocity due to both pressure sources
is obtained by adding to this result the contribution of the other
pressure source which is determined by substituting ~y for y in
equation (12). In accordance with previous considerations, the
vertical velocity for the triangular lifting wing is of opposite sign
to the vertical velocity due to the two pressure sources, thus

- Yo o y(y-mx)+2® :I
T {m- | e S 2 o (1)

+ cos—

i ¥{(y+mx )+22 ] } (13)
L Jy2+22 Af(y1mx )2 22 (1)
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LIFTING TRIANGLE OF INFINITE CHORD WITH
SUBSONIC LEADIRG EDGES

The 1ift of a flat triangular wing with leading edges swept behind
the Mach cone has been treated theoretically by H. J. Stewart in refepr—
ence T. In that paper a differential equation 1s derived for the
compleX downwash function, the real part of which is the vertical
velocity. To determine the vertical veloclty w, 1t 1s necessary to

integrate the differential equation and determine the real part of
the splution.

In the notation of this paper, Stewart's differential equation is
dv _ __ 2% (1+8)®
d: 8/2 2
b (/1R (42462 (15 L)
o

The actual integration of this equation is accomplished in
Appendix B, from which it is found that

(1k)

W= WhiF = ———200%%0 [ (142507) F(§ ,/10")
: mE( o/1-m2) (1l+8o2)

+ B(E,A/180%) + F(n,n1-857) ~ E(n, V1-852)1+ C  (15)

In this equation, the complex veriables § and 7 are related to
y/x and z/x by the following equations: '

_ /x) 1 (z/n) -
L+ (g /xR (16)

£ = ﬁ—ﬁ% (17)

N - | (18)

a/1+8,5282

The value of the constant C may be determined from the boundary
condition that w = =V, o on the wing.

et wa et v m it rr i ey, o L A e e s -

W v— e

= v g e <
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The verticel velocity w is the real part of the downwash
function W in equation (15). Thus, it is necessary to determine
the real par} of the elliptic integrals appearing in the equation. -
The methods used to obtain the real part of the incomplete elliptic
integrals of the first and second kinds are described in Appendixes C
and D, respectively. TUsing the results of these appendixzes, the
final expression for the vertical velocity 1is

2vOa’so 2 ‘ S~
= — 1+2 ) P/r1, A1 2
w niE(Jl—mz) (1+502)2 {( T8 (‘l./ 1 —8o" )

(1-80%) 01 4/a(1h1) [1{1—60%)he]
10, [1~(1-85" )]

+ E(yAr, A1-807) +

+ Fl/rz, ‘V1—304) — E(yrz, ‘Vl"504)

_ (1-8,%) o2 4/A2 (1-22) [1H{1-8,%)r2] } (19)
1-02 [1~(1-8,%)22]

On the basis of conical flow considerations, the vertical veloclty
is constant along rays through the apex of the lifting triangle and
thus depends only on y/x and z/x. In order to determine the vertical
velocity for a ray defined by y/x and z/x, the real and imaginary
parts of & and 1 mst be determined in accordance with equations
(16), (17), and (18). From T and &y, the real and imaginary parts of
£, the values of o; and XAy are obtained using equations (C1l2) and
(c13). Similarly, values of 0> and A> are calculated for the
complex varisble 17 using these same equations. The vertical velocity
w for the ray defined by y/x and z/x is then determined from
equation (19) using these values of 03, A1, Oz, and Az.

RESULTS AND DISCUSSION
Downwash Charts

The equations presented in this report permit determination of
+the downwash at any point in the induced flow fields of 1lifting .
triangles of infinite chord. The equations have been used to determine
dowpwash charts for a number of such surfaces. The range of leading—
edge sweep angle used'in-the calculation is sufficient to include
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all practical configurations, and the number of 1lifting surfaces for
which the charts have been determined is sufficient to permit inter—
polation. The charts are presented in figures 3(a) to 3(h) and show
lines of oonstant de€/da within the Mach cone in a plane perpendicular
to the flight direction. Since the downwash fleld 1s conical, the
downwash pattern i1s similar in all planes perpendicular to the flight
Jdirection. Only one quadrant of the Mach cone is shown since the
downwash pattern 1s symmetrloal with respect to both the horizontal
and vertlcal planes of symmetry. :

In determining the charts for the various lifting triangles,
the values of de/da were calculated at a number of points in the
Mach cone for My =+/2. The lines of constant de/da were then
determined from cross plots. Although the calculations have been
made for =4/2, in which case de/da depends only on’'m,

y/x, and z/x, it can be shown by the Glauert—Prandtl rule that
de/da for Mach number depends only on m A/M2-1, (ya/M 21)/x,
and (erMb —1)/x. These parsmeters have been utilized in the charts

of figure 3 so that the results are appliceble at Mach numbers other
thana/2.

In determining the value of de/da at any point in the field
"for a given finite swept wing, the value of de/da for the _
corresponding lifting trilangle of infinite chord is first determined
from figure 3. If the point {in question is not within the region
influenced by the tralling edge or the tips, this value will represent
the total de/da. However, if the point lies within the regilon of
influence of the tralling edgé or tips, the value determined from
figure 3 represents only part of the actuasl value of de/da. For a
finite 1ifting triangle, the remaining part, which consists of the
contribution to the downwash of the trailing edge, can be determined
by the method of lagerstrom (reference 4). ' In the more general case
of a finite swept wing, it 1s necessary to take account of the sWweep
angle of the trailing edge and the effect of the tips by a similar
method of 1ift cancellatiop.

Variation of Downwash Distribution With
Leading-Edge Sweep Angle

The plots of figure 3 show the changes in the downwash distribu—
tion as the sweep angle of the leading edge 18 increased with respect
to the Mach cone. When the leading edge of the wing is considerably
ahead of the Mach cone (large values of m+Mg—1), de/da is large
throughout the Mach cone and the rate of change of de /do, with distance
above or below the chord plane is small for considerable distences from

- - e e v e s e rm e« e g e o e e % A i o e T e i - e e
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the chord plane. Between the Mach cons and the plane waves from the
" leading edges, which are tangent to the Mach cone, the value of de/da
18 constant and equal to unity. The surfaces of constent downwash
intersect at the lines of tangency of the plane waves and_the Mach
cone. As the sweep of the leading edge is increased (m,/Mbé—l
decreases), the line of tangency moves along the Mach cone toward
the chord plane and the rate of change of de/da with distance from
the chord plane increases. When m./Mo®—1 approaches 1, the lines
of tangency and the leading edge approach coincidence on the Mach
cone; and when m,/MOZl is equal to 1, the surfaces of constant
downwash Intersect on this line of coincidence.

When the leading edge becomes subsonic, there are two qualitative
changes in the downwash pattern. First, the surfaces of constant
downwash Intersect at the leading edges rather than at the lines of
tangency, which no longer exist; second, a region of upwash occurs
between the Mach cone and the leading edge. This region of upwash
Increases 1n extent as the sweep of the leading edge increases. In
addition, the rate of change of de/da with distance above or. below
the 1ifting surface increases rapldly, and the downwash near the
surface of the Mach cone becomes very small., In the limit, as the
direction of the lsading edge coilncides with the free-stream direction,
the downwash fleld disappears.

Additional Factors Affecting
the Downwash

When the charts of this report are used in conjunction with the
lift—cancellation method to obtaln the downwash behind finite swept
wings, certain factors which have not been discussed thus far must
be considered. In the llnearized theory of supersonic flow the
agsumption is made that the trailing vortex sheet is coincident with
the extended chord plane. This assumption, although velid for very
small angles of attack, will probably cause an appreclable error at
large angles of attack for which the trailing vortex sheet 1s dis—
placed from the extended chord plane due to the action of the downwaesh.
An additional effect, which i1s important 1n the immediate vicinity of
the weke boundaries, 1s inflow to the wake resulting from the vliscous
properties of the fluld. The influence on the downwash at subsonioc
speeds of these two factors has been investigated and methods for
predicting thelr influence have been reported in reference 1. However,
sufficient experimental data are not yet avallable to permit the
development of similar methods for supsersonic flow.

Another factor that 1s neglected by the linear theory 1s the
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curling up of the vortex sheet behind the wing tips. This effect is-
neglected in subsonic flow caloulations for conventional high~aspect—
ratlio wings. However, for the low-aespect-ratio wings which will
probably be used with some types of supersonic aircraft, this effect
may be important.

Ameg Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Fleld, Calif.

APPENDIX A

EVALUATTON OF INTEGRAL IN EQUATIONS (%) AWD (9)
The integral to be evaluated is

' =f:2+22<%:_ d.x (a2)

in which

Voo m x!
U = = TI.P. ~—— —=—=— cos—1 (a2)
P X 1/m2—l <1/yi2+zi§>

The value of Ju/dz 1is determined from equation (A2) and substituted
into equation (Al), with the quantities x', y', and z' replaced by
x-my, y-mx, and z,/1-m2, respectively. Thus

I=Yo%p [T | (xay) dx ‘ (A3)

x f S [rmmx)P22@ )] JxP5®

From the identity

x-my _ 1 [ F(mP—1 )z 2] y(mB—L)+z A/mE1 J
(y—x )2—=22(m2-1 ) B 2mgz A/m2—1. JH2 A/m2—1~mx Y2 £/m2—] ~-mx
(Ak)

the integration can be accumplished by separating the integral into
two parts. Thus
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T = vﬁ{t&n—l [m(y-?:zf_)—x(yﬂ A/m2—1) :I
(yA/mP—1—2) /xP—y2-—22

- e[l /) 1) (15)
(y.Jm2_—1.+z) nfx2~y2—22 /7222

Before substituting the limits, it is convenlent to replace the
inverse—tangent difference by the equivalent inverse cosine.

X

2
1= T =y ] | (28]
2422 —mX )22 1
¥ NA ./ 2iz2
In this equation the positive roots of the radicals are to be used

together with the principal values of the 1nverse cosine. At the
lower limit where

x2 = y2422

and
(x-my)? = (y-mx)?— 2%(m®-1) )

the principel value of the inverse cosine is zero for y<x/m and
x for y>x/m. It can be shown from figure 2 that y<x/m corresponds
to point P and y>x/m corresponds to point Q.

Therefore, for point P

t

* g, _ Yoo _1< '+ 22 > (A7)
Sz % " NTErE  AyE'
and for point Q )
fx U gy =.via.[cos— yy'+ 2 )-—11’:| (A8)
i VTR TR

APPENDIX B
TNTEGRATION OF STEWART'!'S DIFFERENTIAL EQUATION

Tn determining W from Stewart's differential equation
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2V (1+£2)2

at - uB(/T) (t2+ag?) /" <§+ >"°”2

(B1)

it is convenlent to express the downwash function as the sum of three
integrals

Voo 80°

- [l—ﬂo f
mE( /1-m2 ) (1-80%)L 802 ,\/g2+302 Vt2802+1

Ll—s 2)p
+(1-8 2)2f(§2+s 2)3/2 tPaglil o fgzs 2+1) 972 1/; e }

(B2)
Introducing the change of independent variable
S S
[rege (83)
the first two integrals becoms
at —T -
—_— = F(t ,4/1-85" ) (B4)
fq/i 21502 A% o5+ ’
[~
(£24842)3/2 f£252+1 802 1 1—505 )¢ 2
—0— (¢, Vl—so‘) + Ta ) B ¥1—s5*)
( —8o ) 8o (1

° (B5)

Meking use of the transformation

1

n i/T?_{?, (B6)

TAE eme— e e m e e e e v e s S o A = e er— — e = e pm e s ———
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the -third integral becomes

& [ nf%any
f(geso? +1)%2 /82 + 62 ‘/‘Vl = %41 — 131 - 85")

=31 [E('q, AL = 80%) =~ F(n, 41 - 804)]

(1 - 304)
(B7)

Substituting these results into equation (B2) the equation for the
downwash function becomes

- . 2V,us
W = wHW = - ﬁ:z_)°(lzsoa)2 [(1+2s02) F(&, 4/1-8%)

+ B(E, 4/1—304) + F(q,A1-8,%) - E(n,'\/l—so4):| +C (8) |

The constant C 1s to be chosen so that w, the real part of W,
is zero on the Mach cone.
APPERDIX C

DETERMINATION OF THE REAT. PART OF TBE INCOMPLETE
ELLTPTIC INTEGRAL OF THE FIRST KIND

The Jacobian normal form of the incomplete elliptic integral
of the first kind in the complex plane is determined as follows:

F(7+ 18,k) = (c1)

In determining the real and imaginary parts F, and Fy; of this
integral, 1t is convenlent to Introduce the Jacobilan sine amplitude
elliptic function,

sn (F, + 1F;,k) = 7 + 18 (c2)

—— e o - . e———p———— o, C —————— ————— - e— e e —— e~ -
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Making use of the addition formula for the sine amplitude function

-,Sn(Fr: k) Cn( i¥4, k)dn( iry, k)"'sn( iFi:k) Cn(Fr; k)d-n(Fr: k)

sn(F,+1iF4,k) =
rre 1-k2sn2(Fp,k)sn2( iF4, k)

(€3)

Substituting the following relationships

1 sn(Fy,Xk')
en(Fy,k*)

- —
- $ (ck)

sn(1F4,k) =
Cn( .'I.Fi, k)

dn(Fi,k?)

d-n( iFiJk) = Cn(Fi,k'

equation (C3) becomes

sn(Fy,k)an(Fy,k?)+1 sn(Fy,k?)en(Fi,k')cn(Fp,k)dn(Fyp, k)

sn(F+iF4,k) =
L cn2(Fy,k*)+k28n2(F,.,k)sn2(F;,k*)
(c5)
Separating equation (C5) into its real anfl imaginary parts
4
.- sn(F,.,k)dn(F4,k*) (c6)
cn®(Fy,k')+k2sn3(F,,k)sn>(Fy, k")
_ sn(Fy,k*)en(Fy,k* ) en(Fy., k)dn(F,., k) (e7)
cn?(Fy, k" )+k2sn2(F ., k)en?(Fy, k')
Introducing the substitutions
A = 8n3(F.,k) (c8)
o = sn2(Fi,k') (c9)

and making use of the identities
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en(F,,k) =11

an(Fp,k) = /1Kr
cn(Fi,k!) = /1o
dn(Fi,k') = ‘/11:'2—0

equations (C6) and (CT7) become

2 _ _M1l-k'20) . (c10)
(1-0+k®\0)? :

2 _ o(1~0) (1) (1-¥°A)
° (1-0+k3\0)? (c1)

»

Simltensous solution of these equations yields

) o [(1472483) — J(1472+82)2 — 72 ] \1+k3(12482) —a/[1413(72482)]2 — Wi 72}

RS S
(c12)
(T2482-\)
T (P — [ME(Te452) — 1) - (@)

Therefore, to find the real and imaginary parts F, and Fy, of

the incomplete elliptic integral of which the sine amplitude is ++15,
it is first necessary to determine A and o from equations (c12) and
(C13). Then from equations (C8) and (C9), it follows that

Fr = F/A,k) (c14)

Fy = FO/o,k) - (€15)


http://www.abbottaerospace.com/technical-library

T e el mp e sm i e b SARe e+ e

NACA TN No. 1780 ' 19

-

APPENDIX D

DETERMINATION OF THE REAL: PART OF THE INCOMPLETE
) ELLTPTIC INTEGRAL OF THE SECOND FKIND

The Jacoblan normal form of the incomplete elliptic integral
of the second kind in the complex plane is given as follows:

TS y
E(T+18,k) sf 1L de (m1)

(o) 1-£2

In determining the real and imaginary parts E, and E; of
this Integral, it is convenient to introduce the transformation.

¢ = sn(u,k) = sn(u,+ipy,k) (D2)

where the real and Imaginery parts of p are p and {1, respec—
tively. With this transformation equation (D1) becomes

Frt+dFy

B(reis, ) = [ amd(e,ma (p3)
-

where the upper limit
T+18

0 A/ 1~E2 A/1-K2 €2

is evaluated in accordance with the methods of Appendix C.

(D)

In Integrating equation (D3) it is convenient to perform the
integration in two steps. The first integration is along the real
axis to F., and the second integration is along a line parallel to

the imeginary axis from p =F, to p = Fn+iF;. Thus equation (D3)
becomss

i

Fy Fy ‘
E(r+15,k) =f dnz(ur,k)d-ur“l'if dn®(Fr+ipg, k)dug (D5)

(0] (o]

T e e T — T e e s e ¢ s e e
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In determining the real part Ep of BE(7T+18,k) from equation (D5), it is noted that the first R
integral is real and is equal to E(snfp,k).

The determination of the real part of the second integral of equation (D5) may be performed
with the help of the addition formmla for the delta amplitude elliptic function

dn(F +iui:k) dn(FI'Jk)d'n(iui’ ) kaan(FI‘.! )BD(ﬂi,k)Oﬂ(Fr,k)cn(ﬂ'i,k) (Iﬁ)
§ 1-k2en2(F,., k)en2(1F4 , k)

Using the relationships for sn(iFy,k}, on(iFy{,k) and dn(iFi,k) (Bee Appendix C.) in this

equation, and substituting the imeginary part of the resulting expression for dn(F,+iFy,k) dinto
the second integral yields -

i.

n k')dn k')sn(p4,k')

rp 1 an2(Btug, k) = kean (P, k)en(Pr, K)aa(Ty,x) onlpg k' )dnlg 61 )onling & z

[on‘?(ui,k')+k25n2(Fr,k)sn2(|.zi,k')]
(D7)
By direct integration of this equation
) 1 B‘D.E Pq,kt)

rp 1 dn2(F +ip,,k)duy = kzsn(Fr,k)on(Fr,k)dn(Fr,k) (Fi(kj'.;dna(]‘ 0 (D8)

) I

Combining the results for the first and second integrals

_ k2gn(Typ, k) cn{ Fy, k)dn(Fr, k) sn®(F4, k')
Ey = E(snF.,k) + rl-snz(Fi,kl)aan(:ﬁr,k) (D9)

With the substitution of equations (C8) and (C9) of Appendix C, equation (D9) becomes

OQLT °"ON NI VOVM
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- E(../’i' p) + BAA1415 o (D10)

1-g(1-K=))

Thus the real part of the incomplete e€lliptic integral of the
second kind of sine amplitude T+15 1s obtalned by evaluating A
and ¢ from equations (C12) and (Cl3) and substituting these values
into equation (D10).
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