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SUMMARY

A gtudy of the subsonic flow past an infinitely long corrugated
circular cylinder 1s presented to show the relation between two-dimensional
and axisymmetrical flow. In fact, a solution is obtained which contains
es limiting cases both the Prandtl-Glauert correction for two-dimensional
flow and the GOthert correction for flow past slender bodies of revolution.
Included in the paper are velocity-correction formulas for a cylinder
with a single bump and for a corrugated cylinder in the presence of walls.

JNTRODUCTION

The present paper is concerned with the form of the compressibility
corrections for subsonic flow which follow from the linsar-perturbation
theory. It is now well known that there are sssential differences
between the compressibility corrsctions for two-dimensional flow and the
corresponding correctlons for flow ebout slender bodies of revolution.
This problem has been the subject of several papers by various authors.
(See, for example, references 1 and 2.)

The analysis presented herein shows that the relation betwsen two-
dimensional and axisymmetrical flow can be clearly demonstrated in_ the
solution for the flow past an infinitely long corrugated cylinder.l In
fact, a solution is obtained which conteins as limiting cases both the
Prandtl-Glausrt correction for two-dimensional flow and the Gothert
correction for flow past slender bodies of revolution. Although the
results for these two limiting cases are already known, the result
obtained in the present paper shows the nature of the transition from
one limiting case to the other. The nature of this transition has been
treated from a different point of view in reference L4, where the bodies
considered consisted of a family of ellipsoids ranging from ths ellipsoid
of revolution to the infinitely long elliptic cylinder. It is of
interest that the present example is a natural extension of ths two-

dimensional wavy wall treated by Ackeret in a classical paper (reference 5).

lpr. ¢. C. Lin has pointed out to the author that flow past a corrugated
circular cylinder has previously been considered by Th. von Kérman
(reference 3) in a different connection as an exampls of the
calculation of wave drag for supersonic flow past bodieg of revolution.
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It should be mentioned that the results presented herein were
obtained in June 1948, while the author was associated with the National
Advisory Committee for Aercnautics at Lengley Ailr Force Base, Va.

AXTSYMMETRICAT, LINEAR-PERTURBATION FLOW PAST A CORRUGATED CYLINDER

et w+ U and v be components of fluld velocity in the axial and
radial directions, respectively. Let ¢(x,r) be the pertubation velocity
potential in terms of which

n=
ox
.3

where x &and r are the axial and radial directlons, respectively.
The linearized differential equation for ¢ is

(1-Mw2>§g+-§%+%%=o (2)

(1)

where M, is the undisturbed stream Mach number.
Let r =a + £(x) be the equation of the meridian profile of the body

of revolution such that |f(x)|<<a and |f'(x)[<<1l. The boundary condition
at the surface of the body of .revolution is then of the followlng form:

r a

2 _ o (3)

_Consider now the particular case in which
x
f(x) = 1 cos(q) (%)

where & 1is the thickness ratio n/'l. of the ripple (n is the amplitude
and 21 is the wave length of the ripple (fig. 1)). An appropriate
solution of differential equation (2) is
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fo) et |na ) (A )

n=1

(5)

vhere I, and K, &are modified. Bessel functions of order zero and

An and Bp are arbitrary constants. The following properties of
Io and K, are needed:

I,'(x) = Iy(x); Ky '(x) = -Ky(x)

Io(x) & 1, K (x) ® -logex + 0.116
x K1«
1

L) > %y (6)

—

ox

I (x)® I(x) 8 —
o) 1 Bz
x >> 1<

~ | T -
() % Ky () B o

-

When the boundery of the cylinder is given by equation (%), only the first
term of the series (equation (5)) is needed.

For the body of revolution in an unliimited air stream, the asymptotic
behavior of the functions Ip requires that the coefficients A, vanish.

From eguations (5), (%), and (3), it follows that the form of the perturbation
potential caused by the ripple is

s K"(H 12

g - V142 K:,:(Jl-M»e :r%) Sin(ﬁ%) i

Equation (7) leads to the following expression for the axial velocity u
at the surfsce of the body of revolution:

700 K°<ul—M°°2 7%) X
u(x,a) = —Jl—-_EKl<ﬁ:M?ﬂ% cos<ﬁ> . (8)
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The ratio of u(x,a) for compressible and for incompressible flow is then

1 KOGHT"Q "% Kl<r%>

u
=< - (9)
U 1M Kl<\/l-Mm2 :r%> K0<rr%>
From equations (9) and (6) it follows, in particular, that,
when m‘l—Mm?- % >1,
e, 1 :
w e (10a)

and, when ,:_E;. <1,

u log, \E-Mme
1.03 + logei-

Equation (10a) is of the form pf the Prandtl-Glauert correction and equation
(10b) is of the form of the Gothert correction. The transition between the
two forms is supplied by equation (9). Figure 2 shows the relation between
the results of equations (9) and (10) for a given value of the undisturbed
stream Mach mmber (M, = 0.866).

Note that the validity of the foregolng formulas 1s governed by the

following two restrictions. First, the use of the linearized boundary
condition (equation (3)) requires that B = %1<< 1 and, second, that 5 <« %.

When the second of these two restrictions is not satisfied, it 1s necessary
to satisfy the boundary condition along the line r = a + 7 cos (ﬁf—) rather

than along the line r = a and hence the velocity correction formulas
depend on two length ratios % and q-

VELOCITY CORRECTION FORMULA FOR CYLINDER WITH BUMP

From the foregoing results the corresponding results mey be deduced
for a body of revolution having a meridian profile given by an equation of the

form
[re]

r=a2a+ n(}) cos(Ax)ar (11)
Jo
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If, now, the substitutions

R
I
&’

15

I
=

are made, equations (5) and (7) yield

-M,o A.r)
$ - J_— Kl<ma>

sin(Ax)ar

The corresponding solution for incompressible flow 1s

@ E_(ar)
@, = ) =7 sin(Ax)dd
91 j; K 08)
A comparison of equations (1k), (13), and (11) shows that

¢, (x,x) = 1<;m2 by <%,J1—Mn3{>

(12)

(13)

(1)

(15)

which is in accordance with the general results for this case (reference 2).
The velocity correction formula which follows from equation (13) is of the form

(16)

VELOCITY CORRECTION FORMULA FOR RIPPLE IN THE PRESENCE OF TUNNEL WALIS

If, agein, a ripple of the form of egquation (4) is taken with the
bounda.ry condition (equation (3)) at the surface of the body of revolution,

there 18 now an additional conditlon at the boundary of a tummel of

radius b, namely, for r =D

L.

e - e ——— e+ e — e

(17)
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The perturbation potential ¢ which satisfies egquations (3) and (17)
13 of the following form:

ms  I1(Bb)K,(Br) + K;(Bb)I (Br)

b - ‘6:1;2- I,(Bb)K;(Ba) - K1(Bb)I;(Ba) sin(ax) (18)

where

(19)

w
n

M2
i 2

When b—> e, equation (18) reduces to equation (7). The axial
perturbation velocity u at the surface of the body of revolution
follows from equation (18) in the form

05 I;(Bb)E,(Ba) + Ky(Bb)I,(Ba) .
Ul'Mw I]_(Bb)Kl(B&) - Kl(Bb)Il(Ba-)

u(x,a) = os(ox) (20)

.

On the basis of equation (20), the values of o may, for given values of

b
%‘: ‘b—%—a, and M., be calculated numerically.

Langley Aeroneutical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., December 30, 1948
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Figure 2.- Comparison of compressibility
-corrections. Mo = 0.8%66,
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