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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2267

INELASTIC COLUMN EEHAVIOR

By John E. Duberg and Thomas W. Wilder, IIT
SUMMARY

The significant findings of a theoretical study of column behavior
in the plastic stress range are presented. When the behavior of =
straight column is regarded as the limiting behavior of an imperfect
column as the initial imperfection (lack of straightness) approaches
zero, the departure from the straight configuration occurs at the
tangent-modulus load. Without such a concept of the behavior of a
straight column, one is led to the unrealistic conclusion that lateral
deflection of the column can begin at sny load between the tangent-
modulus velue and the Euler load, based on the original elastic modulus.

The behavior of a column with vanishing initisl lack of straightness
at loads beyond the tangent-modulus load depends upon the stress-strain
curve for the material. A family of curves showing load against lateral
deflection is presented for ideslized H-section columns of various
lengths and of various materials that have a systematic variation of
their stress-strain curves. These curves show that, for columns in which
the materilal stress-strain curves depart graduaslly from the initial
elagtic slope as is characteristic of stainless steels, the maximum column
loads may be significantly above the tangent-modulus load. If the depar-
ture from the elastic curve is more abrupt, such as for the high-strength
aluminum or megnesium slloys, the meximim load 1s only sllightly above the
tangent-modulus load.

INTRODUCTION

Until recently, the double-modulug theory had generally been
accepted as the correct theory of column failure in the inelgstic range
of stress. This theory, originally developed by Considére and Engesser
and later extended by Von Kermdn (see reference 1 for a discussion of
this development), predicts that the load at which bending starts and
the maximum load that a pin-ended column can support are the same and can
be obtained from the Euler equation .

2EI
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by substitution of a reduced modulus for Young's modulus. (The symbols
used in this paper are presented in sppendix A.) The reduced modulus

is obtained by assuming that, at the start of bending of an originally
straight column, the direction of straining of the elements on the con-
vex side of the column reverses. When such reversal of strain occurs

in the plastic range, increments of stress sre related to increments of
strain by the original elsstic modulus. The part of the cross section
over which the strains reverse 1s determined by the condition that there
shall be no change in load during the bending process.

In 1947, Shanley (reference 2) was able to show for a simplified
column that, if the load is allowed to increase during bending, beunding
of the column can start at a lower load than the reduced-modulus load.
The load for which he showed this to be true was the tangentqmodulus o
load, which can be obtained from the Euler equation by substitution of
the tangent modulus in place of Young's modulus. Shanley drew conclu-
sions concerning the behavior of columns on the basis of the behavior
of the simple model and certailn experimental observations.

In order to clarify the behavior of columns in the plastic rangé,
& theoretlcal study was made with the following threefold purpose:

(1) To establish the load at which a column starts to deflect,
designated the critical load in this paper

(2) To study the mechanism of column action beyond the critical
load

(3) To establish the relation between the meximum column load and
the stress-strain curve for the material

In order to make this study, two models were chosen: One model, similar
to Shanley's, was a spring-supported rigid column - that is, one that
had a concentrated flexibility - and the other, an idealized H-section
column that had 1its flexibility distributed along 1ts length and con-
sisted of two concentrsted flanges separated by a web of negligible ares
but of infinite shear rigidity.

The significant results of this study were presented without proof
at the Structures Session, Eighteenth Annugl Meeting of the Institute of
the Aeronautical Sciences held January 23-26, 1950, in New York, and
were subsequently published by that organization as reference 3. The
purpose of the present paper is to give the details of the analysis
which were not included in reference 3. Since the original presenta-
tion, several other investigators have published the results of their
researches on inelastic column action. (See references 4 to 6.) The
results in these references are in substantial agreement with those
obtained in this paper.
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THE CRITICAL LOAD

In the elastic range of stress the critical load for & straight
column - which must agein be emphasized as having the restricted meaning
in this paper as the load at which bending starts - is unique and is
given by the well-known Euler formula. The situetion is not so simple
in the inelastic range of stress, however, and the source of the diffi-
culty lies in the character of the stress-strain relations in the plastic
range. In the inelastic range of stress, at least for unisxial states
of stress, increments In stress are related to Increments in strain by
the tangent modulus of the materisl, but decreases in stress are
related to strain by the original elastic modulus.

In order to demonstrate the lack of uniqueness in defining a load
at which bending starts in the inelastic range, the simple spring-
supported column shown in figure 1 was analyzed. Details of the analysis
are presented in appendix B. The inverted tee 1s rigid and free to
rotate and translate vertically about the intersection of the cross of
the tee. The column is supported at each end of the horizontal leg by
identical sets of two elastic springs. One spring is fixed at the far
end; the other spring has a ratchet attached to its far end which permits
no additional strain in the spring when the displacement of the end of
the horizontal member exceeds el. If the end of the horizontal member
moves upward after exceeding ej, the raitchet immediately catches. The
combined force-displacement relation of each spring system is shown in
figure 1. This relation may be regarded as a simple stress-strain curve
that includes a plastic region and the phenomenon of strain reversal.

If such a column 1s assumed perfectly stralght and its load is free to
change during bending, an infinity of loads can be found at which the
top of this column can start to assume a deflected position. This range
of loads is included between the tangent-modulus load for this column
end the Euler load. Those loads between the tangent-modulus losd and
the reduced-modulus loed require an increase in load during initial
bending; whereas, those loads between the reduced-modulus load and the
Euler load require a decrease in load during the bending process.

The actions of the spring systems at the start of bending can be
described by locating the instantaneous center of rotation of the rigid
column. At the tangent-modulus load, the center is at the end of the
horizontal leg on the side that is not loading; therefore, no displace-
ment of that spring system occurs. For loads between the tangent-modulus
load and the Euler load, the center lies on the horizontal leg between
the two ends. At the Euler load, the instantaneous center is at the
opposite side and no displacement of that spring system occurs. It is
evident, then, that reversal of the spring system on one side always
occurs for these loads except at the tangent-modulus load when there is
no change in the displacement of that side. -
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An anslysis made for the idealized H-section (appendix C) reveals
a similar but somewhat more complex behavior of a perfectly straight
columng that is, the same range of loads exists at which a perfectly
straight plastic column can start to assume a deflected shape. (See
fig. 2.) Those loads between the tangent-modulus load and the reduced-
modulus load are assoclated with an increase in load during Initisl
deflection; whereas, those loads between the reduced-modulus load and
the Euler load are associated with a decrease in load. The essential
difference in the column actions for this range of loads is the pattern
of strain reversal which occurs during bending. At the tangent-modulus
load, none of the strains over the entire volume of the column reverse
at the start of bending; however, the strain is jJust stationary at the
center of the column on the convex side. At the reduced-modulus load,
the reversal 1s complete over one side of the column as usually presented
in the double-modulus theory and the strains are stationary along the
surface that separates the reversed and unreversed regions. At the
Euler load, all the streins reverse over the entire volume of the column
except for the center of the column on the concave side, and there the
strein is stationary. Because the distribution of stiffness over the
length of the column is the same at these three loads, the instantaneous _
deflected shapé is a half sine wave. L

Since the deflected shape of the column at the tangent-modulus and
Euler loads is known and since the instantaneous center for strain of
the center cross section of the column is on the convex side at the
tangent-modulus load end on the compression side at the Euler load, the
initial slope of the curve of load against center deflection can be com-
puted for the columns. The slopes obtalned here are valid for cclumns of
constant symmetrical cross section. At the tangent-modulus load,

dap b

We 22 T i
and, at the Euler load,
P b

where b is the distance between the extreme fibers in bending and p
is the radius of gyration of the cross section. At the reduced-modulus
load, this slope is zero.

The anslysis of a perfectly straight plastic column leads to a
range of critical losds, but only the smallest, the tangent-modulus load,
can be accepted as being significant for real columns. No real column _
is perfectly straight; therefore, it 1s reasoneble to define the signifi-
cant criticel load as one based on the behavior of a slightly bent column
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as the initial lack of straightness venishes. -In order to demonstrate
the results of such a point of view for defining the critical load, a
more complete anslysis of the spring-supported column was made in which
a small initial deflection dy of the top of the column was included.
In meking such an analysis, it is necessary to keep track of the dis-
placements of the individual spring systems to be certain that the cor-
rect force-displacement relations are belng used. The possible combina-
tions for the spring systems are shown in figure 3.

The results of the analysis of the column with various smounts
of initial deflection sre shown in figure 4. Also shown are the
limits of the regions in which the various force-deflection relations
exigt. The most significant point to be observed is that, as the initial
imperfection decreases, the tangent-modulus load is the limiting load
gt which there is a sustained increase in the bending deflection of the
column. It should also be noted that the reversal of the spring deflec-
tion always occurs below the tangent-modulus losd and occurs Just &t
that load as the initisl imperfection vanishes. ’

THE MAXIMUM LOAD

The load-deflection curves for the simple column, given in figure h,
are all gpproaching the reduced-modulus load at large deflection. This
1s a consequence of the linearity of the spring systems and is to be
expected if one considers the deflected column with reversal as a new
elastlic column, the stiffness of which 1s measured by the reduced modulus.
This behavior is not typical of the actions of real columns, becsuse as
the load on the column increases, the strains increase and there is a
continual reduction of the tangent modulus. How rapidly the tangent
modulus decresses depends on the shape of the stress-strain curve;
therefore, the maximum strength of a column of a given geometry is
expected to depend on the stress-strain curve of its material.

To study the effect of the shape of the stress-strain curve on the
meximum strength of a column, an analysis was made of the behsvior of
the H-section column after 1t had become critical and started to bend
at the tangent-modulus load. The analytical stress-strain curve for the
meterial of this column was assumed to be of the form suggested by
Ramberg and Osgood (reference 7). This form is summarized in figure 5.
The stress o031 1s usually close to the yleld stress of the material,
The most significant parameter for this study is the exponent n. Low
values of n correspond to gradually curving stress-strein curves, and,
a8 n 1increases, the curveture changes more rapidly at the knee. Values
of n 1n the neighborhood of 10 are assoclated with aluminum alloys;
whereas, values between 3 and 5 apply to stalnless steels. Magnesium
and the low-cerbon steels have stress-strain curves which correspond to
values of n of 30 or greater.
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The study of strain history of the flanges of & column which starts
to bend at the tangent-modulus load shows the same genersl strein history
regerdless of the shape of the stress-strain curve. At the start of '
bendlng, reversal of stress begins at the center of the convex side of
the column. As the deflection increases, the region of reversal spreads
rapidly over the convex side of the column and is complete over the whole
convex flange at meximum load. After the deflection corresponding to
the meximum load is exceeded, reversal of strain spreads into the con-
cave slde of the column.

A summary of the load-deflectlidon results that were obtalned for the
H-section column when the stress-strain curve and the tangent-modulus
. load were systematically varied is given in figure 6. The loads are
given in terms of a load P; that produces an average stress o1 in
the straight column. Two results are significant: First, the smeller
the value of n, the higher the meximum lo&d in relation to the tangent-
modulus load; second, the smaller the velue of n, the greater the deflec-
tion at which the meximum load occurs. The results obtained for the
maximum load are summerized in two forms: In figure 7, the ratio of the
difference between the maximum load and the tangent-modulus load to the
difference between the reduced-modulus load (had the column remained
straight) and the tangent-modulus load is plotted as a function of the
tangent-modulus load. The meximum load of columns, critical in the
plastic stress range, exceeds the tangent-modulus load by a fairly con-~
stant percentage of the difference between PRy &and Pp. In figure 8
the ratio of Ppax to Pp 1s plotted as a function of the tangent-modulus
load. In the plastic range the percentage increases in maximum loed o
over the critical loed are roughly constant for a given value of n and
are larger the smaller the value of n.

The dashed parts of .the curves in figures T and 8 have no practical
slgnificance. Their shape is a consequence of the fact that the Ramberg-
Osgood stress-strain curves have no proportional limit and are therefore
nonlinear in what would normelly be the elastic rsnge. A more correct
interpretation would be to conslder the ordinates to be unity in the
dashed regions.

CONCLUSIONS

The theoretical study of column behavior in the plastic stress range
led to the following conclusions:

1. If the behavior of a perfectly straight column is regarded as
the limiting behavior of a bent column as its initial imperfection
vanisghes, the tangent-modulus :load 1s the critical load of the column -
that is, the load at which bending starts.
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2. The maximum load that an initielly straight inelastic column
can support is larger than the tangent-modulus load. The ratioc of the
maximum load to the tengent-modulus load will be larger for columns
having stress-strain curves represented by lower values of the
exponent n 1n the Ramberg-0Osgood representation.

Langley Aeronsuticel Laboratory
Netionel Advisory Committee for Aeronautics
Langley Field, Va., October 16, 1950
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APPENDIX A
SYMBEOLS
8 coefficients in sine series
A cross-sectional ares
b column thickness
01,02,03,04 congtants of integration
dgo initial lateral deflection of spring-supported column model
d lateral deflection of spring-supported column model
e _displacement or strain
e displacement corresponding to force P)/2 or strain
corresponding to stress o3
E Young's modulus
Ey tangent modulus (do/de)
Ep = %g- at stress corresponding to tangent-modulus load
F force
I moment of inertis
k proportionality factor (x,= kL)
kg ,ko. spring constants -
K parameter used in Ramberg-oégood representation
L - measure of length B
113 positive integer
n positive exponent in Ramberg-0Osgood representatlon

veriable load on column
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x1

X1,X2

J1s¥2
p

g

g1

Subscripts:

C

()rev

E

S

2o

load on straight column causing a strain ej
positive integer used In sine series

vertical displacement of pivot polnt of spring-supported
column

variable distence along length of column
nondimensionsl distance slong length of column (x = x'L)

variable-dimensions of length meassured from particular
points *

variaeble deflection
nondimensional deflection (y = y'b)

deflections &t x3 and XxXp
radius of gyration
stress

0.7E secant yield stress

midheight of column

particular value when reversal occurred
Euler

maxﬁmpn'

reduced modulus

tangent modulus

left

right
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APPENDIX B
ANALYSIS OF SPRING-SUPPORTED COLUMN

Two analyses were made of a simple mechanical model of a column.
First, an infinitesimal-deflectlion analysis which showed that, if one
assumed a column to be initlally straight, an infinity of equilibrium
paths could be found by which the column can start to deflect. Each
path was associgted with a definite load. The second analysis was a
finlte-deflection analysis of the same column and showed that, for real
columns (which always contain some small initisl imperfection), only the
lowest of these loads, the tangent-modulus load, had any resal
significance.

If such a column is anslyzed by the usual approach, the Euler load
1s )

2
Pp = (kg + kp)

where the spring system stiffness k; + ko represents the originsl
slope of the force-displacement diagram. Above the knee of the force-
displacement diagrem, the stiffness of each spring system for increasing
displacements is kj, and for this column the tangent-modulus load is

k1b°
Pp = o -

The double-modulus theory gives for this column a reduced stiffness
21{1(1{1 + ke)

2k1+k2

and therefore s reduced-modulus load

p . il + kp) p2 _ 2PEPT
BM = "2k + ki, L Pg + Pp

In the development of the enalysis it will be convenlient to introduce
these loads.
Infinltesimal-Deflection Anslysis

Figure 1 shows the detaeils of the model of the column., The verticsel
leg of length L/2 end two horizontal legs each of length b/2 are
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considered rigid and rigidly Joined. The column is loaded at the top

of the vertical leg and 1s constrained at the Intersection of the two
legs so that this point is free to move vertically and rotate but can-
not move horizontally. At each end of the horizontal member, there is a
set of supporting -springs. In each spring system, the spring with
stiffness kj; 1is elastic and its grounded end is rigldly supported;
whereas, the spring with stiffness ko has its grounded end attached

1 ko

. 2 k + kp

On reductlion of the force in this spring, the ratchet ceases to slide
and unloading of the spring occurs with changes in force related to
changes in displacement according to the stiffness kp. The action of
these two springs of stiffness k3 &and ko combine to form a force-
displacement relatlionshlp for each system similar to an ideslized stress-
strain curve with a sharp knee at the force P1/2 (see fig. 1).

to & ratchet that slides for a constant force in the spring.

Let us consider possible changes in the equilibrium position of the
straight column that has been loaded with some force P which is
greater than P;. Static equilibrium of vertical forces and moments
sbout the pivot point requires the changes in force in the springs to
be relasted to the spplied load and to any change in the spplied load by
the followling equations:

AFL+AFR OP

(B1)

AFT, - AFR 2%1-(P+AP)

The lateral deflection Ad 1is assumed to be directed to the left.
The displacements of the sets of springs can be related by geometry to
vertical displacement of the column at the pivot point A and the
lateral deflection of the top of the column Ad. The displacement of
the set of springs on the left is

AeL=Au+Ad% (B22)
end on the right,
feg =lu - A4 2 (Bob)

In order to complete the analysis of the column, force-displacement
relations must be introduced for the spring systems. The form of these
relations depends on three possible displacement patterns:
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(a) e1, and er increasing

(b) e, and ep decreasing
(c) e, increasing and ep decreasing

In the following sections, these three displacement patterns are discussed
end also included in each analysis is the possibility of ey, and €R
not changing.

Left and right displacements increasing.- The first possible force-
displacement combination corresponds to the left and right displacements
increasing or remaining unchanged; thet is,

Mu + A4

o
v
o

Let,
(B3)

o
v
e

Lfeg = Au - M

For a load P greater than P;, these changes in displacement multiplied
by k3 give the changes in load as follows

APy (Au+Ad )1:1
(B4)

AFR

b
M - Ad Bk
( L)l

Substitution of equations (B4) in equations (Bl) gives the static equi-
1ibrium relations that must exist between ' the change in the column
deflections and the losad:

2k1AMu = AP (B5a)

ME’T - (P + AP)___I =0 (B5b)

k1b°
where Pp = T as noted previously.

The problem now is to find solutions to equatioms (B5) which do not
violate the conditions on the displacements given by the inequali-
ties (B3). A trivial solution is that Ad is zero and that A
increases for a positive AP. Physically, this solution would mean that
the column remains straight and continues to compress under increasing
load. If, however, in the moment equilibrium equation (B5b), the
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bracketed term is zero, 1t would seem that any Ad is possible and the
column can bend. During the bending process, however, the load on the
column P + AP must always be equal to Pqp in order to satisfy moment
equilibrium; AP must therefore be zero. If AP 1s zero, Au 1is
zero, and only zZero Ad can satisfy the inequalities (B3).

Left and right displacements decreasing.- The second possible
force-displacement combination corresponds to the left and right dis-
placements decressing or remeining unchanged; that is,,

Ner, = M1+ Ad %é 0
(B6)
peg =t -m 220
Then
AFy, = (Au+AdE)(k +Xp)
L T \EL + ko
(BT)
b
OFp = (Au -Adf)(kl+k2)
Static eqﬁilibrium reqﬁires that
2(ky + kp)Au = AP . (B8a)
AdEE-(P+APﬂ=o ~ (B8b)

2 . .
where Pgp = (k1 + kg)bT. If AP 1is negative, these conditions are
satisfied for any P if Ad is zero. Physically, this solution
would mean that the straight column can lengthen for a decrease in
load. In the moment equilibrium equation (BSb), it would seem that
any A4 1is possible if the load on the column P + AP is Py

If, during the bending process, the load P + AP must always be
Pg, then AP must be zero. If AP 1s zero, there is no Au, and

only zero Ad can satisfy the 1nequalities (B6).

Teft displacement increasing, right displacement decreasing.- The
third force-displacement combination corresponds to the left dlsplace-
ment increasing and the right displacement decreasing or either
displacement remalining unchenged; that is,
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b >

AEL—Au-i-AdL:O
(B9)

AeR=Au-Ad%§O

Then
b
(B1O)
AFR = (Au-Ad%)(kl+kQ)_

Static equilibrium requires the following relstions between the load,
its change, and the changes in column displacements:

(2% + kp)du - kpod P = AP
(B11)
b_ A4
~koru + (2ky + kp)ad L= 2 1;(P + AP)

When the previously mentioned relations for Pp, Pp, and PRM are used,

the displacements obtained from the static equilibrium equations (Bll)
are .

= 1
Aul, _ P /PT__?_)
b° 2( - §§ﬁ)\?RM Py

> (B12)
AP
-
B i3 B
2(1 - ﬁﬁﬁ) RM |

These relations between the change in load and the change in column
deflections are valid only if they are conslstent with the original
assumptions for the force-displacement relations of the spring systems.
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Substitution of these column deflectlons in the inequalities that define
the direction of spring displacement yields the inequalities

Q ™~
-—PE—P- (l - 'fP— %0
] - =
PrM L
(B13)
AP
__EE___ EE -P)< 0
-2 \FE =
PrM y

Solutions conslistent with lateral deflectlion exist among the equili-
brium equations (Bl2) and the inequalities (B13) when the load on the
column lies between Py and Pg. When the load lies between Prp
and Pgy, lateral deflection is possible for increases in load; whereas,
when the load lies between Ppy &and Pg, lateral deflection is possible
only for decreaesing load. If

Pr= P=S Pru

then
oP
2225;%—;;0
b
and if
PrM= P= Pg
then
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Finite-Lateral-Deflection Analysis
with Small Initial Deflection

The previous analysis has indicated that en infinity of equilibrium
paths can be found by which a perfectly straight column can undergo
lateral deflection. A more realistic approach is to conslder an actual
column as one which admits a smaell but finite initisl imperfection. It
1s of interest, therefore, to analyze the load-deflection history of the
spring-supported column when such an imperfection exists.

Consider the same spring-supported column which has as an initial
imperfection a small deflection dg of the tip of the column. Static
equilibrium requires that : '

FL + FR P
(BLY)
do +-4
FL - FR = 2P —5—

Geometry requires the following relation between the spring displace-
ments and the column deflection:

er, - eg = E%E (B15)

The force-displacement relations of the spring systems, as in the
previous section, depend on the magnitude of the displacements and the
direction in which they are progressing. During the initial loading, .
the spring systems are elastic. As the load increases, the spring system
on the side with the more rapidly increasing displacement becomes :
"plastic" and the column is considered "elastic-plastic."” If the initial
deflection of the column is sufficiently small, the spring system on the
side with the more slowly increesing displacements can slsoc become
plastic as the load increases. The region in which this occurs is con-
sidered "plastic." If, after both sides have become plastic, the
trailing spring displacement reverses, it does so elastically and the
column is considered "plastic with elastic unloading.” A summary of
these possible force-displacement combinetions is given in figure 3.

The column load-deflection relstions in these four regions are found as
follows: :

Elastic range.~- In the elastic range the force-displacement rela-
tione for the springs are

Fr, = (g + kp)ey,

(B16)

Fr (kl + ke)eR
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Substitution of thesge relations in the static and geometric relations
yields the following solution for the lateral deflection of the column:

2%
a Pr b (
> - -+ - B1T)
b PE_ P
 Pp Pp
bo(k] + ko) :
vhere Pg = —————i4———— is the Buler load for this columm. The limit

of the elastlc range is reached when the force in the more rapidly
loading spring system equals P1/2. The elastic region in the plot of
column load against lateral deflection is bounded by the coordinate axes
and the straight line given by

a_1/F1_ P Py _,
b 2\Fg Pr Py
Elaestic-plastic range.- In the elastic-plastic range a new set of

force-displacement relations exists for the springs. These relations
are

kjer, + kpep
(k1 + kp)eg

The lateral deflection of the spring column in this range is defined by

the equation
1pfPr ).k do,1iffs R
2 Pp\PRrM Pgy b 4\Pp Py
1

FL
(B18)

Fr

(B19)

o'le

Ir

d P P
o 1 1 1
B >.§Eé.- 2 iE.+ fE)

lateral deflection grows in the elastic-plastic range and approaches
infinity for values of the load epproaching as e maeximum value the
reduced-modulus load PrM. Before this maximum load is reached, the

smaller spring displacement, which has remeined elastic, always reverses
its direction of displacing. For large initial deflections, this
reversel occurs in the elastic range or at the instant the column enters
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- the elastic-plastic range. If the initisl deflections are small enough,
reversal occurs later. The loci of loads and deflections at which
reversal occurs in the elastic-plastic reglon lie on the curve

a. 1/p\° Pr\ 1 Pp 1P1 P
F*E(ﬁ) (“Fﬁ’?fa“‘ﬂ?( 55)0

do ‘El.-hPl
1 -2 + =
) <2< Py P
the spring displacement on thé right, which has alweys been the smaller

one, can also become plastic. ,The locus of points at which this change
occurs is given by the straight line

If

Plastic range.- The plastic force-displacement relations for the
springs are

FL, = kyep, + kpep

(B20)

Fr = kjeg + kpeg
The lateral deflection in this range 1s given by the equation

do

|

Y
— (B21)
1 - =

o'
é?

As the load and lateral deflection increase in the plastic range, the
spring displacement on the right reverses and, consequently, changes
the spring force-displecement relation. Reversal of the direction of
the spring displacement in the plastic range takes place on the curve

S-2E(-&)-o
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Plastic range with elastic unloading.- After reversal has occurred .
in the plastic range, the force-displacement relaetions for the springs
are .

FL kleL + keel

(B22)

Fr = (k1 + kp)eg + k2[§l - (eR)re;]

The column laterasl deflection is defined in this range by the equation

;1(52__1) __P_Eg_l_T__l)(-l_,,259>2
2 Pp\Pry PrM ©  2\Pmy b

g _ (B23)

o
av]

As the load increases, the lateral deflection increases and approaches
infinity as the column load approaches Pgry, the reduced-modulus load.

Numerical example.- The lateral-deflection analysis of the spring-
supported column was applied to & particular column. This column is
defined by choosing a ratlo of

j’:ﬂ.:%
Py
and a ratio of

Pr_o

Pq 8
Such a column has a ratio of

Fr _ 4

P 3 '

The results of the analysis are given in figure 4 for vaerious values of
initiel deflection of the column.
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APPENDIX C
ANALYSIS OF IDEALIZED H-SECTION

The ensalysls of the simple spring-supported column, given in
appendix B, has served the purpose of showing the meaning of the tangent-
modulus critical load in inelastic column behgvior. The model is, how-
ever, & crude representation of an actual column and has only one pos-
sible deflected shape. The analysis fails to reveal snother phenomenon
assoclgted with a real column, that is, the growth of the region of the
column over which strain reversal takes place. A simple model that can
exhiblt the growth of reversal glong its length is an ldealized H-section
column. Such & column consists of two flanges of equal ares separated
by a web of negligible thi¢kness. No shear strain can occur in the webd
so that ordinary beam theory can be used to relate the curvature of the
lateral deflection of the column to the strains In the flanges.
Furthermore, the state of stress in each flange ls assumed to be one~
dimensional so that in the plastic range the stresses can be related to
the strains by the ordinary stress-strain curve for the materisl. If
strain reverssl occurs in the plastic range, the unloading tekes place
elastically.

Infinitesimal-Deflection Analysis

An infinitesimsl-deflection anaslysis of an originally straight
H-section column reveals the same situation that exists when such an
anelysis 1s made for the spring column; that is, a range of loads exists
for which a perfectly straight column can start to assume =& deflected
position of equilibrium.

Derivation of the differential equations.- At any section along the
length of the column, static equilibrium requires that

LP

AFL + AFR
(c1)
AF7, - AFR

2%\1;(13 + AP)

Geometry requires that the curvature be related to the strains on either
side of the columm by the equation

3y el - AeR

ax? b

(c2)
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In order to complete the analysis, the stress-strain relations for
the flange must be defined. At every section along the length of the
column there are three possible combinations of directions of straining:
er, and er Increasing, e, and eR decreasing, and ey, increasing,
er decreasing. Differential equations relating the column deflection
to the load are derived as follows for these combinations:

If the strains ej, and er are increasing, the force-strain
relations for the flange are

AE4

OFp, = Lep, ——
(c3)

AEg

AR = 4eR 3

Substituting these relations in the equation of geometry (C2) and
eliminating AF; and AFR by the use of the static equilibrium equa-~
tions (Cl) yields the following differentisl equation in which the term
of higher order has been neglected: '

2 k.
Z‘x@y + beiEt Ay =0 (ch)

If the strains ey, and eR are Jecreasing, the force-strain
relations for the flanges are :

. AE
OFy, =AeL?

(c5)
AFR = tep

Substituting these results in the equation of geometry (C2) and msking
use of the static equilibrium equations (C1) ylelds the following 4if-
ferential equation relating the column deflections to the load:

2
&y | 4p Ay = O (C6)
dx®-  DbOAE

If the strains e, are increasing and the strains e are
decreasing, the force-strain relations for the flanges are
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AFL =AeL -

(c7) -

AE
AFR'—'AER?

The differentiasl equation relating the increment of column deflection to
the load and 1ts change is

oy ep (1, 1), (1 1
- b2A<Et+E) "Ab(Et'E) (c8)

Initial deflection with increasing load.~ If the H-section column
deflects under end load, the sections along itz length must be straining
according to one of the three possibilities previously mentioned. If
the bending takes place under increasing losd, it is reasonable to
assume that, in the reglons near the ends of the column, both strains
are increasing during bending. At the same time, in & region near the
center of the column the strains on the left increasse while those on the

right decrease.

Therefore, differentiel equastion (ClU) mey be assumed to spply at
the ends of the column. The solution to this equation is

X ' | (c9)

ANy:s = Cq sin
1 1 b2AEt

where x; 1s measured from the end of the column.and the cosine term
has been dropped in order to satisfy the condition of zero deflection
at the end of the column. At the center of the column, differentisl
equation (C8) aspplies and its solution is

’2P 1,1 P, E - Eg e
AVQ = 02 cos A'—bé-(E + E_t)xz - E b :ET+—Et (ClO)

where xp 1is measured from the center of the column and the sine term
has been dropped because there is no slope at the center of the column.
Three arbltrary quantities are to be determined: +the comstants Cj

and Cp eand the increase in load AP. These quantities are determined
by the conditions that must exist at the Junction between the region in
vhich all strains increase and the region in which the strains on the
convex or right side of the column reverse. If the region of increasing
strains is of length kL, at the Junction
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Xl=kL

1l -2k
XQ=—'TL

the following conditions must be satisfied:

A¥y - 4yp = 0 A

dayp dAyp

—= - —==0 > (c11
Leg =0

Substitution of the deflected shapes Ay; and Ay, from equation (c9)
and equation (Cl0), respectively, ylelds the following homogeneous
system of equations in C;, Cp, and AP:

sin‘ﬁPkELE - 202 1+ Ee) BB
DoAY, V OhoAEE+ PE; +E
2 2 .2
I PLET, + Bt (1 - 2k)° L(E + Ey)
Cos\[5 -V o= sin 5 0 Col| =
AEq - \{ Ob2AEE
P22 '
P sin l‘g& 0 —% AP
ey
(ci2)

Solutions exist for vaelues of the load and regions of reversal (1 - 2k)L
which satisfy the transcendentel equation

o) _ 2 .2
hpiPr2 ([P - 2K)° L (& + By) ) JE ZEEt (c13)
b2AEy Ob2AEE4 ’

The principal roots of this equation yield values of load lying between
the tangent-modulus load and the reduced-modulus load, with corresponding
regions of reversal on the convex side ranging from an infinitesimal
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length at the center of the column to the entire side of the column.
The shape of the deflected column is a helf sine wave st these two

limiting loads.  The rate of change of the load in the column to the
chenge in deflection at the center of the column 1s, at the tangent-
modulus load, ' ' '

AP = 2PT =
&y, b
and, at the reduced-modulus load,
A

Ay_c= S

Initial deflection with decreasing load.- By a process similar to
the one used for initial deflection with increasing load, equilibrium
paths can be.found by which a straight plastic column can deflect under
decreasing load. Assume that, for & region near the ends of the column,
the stralns on both sides are decreasing; then, differential equa-
tion (C6) epplies in this region. The solution to this differential .
equation that satisfies the conditlon of zero deflection at the end of -

the column 1is
’ 4P ’
= Cx sin \|— x (c1h)
Ayq 3 | o 1

In the reglon at the center of the column, the strains on the convex
slde are assumed to decrease and those on the concave side to increase;
therefore, differential equation (C8) applies in this region. The
solutlon for the deflected shape in this region is

byp =y, cos\[ZEEERY o) 4 L2 o= (c15)
b2AEE ep + By

A relation between the arbitrary quantities C3, Cy, and AP 1s found
from the three conditions that exist at the Junction of the region in
which all strains are decreasing and the region in which only the strains
on the convex side are decreasing. At the Junction, x; = k. and

Xo = = i—éfag L where kL 1is now the length of the region of decreasing

strains and the three conditions thet must be satlisfied are
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Lyy - &ys = 0 h
a0 [ (c16)
ber, =0 J

These three conditlons lead to the following homogeneous system of
equations in C3, -Cy, and AP:

: |

o Jimir oo B - 202 15 + Er) b Bt - E||_

beAR V QbEAEEt 2P E + By 3

4PKAL2 [+ By (1 - 2k)2 L2(E + Eg) _
COB || ——— - cos 0 Cyl =0

b2AE 1 2B Ob2AREY

53
\ o2z
(c1T)

Consistent solutions exist among the quantities C3, C}, and AP,
which also satisfy the assumed directions of straining If the load and
the regions of reversel satisfy the equation

(c18)

LPK2L.2 IP(L - 2k)2 1L2(E + Et) E + Et
tan 5 tan > = 5
b2AE ObPAEE t

and if AP 1is negative.

Solutions of these equations exist for loads lying between the
reduced-modulus load and the Euler load. At these two limiting loads,
the deflected shapes are sinusoidel. At the reduced-modulus load, strain
reversal occurs over the whole convex side of the column; whereas, at
the Euler load, it is complete over both the convex and concave sides.

At the reduced-modulus load

&P _ g
Ac
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end at the Euler load

AP 2Pe

&y, ~ D

Initial load-deflection relations at tangent-modulus load and
Euler load for arbitrary cross section.- A genersl result which can be
induced from the study of the spring-supported column and the H-section
column is the initial slope of the load-deflection curve for any
congtant-section column at the tangent-modulus load, at the reduced-
modulus load, and at the Euler load. At the tangent-modulus load, the *
strain at the center of the convex side of the column Is stationary;
therefore, the instantaneous center of rotation for strains in the cross
section 1s at this point. The distribution of strain across the column
is uniform with &8 meximum value at the concave side. If the strain on
the contave side is CAeL)c, the increase in load would be as follows

for a symmetrical cross section:

rer) AE
e - L (o)

vhere A 1is the area of the cross section. The change 1ln strain Aey,
is related to ‘the curvature of the column by equation (C2) and is, at
the center,

(AEL)C _ ae
P | ax2

' 2
X x
(Ay sin TT) = AYe 12 (??9)_

AE 2
T n“b
&F = =5~ Nec 5
or
AP _ b L 7 T
e  pp2  E-

At the reduced-modulus load, the slope is zero. At the Euler load,
the instantanecus center for strains on the cross section is at the
center of the column on the concave side; therefore, by a process -
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similar to that employnd at the tangent-modulus load this slope can be
shown to be

b
=-—P
22 B

2

Finite-Deflection Analysis

An exact finlte-deflection analysis in the plastic range is com-
plicated by two factors. First, the deflections may become large enough
that the more exact definition of curvature of the column is required.
In the analysis which is developed here, the usual small-deflection
definition for curveture is used and is Justified by the results that
show the most significant actions tp take place for, real columns at small
displacements. Second, as lateral deflection proceeds, the strains on
the convex side reverse their direction of stralning and elastic
~unloading of the column elements takes place. This second phenomenon,
referred to as the growth of the reversed region, was not so well under-
stood and required some investigation. In order to investigate the
effect of the growth of reversal, a finite-deflection analysis was made
for an idealized H-sectlion column made of material having a constant
tangent modulus in the plastic range. Another analysis was made in
which & more realistic stress-strain relation for the material was used
to study the effect of the shape of the stress-strain relation on the
strength of columms.

Anslysis of H-section column for constant tangent modulus.- The
previous analysis of the spring column has shown that a perfectly
straight column may be assumed to start deflecting at the tangent-modulus
load. The static relationship between the loads in flanges of the
H-section and the applied load are given by the following equations:’

(ca1)

y

The geometric relation between the strains in the flanges and the column
deflection is

;’ =~ )
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Furthermore, in some part of the column, the strains are assumed to
continue to increase; then, for constant tangent modulus above P,

Fr, %; + égg(el, -:ém)

P AR (ca3)
T T /. _'
FR = "é"' + —2'—'(33 - eT)

vhere ep 1s the uniform strain that exists everywhere in the column
at the tangent-modulus load. The differential equation which relates
the deflection to the applied load is obtained by substitution of the
static and load strain relations into the geometric relation and is as
follows: ’ : - '

2
a 4P

+—S—y =0 (c2k)
dx b AEm

ed

Mo

If at some -section of the column the strains on the convex (right)
side start to decrease, then

= = (e - %I}R)r_ezf eR:, (=)

vhere the subscript "rev" refers to the load and strain at which
reversgl of strain has taken place. The differentlal equation relating
load to deflection along this part of the lefigth can now be written as

follows:
&y, 2_1';<;+ L)y - ;E ] E(F_R)__rv] 11 (c26)
axe beA E Eg blA A E Ey

These equetions may be put in nondimensional form by introducing the
following notations:

2mhe
y' = Z 'x’ - E PT = ﬂ?—-ﬁ
_ x°p2a  EEy p _ xCEEA

PRM_ 2 E + Eg E - 41,2
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In the unreversed region

aey! 2 P)
——— + 1 [=—jy' =0 (c271)
d(x')2 (PT 7

and in the reversed region

2(F :

2 o R

By @ By JBE ()reng _) (c28)
i(x')2  PrM P P RM

The difficulty involved in determining exactly the deflections arises
from the fact that the growth of the reversed region 1s not known
initielly but must be determined as deflection proceeds. An approximate
solution can be made which is based on the method of collocation and

can be extended to any required degree of accuracy. The solution is
developed by assuming that the deflections of the column can be expressed
as the finite trigonometric series of odd sine terms

m .
y' = ar sin(2r - l)ax!' (c29)
r=

Such a series satisfies the boundsry conditions and is symmetrical with
respect to the center of the column. The coefficlents of the series are
obtained from the set of simultanecus algebraic equations obtained by
substitution of the series into the differential equations (C27) and
(C28) and satisfying them at m equidistant stations in the half-length
of the column. Of the two differential equations, the one that applies
at a glven station depends on the direction of straining. It is there-
fore necessary to keep a check on the direction of straining at each
station and to use the applicable equation when the direction of
straining changes. The anslysis can be started because the infinitesimal-
deflection analysis has shown that, at the start of bending at the
tangent-modulus load, only the strains at the center of the column have
reversed. As the load increases, the reversed region spreads from the
center of the column toward the ends.

The simplest approximate solution is obtained by the use of a
single. sine term which satisfies only the conditions at the center of
the column. If '

y' o= y'c sin nx!

substituting this deflection shape in the differential equation (C28)
and realizing that reversal occurs immediately at the center yields the
following spproximate solution for the deflection of the center of the
column; . '
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)

Ve = 1+< . B

(c30)
PrM

The deflection of the center line of the column as P exceeds Pp 1is
given in figure 9. Also shown are the results obtained by again
assuming Eg ='%EL with two, three, and five sine terms for the deflected
shape of the column end by satisfying the eguilibrium and stress-strain
relations at the corresponding number of equidistant points in the half-
length of the column. All these solutions indicate that the maxImum
load on the column will approach the reduced-modulus load for large
deflection because of the gssuméd linearity of the stress-strain curves.
The solutions further indicate that relatively few terms in the seriles
are required for an accurate solution of the load-deflection history

of the column. -

Analysis of H-section column with a nonlinear stress-strain curve.-
The finite-deflection analyses of both the spring-supported column and
the H-section column have indicated that, for a constant tangent modulus
in the plastic range, the maximum load for a colwumn approaches the _
reduced-modulus value at a large deflection. In order to make a study
of the effect of a continually decreasing tengent modulus on the strength
of an H-section column, a finite-deflectlon study was made by using a
more realistic stress-strain curve. The Ramberg-Osgood representation of
the stress-strain curve (reference 7) was chosen for the study because
it fits closely a wide class of materials used in aircraft constructilon.
The Ramberg-Osgood representation of the relstion of stress and strain
states that the straln is -

e =2+ K(g)n o - (c31)

E -
where E, K, and n are chosen so that a suitable fit 1s obtained to
the stress-straln curve. A recommended procedure for determining the
three parameters is suggested by Ramberg and Osgood. The quantity E
should be the initial elastic modulus, and if

l-n
_ 3(%1
K“?(E)

then oy 1s the stress at the intercept of the stress-strain curve and
a line through the origin with a slope 0.7 of the elastic modulus. The
stress o7 1s approximately the yield stress defined by the O.2-percent


http://www.abbottaerospace.com/technical-library

NACA TN 2267 ' ' 31

offset. The quantity n 1is a measure of the sharpness of curvature of
the stress-strain curve at the yield stress. Smoothly verying stress-
strain curves that are typical of stainless steel have values of n
between 3 and 5. The values of n for the aluminum alloys are about 1O.
Very large values of n are assoclated with the magnesium alloys and
the mild steels. .

The static and geometric relations are the same as those used in
the analysis of the H-section with constaent tangent modulus. Because
of the form of the Ramberg-Osgood stress-strain relationship, strain in
terms of force is more convenient. If the strains are increasing, then

T é(‘i)l'n(%l)n
L=% T\AE iE

-

where P; 1s the load on a straight column for which the average stress
is o1, the yileld stress. Substituting these strain-force relations
into the geometric and static relations and meking use of the followlng -
relatlons

(c32)

D 22 n-1
sl X i £=1+§n<P_T)
b L ]_I_LQ ET 7 Pl

ylelds the following differential equation:

3n/PT

ay: s P ., 3/ DR (1 penym
ax' )2 " Py )n A Eg(Pl) lzl vey')t - (L -2y ):l} (€33)
Py T (Pl

The strain-force relatlons when reversal has taken place are

-
B A Y e\ i
L™ A ~ 7 AE\P
r (038)
eR=§31+§.P_l_2_(.Fl)£ﬂf
E TTRE T )
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These relations give the following differential equation for the
reversed region:

n
dey‘ + ﬂ2 - i y! + §38_ (%)n(l I ny)n - EgFil).I'E'Vj

d(xr)E P 3n n Pl
T

(c35)

After the maximum load in the column is reached, there are sections of
the column for which the strains on both sides of the column are
decreasing. The strain-force relations in this region are

\

—— 1n
er = EEE + 3 EQ{E(FL)reV
L™ T AE P1
" o (c36)
e - 2R, 3 PLl2(M)rey
R™E "T7TE 7

SRR

The differential equation which is spplicable in this region is

, 2. 2(FL)rer] _ [2(R)red]
dc(?)e R G?‘L . (Plrﬂ ) [( Pzrﬂ To o
Py " 7<P1) | “ |

The solution of the system of differential equations was carried out by
the same procedure used in the analysis of the H-section with a constant
tangent modulus. A solution was assumed in the form of a finite series
of odd sine terms. Substitution of the series into the appropriate
differential equations and satisfying them exactly at an equidistant
number of stations slong the length of the column yields a system of
algebralc equations. The system of equations is nonlinear because the
moduli sre a function of the displacements.

© The simplest approximate solution is -obtained by substituting
¥y = y'e sin nx!

in the differential equétion (C35) and satisfying the equation at the

center of thé column. The nondimensional relation between the center-line -
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displacement and the applied load is then obtained from the equation

nfP\* 28 , P 28 _, |PT  3n/Pr\B _)n
(1 + 2y's) (ﬁ) +§-Ycﬁ—?¥c{zlsl‘+-7—(§i):l+€f_ (c38)

in which use 1is maede of the fact that reversal occurs at the center of
the right slide of the column at the tangent-modulus load. Solutions of
equation (C38) for various values of n and for various ratlos of the
tengent-modulus load to the yleld-stress load P; are given in figure 6.
The same nondimensional results are obtained in the analysis of the
spring-supported column.

In order to study the error due to fixing the shape as a single
sine curve, solutlions were made with three sine curves. These solutions
were made for n = 2 and 10 and for a ratio of tangent-modulus loaed to
yield-stress load of unity. Figure 10 shows a comparison of the results
of these calculations with those obtained. for a single sine curve. The
comparlison indicates & slight reduction in the maximum losd and an
increase in the deflection at which maximum lozd occurs.

The amount of the difference between the tangent-modulus load and
the reduced-modulus load which the H-section column could actually sup-
port were obtalned from the analysis summarized in figure 6 and are
given in nondimensionsl form in figure 7 for verious values of n. As
increases, less of the difference is developed for columns critical
in the plastic range.

The reletion of the maximum losd to the tangentqnodulus load is
summarized in figure 8 for various values of n and for columns which
are critical at various stress levels.

In figures 7 and 8, the dashed parts of the curve were not calcu-
lated and are estimates of what would be obtained from the anslysis
using the Ramberg-Osgood form of the stress-strain relation. These
dashed parts of the curve are trivial and misleading and are caused by
the fact that the anslyticel form of the stress-strain curve has no
truly linear elastic region. In the elastic region, no difference:
should exist between the ‘maximum load, the tangent-modulus losd,
and the reduced-modulus load (large deflection effects excluded).
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Figure 1.~ Spring-supported column model and force-displacement diagram for
each spring system.
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Figure 2.~ Column behavior at criticel loads.
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o Left spring system
o Right spring system
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Figure_ 3.~ Four force-displacement combinations for the spring systems.
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Figure 4(a).- Load-deflection curves for spring-supported
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columm model with
initial deflection. ’
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Figure U(b).- Detail of figure L4(a).
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Figure 5.~ Ramberg-Osgood nondimensional stress-strain curves.
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- Figure 6.- Load-deflection curves for idealized H-section columns having
tangent-modulus loads at various stress levels.
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Figure 7.- Relation of meximum load to reduced-modulus load and tangent-
modulus load.
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Flgure 8.~ Relation of maximum load to tangent-modulus load.
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Figure .- Load-deflection curves for ldealized H~section column with
constant tangent modulus in the plastic range.
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Figure 10.~ Comparison between one- and three-term sine-series solutions
of load-deflection curves for idealized H-section column.

NACA-Langley - 1-22-51 - 975


http://www.abbottaerospace.com/technical-library

