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By George P. Wood and Paul B. Gooderum
SUMMARY

A genergl method for calculeting the initial tangents of contours
of constent density, pressure, and Mach number behind a curved, axially
symmetric shock wave has been derived. Initial tangents of density con-
tours are obtalned that falr well into contours determined from inter-
ferograms for the flow about a sphere at Mach number 1.62. Streamlines
and contours of constant Mach number throughout this flow field have
also been deduced from contours of constant density obtained by inter-
ferometry. The flow fleld obtained from the shock wave by the method
of characteristics is compared with that obtained by Interferometry.

INTRODUCTION

Varlous phases of the problem of flows behind curved shock waves
have been treated theoretically by many investigators. Crocco, in a
pioneer paper (reference 1), investigated two-dimensional flow behind -
a curved attached shock wave. Significant contributions were made later
by Maccoll, Drougge, end Guderley. Maccoll (reference 2) calculated
the flow around varlous bodies with detached shock waves at neer-sonic
velocities. Drougge (reference 3) calculated the pressure distribution
on conical tips with detached shock waves. Guderley (reference 4)
investigzated the transition between flow with a detached shock wave and
flow with an attached shock wave. Thomas, in a series of papers of
which reference 5 1s representative, considered the curvature of attached
shock waves and the pressure distribution on bodiesgs behind attached shock
waves. Lin and Rubinov (reference 6) obtailned general relations for flow
behind curved shock waves and developed a method for calculating the sub-
sonlc flow between the shock wave and the body. This method was applied
by Dugundji (reference T) to calculate the pressure distribution along
the axis between a sphere and a shock wave. Busemann (reference 8)
reviewed analytical methods for the treatment of two-dimensional flows
with detached shock waves and discussed the main features of mixed
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subsonic and supersonic flows. Ferri (reference 9) presented a method
for obtaining the pressure dreg in two-dimensional or exially symmetric
flow behind a detached shock wave when the location and shape of the
shock wave are known. Moeckel (reference 10) gave an approximate method
for predicting the form and the location of detached shock waves.

Experimental investigations of the flow behind curved shock waves
include the investigation by Ladenburg, Van Voorhis, and Winckler
(reference 11) who determined the density contours around various axi-
ally symmetric bodies at Mach number 1.7. The present authors in refer-
ence 12 presented data on the shape and location of detached shock waves
on cones and spheres over a range of Mach numbers from 1.17 to 1.81. In
reference 13 interferograms of the flow around a sphere at Mach num-
bers 1.30 and 1.62 were evaluated; the contours of constant density
ratio in the flow field around the sphere were determined. However, the
initial tangents of the density contours could not be obtalned accu~
rately from the interferogrem by the method of analyzing interferograms
that was used in reference 13.

The purpose of the present paper ‘is to present a method for calcu-
lating the initial tangents of the contours of flow variasbles immedi-
ately behind a curved, axislly symmetric shock wave when the location
and shape of the shock wave are known. This method was used in the
present paper to obtain the initial tangents of the denslty contours in
the flow field around a sphere at Mach number 1.62. Streamlines and
contours of constant Mach number in the flow behind the shock wave have
also been obhtained from the density contours of reference 13. The flow
field in part of the supersonic region behind the shock wave has been
computed by the method of characteristics (reference 14) and the results
compared with those obtained from the lnterferogram.

SYMBOLS
a veloclty of sound
A cross-sectional area
b coordinate 1n plane of binormal
Cp specific heat at constant pressure
cv specific heat at constant volume

D diameter of sphere
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log

Ry

distance to focus of stresmline directions due to curvature
of shock wave

logarithm to base e

Mach mumber

coordinete normal to direction of streamline
pressure

radius of curvature of streamline

radius of curvature of shock wave

entropy

change In entropy (S - SQ)

coordinste tangential to direction of streamline
total taper distance of element of streem tube

taper distance of element of stream tube in plane of
binormal

taper distance of element of stream tube in plane of
normal

veloclity
coordinete in direction of axis of symmetry
coordinate normal to axis of symmetry

ratio of specific heats C;p/cv)

angle of deviation of flow across shock wave
angle of shock wave

angle between direction of x-axis and initial tangent of
contour of constant Mach number

angle between direction of x-axis and initial tangent of
contour of constant pressure
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Op angle between direction of x-axis and initial tangent of
contour of constant density
IT ratio of stagnation pressures (Ps /PSO)
o} density
o coordinate along shock wave
Subscripts:
8 stagnation
0 free stream
SHOCK WAVE

In order to apply the method of calculating the initial tangents,
that 1s developed in the present paper, the location of the shock wave
and the variation along the shock wave of both the slope and the radius
of curvature along the shock wave mist be known. When the location and
the slope variation of the shock wave are known, the streamlines can be
obtained and the method of characterlstics can be used to determine the
flow field. The present section, therefore, is a discussion of the shock
wave, its first and second derivatives, and its radlus of curvature.

Figure 1, which is taken from figure U4(b) of reference 13, is the
interferogram from which the coordinates of the bow shock wave and the
other experimental results are obtained. This interferogram shows the
flow about a sphere at a free-stream Mach number of 1.62. The free-
stream stagnation temperature was 533.1° F absolute, and the free-gtream
density was 0.003501 slug per cubic foot. The rim shock wave from the
edge of the nozzle is shown in the upper left-hand corner of the inter-
ferogram. This shock wave is very weak, as the fringe displacement
across the shock wave is very small and the shock wave lieg within 1°
of the Mach angle. Because of the rim shock wave, however, and the near-
ness of the edge of the Jet, the portion of the bow wave of the sphere
between the rim shock wave and the edge of the Jet was considered to be
not sufficiently accurate and was not used (except for calculating one
of the initial tangents; namely, the contour of constant density ratio
of 1.5). The location of the portion of the bow shock wave between the
rim shock wave and a position near the axis of symmetry was carefully
measured and is shown in figure 2, where ¥y is the normal distance from
the axis of symmetry, x 1is the distance along the axis from the inter-
section of the shock wave and the axis, and D 1s the dlameter of the
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sphere. Because of the difficulty of making very accurate measurements
near the axis where the slope of the shock wave is very large, the part
of the shock wave near the axis has been shown as a dashed line.

The veriation of the slope of the shock wave is given in figure 3.
This curve was obtained by first reading y at values of x that
increased by steps of 0.1, and then determining Ay, the increment in y
for the given increment Ax 1in x. Next Ax/Ay was plotted against y.
The value of x was computed by finding the area under each small por-
tion of the curve. If the value of x so obtained checked closely with
the measured value of x, within gpproximately one part in a thousand,
then the curve of Ax/Ay was taken to be correct. If the check was not
close, the curve was refaired until a close check was obtained. Then
points were read from the curve of Ax/Ay and were used for plotting
the curve of dy/dx shown in figure 3.

The variation of d?y/dx2 wasg obtained in a similar menner. The
Ax ' Ay
quantity -—=——— was plotted against —= and the curve was refalred
Aoy /ox) bx
until integration gave the original value of X hin approximately
X

g;#
three parts in a thousand. The variation of —‘E;E)D with '5 is
gshown in figure L.

From the variation of the first and the second derivatives, the
variation of the radius of curvature of the shock wave was calculated.
The radius of curvature obtained by this method, however, is not very
accurate. Errors in the location and in the slope of the shock wave are
magnified in the second derivative and, therefore, in the radius of curva-
ture. In order to reduce the uncertainty in the radius, the shock wave
on the other side of the axis (most of which is not shown in fig. 1, but
which is included in the original interferogram from which fig. 1 was
taken) was measured and its derivative and radius were calculated and
plotted. The radius agreed falrly well with that obtained for the other
glde of the axis. Furthermore, with a mechanical device and a very large
reproduction of the interferogrem, the normals to the shock wave, the
envelope of the normals, and then the variation of the radius of curva-
ture along the shock wave were obtained. These results agreed rather
well with the calculated values. A curve showing the variation of the
radius of curvature along the shock wave that results from fairing
through the measured points and the calculated points on both sides of
the axis is given in figure 5.
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RESULTS AND DISCUSSION

Initial Tangents of Contours of Flow Varlables

In reference 13 the interferogram of figure 1 was analyzed to
obtaln the contours of constant density behind the shock wave, These
contours are shown in figure 6, which is taken from figure 5(b) of
reference 13. As was explained in reference 13, the analysis did not
give accurately the contours in the region immediately behind the shock
wave. For that reason there was a gap in figure 6 between the beginning
of each contour and the known theoretical point where the shock wave and
the contour should intersect. The purpose of the present section is to
£i111 in these gaps by giving the theoretical values of the tangents of
the contours at the shock wave.

The analysis for finding the initial tangents of the flow vari-
ables is given in detail in appendix A; however, the method is
described briefly in the present section. The pressure immediately
behind a curved shock wave varies along the shock wave. The rate of
variation is obtained by differentiating along the shock wave the well-
known equation for the pressure ratio across an obligue shock wave. The
general rate of pressure change in any direction at any place in the
flow field - including the one along a shock wave - may be represented
by the two basic pressure derivatives, namely, in the direction of the
tangent to the stream tube and in the direction of the normal to the
stream tube. Therefore, the rate of pressure change along the shock

wave is (appendix A)

18P _ iog(c-5) QI8P gyn(e.5) 28D (1)
do- St on

Equation (1), with known values of ¢, 8, and 9—}9542, is one rela-

tion between the two pressure derivatives. Another relation 1s also
needed.

The tangential rate of change of pressure results from the tangen-
tial rate of change of velocity that is necessary to meet the require-
ment of continuity when there is a change in the cross-sectional area
of the flow, and is given by Newton's second law of motion as
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or

d log p _ yM2 D log A ‘ )
ot 1 .M ot

The other basic rate of change is normal to the flow and balances the
centrifugal force

op _ _ o
on R
or
0 log p _ M2
an - = R (3)

An equation that relates the two pressure derivatives can be
obtained from equations (2) and (3) by finding the relation between

é—%%5~A and R, as follows: At every point on the shock wave, the

local slope of the shock wave determines the Initial streamline direc-
tlion behind the shock wave. Inasmuch as there is always a point at the
shock wave where the streamlines have no initial curvature, that point
may be used for orientation, and the initial tangents of the streamlines
may be considered rather than the streamlines themselves. Because the
shock wave is curved, successive initisl tangents of the streamlines
behind the shock wave are not parallel and, therefore, if extended, con-
verge to a focus (or in larger extent to an envelope) in the focal dis-
tance F (fig. 7). If the streamlines were straight, the focal dis-
tance F would determine the rate of change of cross-sectional area of
the stream tubes and the rate of pressure change along the stream tube.
Contours of constant pressure would be concentric circles around the
focus (or the evolutes of the envelope). Since the pressure at the
shock wave i1s known and since the entropy is known and is constant along

a stream tube, there are two Iindependent ways of calculating the rate of .

pressure change slong the stream tube, one from the given pressure con-
tours and the other from continuity inside the stream tube. These two
methods, however, will agree for the tentatively straight streamlines
only when the curvature of the shock wave and the distance from the axis
of symmetry happen to have, fortuitously, the necessary values for agree-
ment. In all other cases, & finite initisl curvature of the streamlines
hes to modify the rate of change of area and to shift the contours of
constant pressure in such a way that the two methods give the same
result. In figure 8 the initial curvature of a streamline is indicated.
In appendix A the detalls are given of finding the relation between the
initial radius of curvature R of the streamline and the rate of change
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of area of the stream tube. This relation is then used with equa-
tions (2) and (3) to obtain the following equation between the two pres-
sure derivatives:

0 log p _ M - 13 logp  sin as
SR - -yMPtan (e - 8) St S ese(e - 8) =] (4)

Equations (1) and (4) form a system of two equations in two
unknowns and can be solved for the unknowns, the pressure derivatives.
Then the effect of entropy variation along the shock wave can be taken
into account to obtain expressions for the density derivatives and the
Mach number (or temperature) derivatives.

When the two derivatives of a flow variable are known at a point
on the shock wave in perpendicular directions, they can be added vecto-
rially to find the direction of the maximum rate of change of the vari-
able. Normal to that direction, then, is the direction of zero rate of
change, which defines the tangent of the contour of conmstant value for
the variable under considersation.

The final results are given by the three following equations, in
which 6 1is the angle between the direction of the x-axis and the inji-
tial tangent of the contour of constant value of the varlable indicated
by the subscript on 6 (the angle 6 is considered positive when meas-
ured counterclockwise from the direction of the x-axis):

(tan 9 8) %g sin(¢ - 8) sin & + —ig cot(e - B) §7§%§L2 + %S
D~ _ 7
tan(e - B) Ry M -1 tan(e - 5) o log p 38

Sr-sin(e - 8) sin & + E S S

(5)
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% sin{e - 8)sin 8+—}1-42— cot(s - 8) Q_}M+B_B

tan(6p~ &) y de de
ten(6 -8) Ry M1 d log p, 38 y-.11- (M- 1)tan?(¢ -5) d log IT-
in(6 - 8)sin & tan(e - & -
7 ° n(¢ - 8)sin &+ 7I(T2 an (6 - 8) S S o ran(c ) -as
(6)
By B} 1 _g) 2 log D 38
— 5 sin(6~8)sin &+ Y cot (6 = 5) St
ten(e - 8) —&’- siﬁ(e- 8)ein 6+EI’;‘21' tan(s - 8) Qlogp, 08, 1- U - 1)en?(s - 8) 3 log IT
Y
7

J€ g€ yMetan (¢ - B) de
_ (7)

The points on the shock wave where the contours of constant density should Intersect the
shock wave are lmown from the shock-wave angle, The directions of the tangents of the density
contours have been calculated for these points by equation (6). The repults are shown in the

sfollowing table, which gives the value of the density ratio for a contour, the point on the
shock wave where the contour should meet the shock wave, end the calculated values of 6 et .
that point:

Density ) 9

ratio, x/D p
p/Po (deg)
2.0 - 0.046 3
1.9 . 097 39
1.8 . 168 11
1.7 . 309 27
1.6 . 508 - =70
1.5 .823 -95

T4 NI VOVM
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The tangents are also indicated in figure 6 by the short, straight lines
that have been drawn through the shock wave. The initial tangents given
by the analysis fit well between the experimentally determined contours

and the known points where the contours should intersect the shock wave.

Streamlines and Contours of Constant Mach Number Determined
from Density Contours

The only known quantity in the flow field behind the shock wave,
except at the shock wave and ‘et the surface of the sphere, is the den-
sity, as given in figure 6. The values of the other state variables of
the gas are not immediately known because of the variation along the
shock wave of the entropy behind the shock wave. The streamlines, as
the contours of constant entropy, can be found, however, by a graphi-
cal method that is based on satisfying continuity along a stream tube.
The local cross-sectional area of a stream tube can be expressed, if
its entropy is given, in terms of known quantities in the free stream
and the local values of density and stegnetion density. The first
stream tube is constructed by teking the axis and the surfece of the
sphere as a streamline. Local values of density, as given by figure 6,
and the average value of stagnation density for the stream tube are used
to calculate local values of cross-sectional area. Then, adjacent
stream tubes are added in sequence. The method is described in detail
in appendix B. .

From the steamlines and the density contours, the other flow vari-
sbles can be found. In the present case, the contours of constant Mach
number were found. The results are shown in figure 9, where the density
contours teken from figure 6 are shown by the heavy solid lines, the
streamlines, by the light solid lines, and the calculated Mach number
contours, by the dashed lines.

Streamlines and Contours of Constant Density and Mach Number

Determined by Method of Characteristics

Contours of the flow variables in part of the Tlow field behind
the shock wave were calculated by the method of characteristics. The
part of the flow field for which results can be obtained is quite
limited in extent. The flow field is limited on one side by the sub-
sonic flow in front of the sphere and on the other side by the fact that
the location and shape of the bow shock wave are not known accurately
enough for use beyond the nozzle-rim shock wave. The method used was
that given by Ferri (reference 14). The only data needed for the calcu-
lations were the free-stream conditions, the coordinates of the shock
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wave (fig. 2), and the variation of the slope of the shock wave (fig: 3).
The calculations were made with the Bell Telephone Leboratories X-66T44
relay computer at the Langley ILeboratory. An attempt to obtain good
accuracy in the results was made by using fairly smell Increments

(Ay on the shock wave approximately equal to 0.04D) to give a network
of characteristics that had a small mesh and by reitereting each step
of the process. The results are shown in figure 10. Contours of con-
stent ratio of density to free-steam density are shown in figure 10(a),
where the contours obtained by interferometry are also reproduced from
figure 6. Contours of constant Mach number are shown in figure 10(Db),
which also shows the Mach number contours obtailned by satisfying conti-
mity, transferred from figure 9. Streamlines, or combtours of constant
entropy, obtained by the method of characteristics are shown in fig-
uré 10(c), together with those taken from figure 9.

The contours obtained by the method of characteristics and the con-
tours obtained from the interferogram do not agree very well. Actually,
however, the agreement is perhaps as good as might be expected. In
deriving an axially symmetric flow field from experimental measurements,
results that have an extremely high degree of accuracy are difficult to
obtain. In the present case, the results obtained by the method of
characteristics have some small percentege of uncertalnty because of the
finite size of the mesh of the characteristics network. The analysis of
an interferogram of axlally symmetric flow must also be made very care-
fully in order to obtain results in which the uncertainty is very small.
In reference 13, from which the interferometric results were teken, the
estimate 15 made that the uncertainty in the location of any contour
does not exceed plus or minus approximately one-half the distance
between the adjacent contours. This amount of uncertainty, which is
only about 3 percent, i1s just about equal to the discrepancy between the
results obtained by the two methods. :

. The fact that the streamlines are straight in the only region of the
flow in which the method of characteristics could be applied is entirely
fortuitous in the sense that the curvature of the shock wave and the
distence to the axis for this region are such that the streamlines are
straight.

CONCLUDING REMARKS

[=]

A method of calculating the initial tangents of contours of con-
stant density, pressure, and Mach number at a curved symmetrical shock
wave has been derived. The method gives tangents of density contours
that feir well between the contours obtained by, interferometry and the
¥nowvn points of intersection on the shock wave.

it e e ——— - W e e e e e 2
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The streamlines of the flow about a sphere at Mach number 1.62 have
been deduced from experimentelly determined density contours by satis-
fying the requirements of continuity elong a stream tube.

Part of the flow field around the sphere was also obtained from a
knowledge of the shock wave by applying the method of characteristics.

Langley Aeronauticeal Laboreatory ‘
National Advisory Committee for Aeronautics
Langley Field, Va., April 12, 1951
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APPENDIX A

CALCULATION OF INITIAL TANGENTS

OF CONTOURS OF FLOW VARTABLES

The problem is to find the tangents of the contours of constant
pressure, density, and Mach number immediately behind an axially sym-~
metric curved shock wave. The solution given here was obtained by using
ideas and suggestions of Dr. A. Busemann of the Langley Laboratory.

A curved, axially symmetric shock wave in a uniform, steady, super-
sonic free steam 1s considered. The location of such a shock wave can,
because of axial symmetry, be completely given by two variables, and
the shock wave can be drawn as a curve in a meridian plane. The local
slope of the shock wave with respect to the free-stream direction of
flow, together with the state of the gas in the free stream, completely
determines the initial state of the gas and the initial tangent to the
direction of the streemline at any and every point on the downstream
side of the shock wave. In particular, the pressure is given by the
equation

2y

. . ,
P% = 4T Mozsinae' - ——-; 1 (A1)

Because the shock wave i1s curved, the local slope, the flow variables,
and the initial tangent to the streamlines very along the shock wave.

In particular, the rate of change of pressure along the shock wave 1is

obtained from equation (Al) as

d log p _ 95_27Mb2sin'€ cos € (A2)
do do 7}402511126 = 2 5 1 :

Another way of viewing the pressure change along the shock wave is
the following: The rate of pressure change in any direction at any
point in a flow field - for example, along a shock wave - is the sum of
the components in that direction of the two basic rates of change. One
of these basic rates of pressure change lies in the direction tangent
to the direction of flow. This tangential rate of change results from
any tengential rate of change of velocity that may be necessary to meet
the requirements of continuity when there is a change in the cross-
sectional area of the flow. It is given by Newton's second law of
motion as

op _ v
St - Vst

e e e e ——— o e ¢ et v v e JRp— e =
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By using the relations

Jp
M2=v2~a—P
and
72
: W= S5

the equation can be written =as

o log p _ 7M? d log A
ot 1 - M2 Ot

(A3)

The other basic rate of pressure change is normel to the flow
direction, balances centrifugal force, and is

dp _ _oP

on R
or

O logp _ _ M2
- = R (AL)

At any point on the éhock wave, the rate of change of pressure along the
downstream side of the shock wave is the sum of the components along the
shock wave of Op/dt and Op/dm, that is,

Q198D _ og(e - 5) SLOB DR, cin(e - 5) 2 108D (45)
do o9t on
Another relation between é_l?ﬁLB. and é-lgg-g is needed. This rela-

dt on
tion can be obtained by finding first & geometrical relation between

§_%§E;A and R, the unknown factors in equations (A3) and (A%). Con-

sider Pirst a section of the flow &s seen in & meridian plane (fig. 7).
Because the shock wave is curved, the initial tangents to the stream-
lines behind the shock wave change along the shock wave. The initial
tangents, therefore, if extended, converge to an envelope or focus, in
the focal distance F. In the general case, the stream tube is not
identical with the extended initial tangents that converge in the dis-
tance F, since the stream tube is curved in the meridian plane. If,
however, the streamlines were straight, the .distance F to the focus
would be one of the factors that determine the rate of change of area
of the stream tube, as this distance would define the taper of the
stream~tube area in the meridian plane. The taper of a stream tube as
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seen 1n & meridian plane is, however, not the only taper. Consider an
element of an annular axlally symmetric stream tube as shown 1n fig-
ure 1ll. The cross-sectional area of the element is

dA = dn db

The element tapers not only in the meridian plane, which 1s the plane
of the normel, but also in the plane of the binormal. In other words,
both dn and db vary along the stream tube. The quantity db is
proportional to y as shown in figure 11. If the cross section under
consideration were moved away from the shock wave, y and db would
become larger. If the cross sectlon were moved in the opposite direc-
tion, db would become smaller at a rate that would meke it vanish at
the axis of symmetry. The side of the element in the plane of the
binormal therefore would taper to an edge or focus at the axis In the

distance -Ty = Ei%%g'

The total taper of the element of stream tube is made up of the
components in the plane of the normal and in the plane of the binormal,
The total taper of the element could then be considered as having an
envelope distance T, and would be given by

==+

dA
w3 (86)

=~
bffi

L
i
(wvhere straight streamlines in the meridian plane are assumed). .

If the local Mach number in the element of stream tube were unity,
the cross-sectional area of the element would be constant, dA/dt would
be zero, and the normal and the binormal tapers would be opposite and
equal (F = -Tb). At a Mach number of 1 behind the shock wave, however,
d5/dc is almost equal to zero for a perfect gas and the distance F 1is
not equal to -Ty. In fact, F 1s gréater than -Typ. In order, there-
fore, for the taper in the plane of the normal to have the correct value
of

— J
~Tp = sin o

the streamline must have en Initial concave curvature at the shock wave,
as shown in figure 12. -The initial taengent on one side of the stream
tube and the tangent at the opposite point of the stream tube, which is
at a distance dt from the shock wave, are extended and intersect at
the taper distance T,. For a Mach number of 1 the requirement is,
therefore, that

Tp = -Tp



http://www.abbottaerospace.com/technical-library

16 ' - NACA TN 2411

and the streamlines must have a curveture to meet this requirement. 1In
the general case, also, of Mach number other than unity,. the envelope

distance glven by

at the shock wave is not the correct taper in the plane of the normal,
but is either too large or too small, and the streamline must have an
initial concave or convex curvature. The component of taper in the
meridian plane is defined by.a different pair of tangents from the ini-
tial tangents. The taper is always Tp, as shown, but in the general

case Tp 1s not equal to -Ty.

The relation between the radius of curvaeture R and the taper
distance T, can be obtained from figure 12, as follows: O variles
‘both along o and along t. The angle subtended by a4t is %'BE dt.

The angle subtended by dn -is - 2—56 do + % dt. The two triangles

with g—i dt as vertex angle are similar, therefore

a5
at BFrThzgs 20 g
R T T

or
1= - 8) L -3) &
7= tan(e - &) i + sec(e - B) To

This relation can now be used to obtain the relation between 1/R and

d log A
ot

Bquation (A6) can.now be rewritten as

_];. = .l - L = e d'A‘ + Sin 6
, T, T Ty ‘ A dat y
Therefore
1 _ ~dA , sin & as
5 tan(e - B) (A a t oy )_-i—/sec(e ~ ) o

=tan(e-t§) E‘M+Bi§5+csc(e-5) i*i] . (A7)
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Equation (A7) is the relation between 1/R and %g—A that was
needed to obtain another relation between the pressure derivatives by
using equations (A3) and (A4). If 1/R as given by equation (A7) is
substituted in equation (Al), then

d log p - sin 5 da as
—_ s = t € = O - + - =
o yM=tan( ) 5 e csc(e - B) i (A8)
It o log A ;:g A is eliminated between equations (A8) and (A3), then

d log D 12 sin & . M® - 10 log p s
—_— = - t € -8 + + € - 8) —
on 7 tan( ) y M dt cse( ) do

(29)

Solution of equations (A5) and (A9) for the two rates of change of pres-
sure gives

9 log p _ 7’1”121"3112(‘5-5) gin & , 1 cot(e - &) d logp .
ot 1 - (M - 1)tan®(6 -8)| 7T 2 sin(e - 8) do

csc(e = 8)%—2]

d log p _ -M2tan(e - ) sin6+M2-18ec(€_5)dlogp+
on 1- (f - Dtan(e-8) | T e do

ds’
~ 5)a8
csc(e )

By use of the relations

n =y sec d

=+
i
palpa
@ |Q

and

& e

- o
Yo g2



http://www.abbottaerospace.com/technical-library

18 NACA TN 2h11

the pressure derivatives can be written

0 logp _ 7Matan2(€ - 8) tan & +
% 1 - (Mz - l)tanz(s - 3)
1 _n_cot(e—B)Blogp n . -68—5- A10
2 Fsm(e o) de R ool %5 (A10)
o log p _ —yMPtan(e ~ 8) tan & +

dlogn j _ (M2 - 1)tan2(e - 8)

¥ -1n dlogp, n . )8
-y o sec(e - B) YR R, csc(e 6)86:] (A11)

The next step is to find the direction in which dp 1s zero. This
direction is that along which the components of the tangential and the
normal pressure derivatives are equal in magnitude and opposite in sign.
If 6p 1is the angle between this direction and the x-axis, then

tan (ep - 8) is given by the ratio of o log p to _-_8__1&3_9_. Therefore
ot on

> 1 o logp , 38
ten(ep - 8)- 78111(6 - 8) sin & +7—Me—cot(e - 8) SSER. 8

tan(e - B)

By w -1 dlogp . 3%
75111(6-6) sin & + 2 tan(e - &) S +-a—€-

(A12)

The problem that has been solved herein for axially symmetric flow
has previously been solved by Iin and Rubinov (reference 6) for plene
flow. Reference 6 also gives the fundamental equations for conservation
of mass, momentum, and energy in axially symmetric flow. As a check on
the results obtained in the present paper, equations (AlO) and (All),
the present authors have done the following: By starting with the
fundamental conservation equations for axially symmetric flow as given
in reference 6, and by using only algebraic menipulation, as was used
in reference 6 for the plane case, expressions for the two pressure
derivatives were obtained. These expressions were identical with those
derived in the present paper as equations (A10) and (All).
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The expressions for pressure derivatives are converted into
expressions for density end Mach number derivatives by taking into
account changes Iin entropy:

AS/c
P /v‘p7
AS
log p=—+7 logop
v
But
oAS = -(cp - cy) log IT
Therefore

log p = -(y - 1) log IT + 7 log p

0 logp _101logp L2-1 d log IT

ot 7 ot 7 ot
Tangent to a streamline, éﬁ%ggLEI 1s zero. Therefore
2
o log p _ Mtan® (e - 5) tam & +

?Tt 1= (# - 1)tan®(e - 8)

cot(6 - 8) 0 log p + 2 cac(e - ) )

vl Al
71'12 R, sin(e - B) de Ry Y (A13)
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Normal to a streamline,

Blogp_;alogp_'_‘y-lalogn

dlogn 70 logn Y Jdlogn

l__alogp+7~lcsc(€_5)£a log TI
790 logn Y Ry O¢
- - Mten(c - 5) tan6+M2-l£sec(e-6)§-—;‘—°§—P-+
1- 0f - Ltan®(c - ) N Ry €
%csc(e-ﬁ) %%:,4-2—;—%73% csc(e - B) a—%:ig- (A1k)

Equations (A13) and (A1) give the density derivatives tangent and
normel to a streamline. Figure 13 shows the variation of the two deri-
vatives with x/D. ' )
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The angle of the contour of constant density is then given by the equation

Tt NL VOVH

Ry 1 o log p, 98
ta.n(ap—B) 5 sin(e ~8) ein a+;?cot(e-a) —. 'S
tan(6 - 8) 2(c _
% in(e-8)stn 84X =L tan(e-p) 2108 P, 36 _7-11- (M -1)tan?(c-B) 3 log IT
y e % 3 7 Pran(s -0) 2
| (A15)
The verietion of 6, with x/D 1s shown in figure 14, Furthermore
- 7-1
Pg “P(“Le—lﬂe)
aend therefore
1+ 7;11-12
d log M = (4 log TI - 4 log p)
M |
Consequently the two Mech number derivatives are
71 )t 2(¢ -
BlOgM=_ (1+ 5 M Jtan® (¢ - 8) sen & 4 L icot(s-a)alongrg_csc(e_a)éé
3t 1 - (12 - 1)tan?(s - 8) 8 B sin(s - 8) ¢ By de

12
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Y -1
1 L@)t -8
Blong(+ 2 sa(s - 8) te_ntﬂr-r?-13%0(6__a)alongr
d31logn 3 (4 . 1)ten?(s - ) M B 3
7 - 1
o 3% L+ 2 l n 1 d log IT
— cec(e - B)E2| + 2
de VM Bv sin{c - 8) de
Then
Ry 1 d log p 3B
tan(GM—B) T’ sin(e -B) sln 5+-?TE2- CO‘t(G— 6) _SG_—+$
tan(@ - 5) %,1 sin(e - &) ein 6+——l'52 =L tan(q - 8) o logp p+§§+l" (L@-l)tang(e-a) 0 log IT
MW as ¢ 7M?tan(e- 3) 3¢

(416)

For use in the final equations (All) to (Al6), the value of € for e given value of p/po
was found from the equation

Ll'ei/p:-l 2
(e - (et 5

Then the corresponding value of x weas found from figure 3, ¥, from figure 2, and R, from

gin¢ =

142 ML VOVN
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figure 5. The value of n 1s glven by n = y sec 8. The value of M
was obtalned from the equation

2+ (y - 1) L10251n26

Me = csc?(e - B)

2yMp®eine - (7 - 1)
and the value of &, from the equation

7Y+ 1

2 M02

cot 8 = tan ¢ 5 -1 (ALT)
My2sine - 1

From the theory of oblique shock waves, furthermore,

D 2y 2_ .2 7y -1

= = =7 sine - Al8
Po ')'+lMO y + 1 ( )

7l 7 e

- 2 2 -1 -

y + 1\7-1 My=sin“e 4 1 7-1
II = 5 o (A19)

1+ 1—2'—1-Moesin2€ 7Moesin26 -

2

The derivetives with respect to ¢ that appear in equations (Allk)
to (Al6) were found by differentiating equations (ALlT) to (Al9):

o (y + l)MO}"'sin26 (Z—;—];)Moesecae

ita) 2
= = gin“d - + secce
de (Mogsinee - 1)2 MgPsin“e - 1
2y 2sin € cos €
d log p _ Mo
dg 7Moesin25 _7 5 1
d 1L
ngII= 7271M025inecose 212 - 5 1 5 -
- since _2 _ 2
My =Tt My©sin®e
1
71'102sin2<-: _rc-t

2
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APPENDIX B
DETERMINATION OF STREAMLINES AND FLOW VARTABLES FROM DENSITY

The flow field behind the curved shock wave (fig. 2) is rotational.
The varietion in the slope of the shock wave is known (fig. 3), however,
as 1s the density in the flow field (fig. 6). The problem is to deter-
mine, from these known quantities, the streamlines and the velues of
flow varisbles other than density. The method that was used was to
choose an element of arc on the shock wave, to calculate the average
chenge in stagnation density across the element of arc, and then to con-
struct the stream tube step by step in such & way that contlnuity was
satisfied. The cross-sectional area of an annular stream tube 1s

A = 2xy An
Continuity requires that the equation

_ PoVo¥p(Anly

An
y oV

be satisfied. The velocity V can be expressed in terms of density and
Mach number by means of the equation

V = Mag g;

in which as/a is given by

% - (1+Z-im2)1/2

2

in which a5 is a constant and in which M 1is given by

2L
- 1 -
ps=<l+72 Mg)')'l

- .

where pg 1s a function of the shock-wave angle and free-stream con-
ditions. The quantity ¥y An can consequently be expressed in terms
of known quantities in the free stream, the shock-wave angle, and den-
sity behind the shock wave at An.

If one side of a stream tube is known, the other side can be
located. First, the other side is drawn approximately. Then, the
center line of the stream tube is drawn approximately. With the known



http://www.abbottaerospace.com/technical-library

NACA TN 2411 25

value of density and the measured value of y at the intersection of
the center line and a known contour of constant p/po, the value of An
is calculated. Then a line perpendicular to the center line is drawn
through the point. Where this line intersects the known side of the
stream tube, the value of y 1is measured. One half of the vertical
projection of the calculated An 1is added to this value of y to give
8 closer approximation of y for recalculating An. The new An is
used to obtain a better approximation for y and so on until the process
converges. '

The procedure was to obtain first the stream tube adjacent to the
axis of symmetry and the surface of the sphere. The other stream tubes
were than located by applying to each in turn the process described. A
check which showed that any cumulative errors were negligibly small was
the fact that the method gave deflection angles of the streamlines at
the shock wave that agreed well with the theoretical wvalues.
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nterferogram of flow aroun
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a sphere at Mach number 1.62.
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Flgure 2.- ILocatlon of shock wave.
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Flgure 3.- Variation of slope of shock wave.
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Figure 4,~ Variation of second derivative of shock wave.
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Figure 5.- Varietion of radius of curvature slong shock wave.

AN

1142 NI VOVN



http://www.abbottaerospace.com/technical-library

i

NACA TN 2411 33

Figure 6.- Contours, of constant ratio of density to free-stream density
obtained from interferogram. (From fig. 5(b) of reference 13.)
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Figure 8.- Initial curvature of a streamline.
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Figure 9.~ Streamlines and contours of constant Mach number derived from

continuity and contours of constant density.
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(a) Contours of constant ratio of demsity to free-stream density.

Figure 10.- Results obtained by method of characteristics and by interferometry.
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(b) Contours of constant Mach number.
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" Figure 10.- Continued.
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(c) Streamlines.

Figure 10.- Concluded.
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Figure 11.- Element of annular stream tube.
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Figure 12.- Sketch showing taper of element of gtream tube in plane
of normal.
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Figure 13.- Variation of density derivatives with x/D.
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(b) Normal derivative.

Figure 13.- Concluded.
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