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By Luigl Croccol
SUMMARY

It has been shown that the hodograph equations of motion can be
derived in a symmetrical form by the cholce of the velocity and the mass
velocity as independent variables. The equations obtained by the use
"of the velocity rotential, the stream function, or their transforms as
the unknown function are of the same general form and therefore can be
treated in the same manner.

Particular sets of solutions have been studied independently of the
ges law adopted and same properties of the series obtained by means of
these sets have been discussed. Approximate gas laws for which the
solutions of the hodograph equatlions can be easily found have been
briefly dlscussed.

The egquatlions have been further transformed so as to have as
independent variables the complex velocity and the complex mass veloclty.
Two new generalized potentlal functions can then be introduced that
satlsfy very compact equations. From these functions, all the
quantities concerned with the representation of the motion can be
derived by means of formulas independent of the gas law adopted. By
means of the generalized potential functions some developments have been
performed with the approximate Chaplygin-—Von KArmAn-Tsien law.

An approximate transonic method has also beesn suggested.
INTRODUCTION

From a purely mathematical point of view, the ordinary hodograph
equations for the stream fumction or for the velocity-potential function
and the equatlons relating them to the physical coordinates are
sufficlent for the study of two—dimensional isentropic flows. However,
from a more physical polnt of view they are not very elegant because of
thelr lack of symmetry in contrast with the symmstry of the corresponding
relations for the incompressible case.

lag presen‘l'; at Guggenheim Jet Propulsion Center, School of
Engineering, Princeton University, Princeton, New Jersey.
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Now, the equations that define the velocity potential ¢ and the
stream functlon ¢ are

¢n—0

Bo =

¥, =0 > (1)
‘q,'n:g—ow:m(w))

where the subscripts denote the differential quotients with respect to
the element of streamline ds or the element of normal dn, obtained
from ds by a counter—clockwise rotation of 90°, and w, p(w), and

Po = p(O) represent, respectively, the velocity, density, and stagnation

density. Equations (1), which are symmetricel with respect to ds and dn
1f p = Py? conserve thelyr property of symmetry for variable p I1f the

mass veloclty m 1s considered In some way the counterpart of w. If
the hodograph equations for @§ and V¥ (or for other functions) can be
expressed so as to meke w and m (instead of the relation connecting
them) appear explicitly, the equations will then have a symmestrical
form that can be Interesting not only from a formal point of view but
also from the fact that it can give rise to many possible developments,
some of which are illustrated in the present paper. In particular, it
1s posslble to choose as new independent variables the complex veloclty
and mass velocity and to Introduce a new generalized potential function
gatisfying a very compact equation from which ¢ and +V, their Legendre
transforms X and o, and the physical coordinates x and y can be
deduced by simple differentiations.
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HODOGRAFE EQUATTONS

The hodograph equations can be directly deduced as follows. If N
and S (fig. 1) are the normal and the subnormal to the stresmline
and 6 1s the direction of motion at a point P

z = x + 1y =o19(s 4+ W) (2a)

dz:eiel:d.S—NdB+i(dN+SdB)]'

= 01%ds + 1 dn) = eie(%? + 1 %}) (2p)

where the defining equations (1) have been used in the last step. It
follows from equations (2) that
d¢ = w(ds — ¥ 49)
(3)
d¥ = m(dN + S do)

These are two relations between exact differentials and therefore can be
written as

T

dS:Swdw+Sad.9=_3'—r-¢wdw+(_%r¢e+N)d9
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aN = Ny dm + Ny a0
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where m and w are two related variables so that the meaning of
partial differentiation wilith respect to m 1s

Since dS and 4N are exact dlfferentials, it follows from

equations (4) that
60

and
9d (1 o (1
e ') = Slavo )
go that
A y
Vol = o
g (5)
Sy, = -V,
J
But from equations (I)
mNm = ’qu or mNW = "'FW

R
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d

Hence, puttling -2 %—; equal to end performing the same

L
W,
transformation for m results in the following equatlons:

Q/

~

BL

=L
wgﬂv%a;

which yleld the well—¥mown Chaplygin equations for ¢ and V¥ in a
symmetrical form.

1
=0

Q/
<] H‘liif
N

¥ (®

7

It is seen from equations (4) that

S

L
wPlo £ ¥
/

1
Ng =2¥ -5

and, with the aid of equatiomns (5),

- Se=WNW+I‘I=§§'éﬂ—2
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These equations can be satisfled by putting, respectively,

S=XW s WN:XQ s N=G)_m_ ’ mS=_(DQ (7)
Equations (7) are consistant if
Xe = Wy 5 —uy = m)(,w (8)

a symmetrical system of equations in X and o very similar to
equations (6).

From equations (3) and (7) it 1s deduced that

A = w aX; — X5 a8 = a(wX; — X)

¥ = m doy — ag 46 = d(mwy, — )

Hence, to within an unessential constant,

§ = WX, ~ X
(9)

V= my, —o

which give ¢ and ¥ in terms of X and a>.3 The functions X
and o are of course the Legendre transforms of ¢ and V¥ considered
ag Punctions of the physical coordinates.

The functions X and ® are distinguished by the fact that once a
gsolution of equations (8) is known all the other functions concerning

2Equations (8) have already been written in the present form by
Bateman (reference 1).

3Relations (9) already have been derived in the present form by
Batemen and Pérés (references 1 and 2).


http://www.abbottaerospace.com/technical-library

NACA TN 2432

the phyaical representation of motion can be derived by simple
differentiations, ¢§ and ¢ heing obtained from equations (9) and =z
from equations (2) and (7). However, if ¢ and ¥ are the known
functions satisfying equations (6), integrations are necessary to deduce
the other quantities. After integration and determination of the
constents so as to satisfy equation (8), the following explicit
expressions for X and o are obtained from equations (9):

YAy ]
X = 3 , A O s -
Y @(wy e)d(W )+ - ‘/; . #(wy.,01 )sin(e — 6, )de;

W 1 r

0

1
“m ¥ (w,.,01)cos(6 — 61)d8; + C

mI‘ 0089+C251n9
r

1

t/n 1 1 [° 0, )sin(6 — 6)ds
®=-m ‘/;_/mr “lv’(wl,e)d-(nTl)"'i;‘/; ¥(wp,04)8 (6 — 67)d07

r

e
1
+ F; ‘/; @(wy.,69)cos(6 — 6,)d6; — C; sin 6 + C, cos &
r

vhere w. and 6, are two arbitrary reference quantities, m,. = m(vy) ,

and C; and C, are twa arbitrary constants with no influence on ¢

and V. It is readily deduced with the ald of equations (2) and (7)
that

s = oto|B0n0) | Yone) Py [ e eraf L
v 1T 1 /vy Pl.0) <"’J> 1/m, " )d(m1>

6 ] 16
-1 / ———¢(wr’ L) +1 ¥0w,01) e 1<191 - (C1 + 1Cp)
9 Wr mr
r

By differentiation,

dz = eie(gg+ 1 93)

W m

which agrees with equation (2b).
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- -

From equations (6) and (8) the hodograph equations for the
functions Y, w, ¢, and V¥ can be easily shown to be as follows:

w?z(m—g-w)-()+-2§—;-(=0 | (10a)
m%<w§)+§.%=0 (10p)
g‘.a _i B¢—+32¢=0 (10c)
mE) [T Aw)|
13 f1 3y, Pv
= = + =0 (104)
W m N1 2
@A) @

Each of these equatlions reduces to the Iaplace equation if m = w.

The following equations are obtained from equations (10) with w
as independent variable:

Rx X Px
WQ?;—"E+ (l—Mz)w-a—w+ (1— )SQE:O

:i‘g [1+M?—w—1c>g l—M?):,w-—+(l o) 62‘” =0

vaig-i-[l—b@—w%log (1—-142) w§§+ (l—Me) §g=0

v2:2—w-§+ (1+M2)w—+ (l- )&—O
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where M, the Mach number, i1s defined by (see equation (15))

1_M2=dlogm
d log w

For every particular law m(w); that is, for every p(w), explicit
equations are obtained. For M <1 (subsonic flow) the equations are of
the elliptic type; for M > 1 (supersonic flow) the equations are of the

hyperbolic type.

The hodograph equations are frequently transformed so as to
gimplify the second—order terms. Thus, if for % >0,

o B

W

.- (d_nﬂ 1/ (213 M)l/u 3 (g_lﬁ)]_/b,

dw/; we d log w awe
1\ 1/% 14 AN/ (12)
8 = w d(.ﬁ _ wﬁ d log m e
md(%;—)_ 2 d log w af-x
W
D
then
-@ = a.zdl
W
&1 g
m a2
w d(%) =—p2ar

e e TS s e T -—
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and equations (10) are

T ¢ =

transformed into

for @y, ¥y, Xy, and o, are readily shown to be

NACA TN 2432

B + Pog — 28, S8 L - 0 (13a)
d log B
IFXX-I-WGG-I-NXT_O (l3b)
d 1
><1X+xee+z>ckﬂ=o (13c)
d.loga.
Dt g — 20, —m/— =0 (134)
B¢*,1¥’-Bﬂv’*, X=-3-I"-X*,a.nd ® = amy,, the equations
o+ Pxoo = PxB (5
1 4a°p
¥y + ¥ llf‘-—=0
A *006 *de
? (14)
1 d%a _
Yoo ¥ Xegg % g T35 7
@y, + Oxg —cn*ada i>=0
AL e o2\ )

For

g—iﬂ < 0 analogous transformations can be performed with the
W

introduction of iy, @, end By defined in the same way as d\, a,

and B with —dm dIngtead of dm.
kind of an Integral mean between log w and log m.

It is seen that A represents some

Introduclng the
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1/2
sound velocity a = (—g%) / and the Mach mumber M = ¥ leads to the

following equations deduced from the Bermoulli equation dp + pw dw = O:

N
a2 ¢ w2 1108 W _ 4
d log p
dlogp:._Mg Y (15)
d log w
d logm
L2080 _ 4 R J
d log w
Then for M <1,
= V1 —M d log w (162)

o = (-"- V1 - MQ)l/ e (16b)

- (2 \/:P)l/ ® (160)

There 1s obtalned a corresponding set of equations for di;, o, and Bl
when M > 1 by simply replacing 1 — M2 by M2 — 1.

Approximate Methods

It 1s seen from equations (13) that for constant o or B these
equations reduce to the lLaplace equation. The first possibility 1is to
be rejected for subsonic motion because, as equation (16) shows, it
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gives p as an Increasing function of M. The second one 1s the well-
known EKdrmdn-Tsien approximation (references 3 and 4)

52=%°—\E—M2=\IK‘ (17)

where K 18 a constant. This equation reduces to the Chaplygin
approximation for K =1 (reference 5 and derived studies).

Some considerations that will be useful in a subsequent sectlon are
now introduced. With the help of equations (12), equation (17) can be
immediately integrated to obtain

T
ie = K(w% + H)
m

f (18)
Bgi = K(l + Hw2)
P /

where H 1s an arbitrary constant. Integrating now equation (16a) and
the Bermoulli equations (15), there follows, respectively,

A = log W + Constant = —log[t + —&— )+ Constant (19a)
2 ¥ m
1+ + Hw


http://www.abbottaerospace.com/technical-library

NACA TN 2432
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From equetions (15), for a real isentropic gas,
— o
2 r1 T
- r—
Po_ _ [, __¥ =1 2=2 2 (20a)
2 w2 2
p max
and
2 2
a (Po _ %1 (200)
w2\ 2,/ R a2

1/2

where Vmax = a0(7 2 1
2q is the stagnation sound velocity, and <4 1s the adlabatic index.

is the maximm veloclty at zero density,

A comparison between equations (18) and (20) i1s shown in figure 2
where the law, equation (18), is represented by a strailght line.
Chaplygin takes 1t as the tangent to the graph of equation (20)

at w=0, sothat X=1 and H= —]-'-2— In the KfrmfnTsien method*
ag

the tangent 1s taken at w = w_, the speed at infinity, so that

5 ™
2 - s
K=&Q§ (1—M,,2) = <1+-7-——1Mm2>7_ (1-Mw2)
P 2
-
P
KE:'%'_lE $ (21)
P Bo

i 2 21 —m2) J

l‘This method has been often presented in a less coherent form, as
the constents of equations (18) and (19) are determined for different

conditions, though the formula for the correction of pressure coefficlents
is not affected by this incoherence.
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Observe that for X # 1 the value of p at w =0 differs from the
exact stagnation density Po* It is eaglily seen that the value for KH

in equations (21) gives the slope of the true isentroplc relation at a
point corresponding to the conditions at Infinity, but, as thls depends
only on the value of XH, it is seen also that Kdrm#n's condition is
satisfied for every parallel to the tangent at w = w, (fig. 2), that

is, for the EKH value given by equation (21) but for different values

of XK. This suggests the possibility of improving the mean approximation
of the KArmAn—Tslen method by an appropriate choice of X. The KdrmAn—
Tsilen correction formuila for the pressure coeffliclent has then to be
modified. The modified formila, independent of the constant of
integration in equation (19a), is then

CPO
CP= = S 5 :
P P D P P
2,2 g|l2yr+ 2 L =K -2
p2 PO 2 2 PO
0 Po

which reduces to the Karmén—Tgien correction formula for the value of K
given by equation (21). Application of the modified formule. with some

2
P
value of K Dbetween —C)-é(l—Mmz) and 1 gives values of C, in
Peo

better agreement with experimental values.

For supersonic motion the hodograph equations reduce to the
simplest hyperbolic equation (wave equation) for «; = Constant
or By = Constant, with a; and B; given by equations (12) with —dm
instead of dm or by equation (16) with M2 — 1 1n place of 1 — M.
The second possibility is now to be rejected because the resulting value
of p dincreases with M. The f£irst possibllity gives

2
W

a2 1/2
cr,12= (“'—‘) =-‘%\]M2—l=\[1(_5_
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thet 1s, after im:egrai:ion5

m2 = Ky (Hl-w2)
2 it
e _-x (i- )
22

2. _Sathe”
2

Koy + o

The constants K; and H; can be determined so as to satisfy Kérmén's

condition:

2
5 - oo (P - )
Po

With « = Constant, equations (13c) and (13d) (modified for M >1)

reduce to the simple wave equatlon. The general solutlon can therefore
be represented by, for Instance,

x=Tf(a X 9) (22)

2Pérés has already indicated a law of this kind (reference 2).
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Other laws for which the hodograph equations reduce to the Laplace
equation for M <1 (or to the wave equations for M > 1) are imme—
diately deduced from equations (14), (or from the corresponding equation
for the supersonic case) as the laws which make one of the four quan—
tities o, 1/a, B, and 1/B, (or those corresponding for M > 1) linear
in A (or in Aj). For the true isentropic gas the curves of a, B,

1/a, and 1/B as functions of A are shown in figure 3. For w = 0,
A =—w, and o =P8 =1 the Chaplygin and the KhrmAn-Tsien approximations
replace the true shape by a horizontal line which can give an approx—
imation not too bad even for w = 0. Approximate laws for which
equatlons Elll-) reduce to the Iaplace equation are represented by
arbitrary (and generally not horizontal) straight lines. It is seen
that for A = —x these lines diverge hopelessly from the true law.
Hence these laws do not appsar to be convenlent for the approximate
representation In a large range of veloclty. Nevertheless they can
possibly have application when the variations of velocity from a mean
value (for instance, the value at infinity) are small. In this case it
is possible to achieve a better approximation than with the Kérmhn—
Tsien method by taking as the approximate law the tangent to one of the
curves of figure 3. The resulting approximate p,p curve will have a
contact of second order with the real isentropic.

For the supersonic case, ay, By, 1/op, and 1/B,, as functions
of Ay, sre shown In figure 4 for y = 1.k. An interesting possibility
is given by the curve of «j, which can be well approximated by a

stralight 1ine between M =2 and M = 10. Hence in this range the
exact hodograph equation in X*L = alx differs very little from the

simple wave equation in Ay and 6. Therefore the general sqlution of
the supersonlic motion In the sald range of M 1s approximately

X = (M + 6)

X
“

where o, and Ay are given by the true isentropic law. This

approximation seems to be better than the approximation given by
equation (22).
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Fxact Solutions of The Hodograph Equations

The power set.— Many studies have been developed on two sets of
particular solutiong of the hodograph equation in ¢ or V, the so—
called power get and exponential set s characterized by the fact that
for the Incompressible case they reduce respectlvely to the natural
powers of the logarithms of the camplex veloclty and those of the
complex velocity itself. The symmetrical form of equations (10) makes
it possible to present these solutions 1n a form that seems lnteresting.

By the introduction (though it is not strictly necessary) of four
auxiliary quantities &, X, ¥, and @, satisfying in the same order
equations (10), and some supplementary conditions, the four complex
quantitles

F= X+ io

'F'=';E+ia>

G=¢+i$
and

E=¢+ 1V

can be made to satlsfy not only equations (10) in the same order but
also the relations

nF_ = 1F, (23a)
vE, = 1F, (23b)
= = G, )
=Gy Jm = —iGy (23¢c

% & = —1Gg (234)
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corresponding to equations (6), (8), and the relations

N
G=wa—F
) (2h)
C=mr —F
o)

corresponding to equations (9). Conversely F and F are glven by
formulas corresponding to those written in sectlon entitled "Hodograph
Equations" for X end o:

1/w 1 1 e
F = - G(w,e)d(;) + = G(w,.,01)sin(6 — 67)ds,
1/wy Yr fe,.

)
+ 2 'é(wr,el)cos(e — 61)dv1 (25)
oy 0.

and a similar equation for ﬁ with m end w, G and [ interchanged.

The quantitiles ﬂ)z 5 g, a, and ¥ can be determined so that they reduce

to X% o, ¢, and ¢ for the incompressible case m = w; hence the
equations

e
!
el
I
22
+

2

’_53
I

Hﬁ
1

= ¢i + 1y

W
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satisfy the Laplace equations

AFi =0
and
AG‘i = 0
<where A= 2 + e to which equations (10) reduce when m = Ww.
d(log w)2 <

An operator (( )) is now defined as that which, when applied to

h
(log wl) (w, being an arbitrary reference velocity), transforms it

<<(log w))) _ w dwl pmy dm2 Wp awa R S
.
(26e.)

for h=1, 2, . . ., the Integration being repeated h +times; then, the
indication of the lower limit of integration being omitted for brevity,

(((103 nlll;r)h)) = h! /;j % w:]_ i_gg L/;I:‘Q %:i P h!I(m,w) (26b)
(((108 “:,Tl)h)) = h!(/:;/w my d(%) ll/ml Vo d(%) e e .= h!I(%,l (26c)
Yy

/my

(((log %)h)) = h! / Wy d@(/ll/wl 2) R h!I(%,‘J—;) (264)

Sgormulas (26¢c) and (264) could preferably be written as operations

on powers of log —l— and log —-Z—— and. are different from the
A 1/my
operations given by equations (26a) end (26b) on powers of —log wl
r
and —log PL.
Iy
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From these equatlons there ls deduced

m %} In(w,m) = I_; (m,w)

? (27)
m_ h—

= (0= 5T)) - (0 5"))

and the analogous equations obtained by interchanging w and m, and./or
by changing w imto 1/v and m into 1/m.

J

It is then easlly verified that, with IO = 1, each of the following
functions

k=2
Il
N
+1
Y
NG
\/

(28)

¢

f
=

=

0

®

+

o

B

p

is a solutlon of the corresponding equa.tion,7 the sligns having been
selected so as to satisfy also equations (23). The cholce of the upper
or lower sign does not affect the values of @, ¥, X, and o derived
from equations (28) g0 that for the solution of the flow problem it is

7This kind of solution has been first discovered by Bergman (see
for instance reference 6) and by Bers and Gelbart (reference 7). The
present form ls new and more symmetrical.
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sufficient to retain, for instance, only the upper one ;8 nevertheless in
same ceses it can be useful to consider solutions with both signs.

The solution represented by the values, equations (28), of G
and & does not coincide with the one corresponding to the values,
equations (28), of F and ¥ for it differs from the values of G
and & derived from F and ¥ by means of equations (24t). This can
be shown as follows: From the recurrence formula, which 1s easy to
verify,

I, (w,m) — i Ipq(m,w) = ﬁ;ﬁj Wy d(I_n]_.i)L/;jiwl n d('{rlz) E;h_e(we,me)

-2

m2 Ih—3 (m2 S¥2 ﬂ

and from the values, directly deduced with Iy = 1,

W . 11 W,
I (w,m) — o Iy(m,w) = —Il(ﬁ:;) - m_i'

Ip(w,m) — g I (m,w) = Ig(%%‘) + % Il(%n%f)

There is deduced with the aid of equations (27)

Iy (w,m) — § Tp_5 (m,w)

k) B[ (- D-(E - 2]t
(29)

(1 - %;)Ih(w,m)

and the a.nalogous_ relations obtalned after Iinterchanging the variables.
8

In this case for m = w the four golutions, equations (28), reduce

n
(to within a multiplicative constant) to (log 1;—-— - 19) , that 1s to the
T

power set for the incompressible case.
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Application of equations (24) to equations (28) yields the
following equation:

(= B)(fos iz 7))
(e 229)) o ez ) (oo 2
-2 (- 2)((osz =20))

and a simlilar equation for —E, if w 1s interchanged with m, with
the % sign. This G differs from the elementary solution,
equations (28), although i1t is a linear combination of such elementary
solutions, a fact holding also for the Incompressible case. In that
cagse, however, the expression for G contalns only an elementary
solutlon with the upper sign if F 1is so, for then Wy = M.

-c

lt

The physical coordinates are easily deduced; for by equations (7)

-~

~— _i~

S+1N=F, =1F
> (30)

S+iN=F =1p

m w 6

J

where g and ﬁ are auxiliary quantitles connected with ; and
by relations similar to equations (7). Hence

z = o19(8 + 1)

with

il
BB
&
TN
o
I—l
@)
®
|
I
[ d
D
i1
N
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1]
Y
)=
(s}
—
T
=
0
48]
s
i
5
SN
jm]
H
\_/

It is now again verified that, as already observed, the choice of
the sign does not affect the results concerning the values of ¢, ¥,
and z but only the introduced auxiliary functions. In subsequent
work, therefore, only the upper sign is retained.

Linear combinations, and in some cases infinite series of the

elementary solutions, equations (28), are still solutions of the
corresponding equations.

Infinite series In the power set.— If, say, F 1s given by an
infinite series, then developing and inverting the .order of summations

gives

F =Z a.n(((log = - 19)11)) = m u,nnl Z I (w,m) iﬂnj
n=0 W -0 =0

(n — h)t

h=0

- i Ih(W,m) Z h)' an( 19) Z Ih(w,m)( gh)g__ie (31)

where
a(t) = Z a, £°

repregents the function corresponding to this power series.

Now, 1ndependently of the convergence of this power series it is
readily verified by differentiation, that equation (31), whenever it
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converges, is a solution of the equation in F (see equation (10a)).
Similarly when 1t converges, the series

F= i Ih(m,w)(ﬂ) (32)

obtained from equation (31) by simply interchanging w and m
satisfies the equation in F (see equations (10b)). For G and ¢
there are the analogous solutions N

o+ £, m(zd) [220]
h=0 at t=16

~ <2 _ (11)|abm(e
o hz:—o Ih(w’m) [Eé_)] §=19)

Now, let G and & be deduced from F and ¥ by means of
equations (24), with the help of equation (29). There results the
followlng expression for G:

ol [ (-2 )

(33)

<8 11) [8&2 ( &dA)
g_glek"'l(m’w g el Wy a8 te—16

and a simlilar expresslion for 'é after w and m, Wy &and m, have
been interchanged.

The values of ¢ and ¥ deduced from these expressions for G
and & are the same as those derived fraom equations (33) if

Ty

B(£) = (L) _%("_J:J,w_r)_(-_cx %Cﬁ:_&)m
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The formula for F can be written in a different form:

=S by (, E(h) (n)
F gi w(om) oy M (6) + 1a, (e)]

with

A(-18) = a;(6) + 1a2(e)

B(10) = bl(e) + 1b,(6)

It follows that

G = h% (—i)hIh %’3—_') l:-bl(h)(e) + i’be(h)(e)]

wlth
Wy
by (6) = =, (8) - e 22'(8)
and

b,(0) = —an(0) + ;;'r-; 8, 1(8)

There are similar equations for F and G.

25
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Hence for W = W,

N
X.. = a1(6)
oX '
m(3r) = ee'®)
> (31)

£
FR

so that A and all the solutions of equations (31) and (32) are
determined by the values of X and its radial derivative on the
circle w = w, of the hodograph plane or by the corresponding values

for . Similar statements hold for 3B, ¢, end ¥ and solutions of
equations (33). Hence the solutions written depend upon two arbitrary
functions and, in their region of convergence, represent the general
solution of the hodograph equations. Naturally they do not glve any
indication of the behaviour of the corresponding solutions at w = O;

for as m> w5 0, [|>= as [log w|® so that the arigin is
certainly outside the reglon of convergence.

In fact, if the solutions must be regular at w = O, only ome of
the functions a(6) and b(8) can be chosen arbitrarily, and other
representations of the solutions are needed to determine the other. The
region of comvergence of the series, equatioms (31), (32), and (33),
depends on the form of A(f) and B(f{). However, a general idea of
its shape cen be given by making very gemeral assumptions about these
functions and m(w).

Let r(6) be less than the distance in the {~plane between the
point -16 and the nearest singularity of A({) and let Ap,.(6)
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be the upper bound of IA(Q )l on the circle with center —i6 and

radius r. Then the Cauchy's inequality gives

atat) st Pmax(0)

A

‘and a similar expression for B, with Bp,, and r, in place of

Appy &nd r. For the Iy, if

<
(%Tg%é—f)m=(§)mm=<%g)m=a
i%’dgﬁgwl = bl =(5%11—M2]) = b

e e ™ s = (B = °

a(1/m) _ﬁ :) ...59_ — =
wd.log(l/w)max-(mE Ly m‘(ph le)m d

\

/

are the upper bounds of the written quantities between w and wy,

equations (26) give for even values of h

N
lIh(w,m) l < Hji- (VE'B !,10g g—; Dh

' h
11 1 w
lIh(ﬁ:ﬁ)| < R éﬁ log —w—)

T
and the same limitations for Ip(m,w) and Ip(l/m,1/w).

(35)

(36)

(37)
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For odd values of h +the upper bounds for IIh(w,m)I
and lIh(m,w)l are obtained from the corresponding expressions in
1/2 1l/2
equations (37) by multiplying them with (a/b) / and (b/a) / ’
respectively, and those for ’Ih(l/w,l/m), and lIh(l/m,l/w)| are
obtained by multiplying the expressions in equations (37) by (c/d)l/2
and (d/c)l/z, respectively.

Consideration of the series (31) shows that the terms of the series

=]

kZO llgk(w,m),

ok . @ Zk+1
0] et [

t=—10

are less than the corresponding terms of the geometric series

bl + o ) 7 (B e )

which converges when the ratio is less than 1.

Hence the series (31) and (as it may be deduced in the same wey)
(32) converge absolutely in the reglon

. (a.b)l/2 llog Ty_r, < r(8) (382)

Similarly, the series (33) converge absolutely for

(e)'/ hog 2% <z, (o) (38b)

Now since ab and cd are functions of w and W,., and since r

and ry are quantitlies which increase with the distance from the

singularities of A and B, the general shape of the region of

convergence in the hodograph plane 1s a curved strip, which contalns the
circle w = w,, and whose width will be a minimum when —16 is nearest
to a singular]:f'by of A(C) or B().
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If a singularity lies on the imaginary axis, that is, if A(—i8) or
B(16), end their derivates have a singularity for some value of 6, the
corresponding width of the reglon of convergence will be zero. This
happens, for Instance, when the reference velocity w, is the velocity

T
at infinity of the flow round a body.

An observation of some Interest 'is that as, for plauslble laws,
p/pg 1s O(1) for M =1 then (za.b):"/2 and (cd.)l/2 (equations (36))

are o( h -2 2) or o(ll - Mrall/ 2) (the larger of the two) for M
and M, mnear 1.

Hence equations (38) show that for given A({) and B({) the
wldth of the reglon of convergence ls the greatest and the rapidity of
convergence the best near the sonic line M = 1., Therefore it 1s
believed that the solution represented by series (31), (32), and (33)
mey have appllications In the solution of transconic problems, naturally
in combination wlth other methods convergling in the rest of the field
of motion,

Finally observe that the development of equation (31) can be
handled differently so as to obtalin e power series in 6:

g} %6:)— i nla, T, y(w,m)

vhich by use of equation (27) and similar expressions and with

fl(w) = i n!a.nIn(w,m) and fz(w) = Zn!anln(m,w) becomes
n=0 n=0

(—16) (= 1‘9-)2k+l d
k;:O (2x)! [ ] fl(w) +i (2k + 1)! = [ dm f2(")
Similarly,

ﬁ—_ﬂl_ [: aw dm)] ALY ?‘Z o,

k—o (25)1 2k + D)1 d.w W E(m %-‘-r-)]kfl(vr)

The functions F and F, whenever the serles converge, satisfy the
corresponding equations and the relations (23), as can be directly
verified, with arbitrary f; and f,. Analogous solutions hold for G
end G with 16 1in place of —i9, 1/m and 1/w in place of w and m,
end two arbitrary functions g;(w) and gy(w). ¥or real values
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of f7 and fp the real and imaginary parts of ¥ and ¥ are
obtained directly; so that the equation

. n et D)
£5 (2 + 1):  aw| am\( aw/| *1
depends only on fl(w); correspondingly, & and g become real and
the equation

2]

X
_ (10)% 1 a [1 a
g -; (2x)? {-Ta(l/w) v d(l/m)]} & (v)

k
i(ie)ak’fl 1 4 J1oa [1 a

i (2 4 D Y a(y/m) |Ea/m [T d(l/m)] o)

depends only on gl(w).

The physical coordinates are then found by means of equations (2)
and (7) to be

- k
- TN YA

K
= (40)®1 g | a [a/ a
Ty (1)t am ) d_VE d_i(m a_"_) fl(w))
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From yx + lo there follows by means of equation (9) an expression
for ¢ + iy which must coincide with the written ane if

g () = (v & - )2, ()

£,(w) = 5 f g, a(1/%)

Fram this colncldence the following interesting formulas can be deduced:

1Y) % k
bl 5 - (S aeL]

d

k k
ek el &Y k-t ied)

which are easy to verify directly.

The meaning of the written solution 1is readily found by observing
that when the series converge, for 6 = 0, then X = fl(w), ¢ = g (w),
af

a;f-];, and y = O, go that fl'=fx dw, & =fw dx, and the

whole solution is determined when the "axial" law of digtribution of
velocity is given.

a):llf:O’x:

Hence the solution, under a somswhat different and more explicit
form, reduces to the one studied by Lighthill (reference 8) in his
work on the transonic flow in symmetrical chammels. As Lighthill
observed the coefflcients of the expanslions became infinite at sonic
speed (far then dm = O), so that the series diverge in the tramsonic
region. In thisg region, however, the solution can be found by following
the Lighthill's ingenious method, that is, inverting the series
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: i + i6mx

giving iy or the one giving -—(—-)—2—, since the coefficients of the
ie

inverted series are finite at sonic speed. The application of Iighthill's
method can be made easier by the present form of the solutiom.

The exponential set.— If in equations (31), (32), and (33)

A(t)

I

ZaM) - o

and.

B(e) = L8 (e) = o

with arbitrary n, then the functions

\
F = ZEn(W,m)e—_:LnB
F = En(m,w)e—ine

) (39)
G = En(%n,%)eine
FNCE

with coefficients deflined by

-~

E (w,m) = i nhIh(w,m)
h=0

(k0)

[s ]

By (m,w) = p_ nbTy(m,w)
h=0 )
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and similar equations for the other E, will be solutions of the
corresponding equations (10) and (23) which reduce, far m = w

to (we"ie/wr)n (equations (10a), (10b), (23a), end (23b)) and

n
to (wet®/w)” (equations (10¢), (10a), (23¢), and (23d)),
that 1s, to the exponential set for the incompressible case.

It ig immediately verified by means of equation (37) that the
gerles E, converge for all values of w and w,. for which a, b, c,

and d are limited, that i1s, for which p and M are limited and not
zero. For plausible gas laws this excludes only the values w =0

and W = Wpoye

It 1s therefore seen, and easlly verified directly, that
equations (40) and the two other egquations for E, are, in order,

solutions of the ardinary differential equations

W g—ﬁ(m Z—i—i‘i) - nEX]:l =0 (41a)

n Ll ¥ 2 _o (41D)
b &) -

dw dm
1 a1 ]
m a(1/w) [w a(3/m)] ~ ng, = 0 : (k1c)
1 a 1 %] .
W d(l/m)’: a(1/w) - nzlyn =0 (k14)

deduced from equations (10) by teking X, ®, @, and V¥ as the product
of a sinusoidal factor In nf and of the corresponding function Xp,

@, @y, or Y, of w. For the normal isentropic law, equations (k1)

become the known equations of the hypergecmetric type and have been the
object of the investigations of many authors. (See, for instance,
references 5, 6, 8, 9, 10, 11, and 12.) Equation (41ld) has generally been
gtudied with particular regard to those solutions that satisfy the

condition that Y¥,/w* is unity at w = O.
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Tt is immediately verified that the solutions E  do not satisfy
this condition and that the corresponding conditions at w = V. arp:

(Bn)p =1

= En(m,w)]r - [% L ay En(%,%-,)]r

El (gi-? Eﬂ(w’m)Jr

1

ERCE EACEY

The gymmetrical form of equations (41) ellows some general
relations to be easlly derived. Some of these relations, that may be
useful for further developments, are mow stated briefly.

The En can be considered as the superposition of two independent

solubions’ of equations (41):

C,(w,m) =i naklzk(w,m)
k=0

f (42)
Sy(w,m) = kgo nﬂf"'llek_,_l(w,ni)

)

9Solutions of the kind of Ey, Cp, and S, were first introduced
by Bers and Gelbart, reference 7, '
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for which the conditions at w = w. are:

(Cn)r =1

ac -
v /r

(Sp)y = O

(o) ()

They are connected by relaticns similar to those commecting the
exponentials and the hyperbolic cosine and sine:

Cp = Cp
8 g =8,
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Cn(w:m)cn(m,vw) - Sn(w:m)sn(m,w) =1

En(v,m)E-n(m,w) + En(m,w)En(w,m) =2

o dCp(w,m)

08 g m)
m g‘%ﬂ = nCp(m,w)

m %%’-12 = nEp (m,w)

Similar relations hold when w and m are replaced by their inverse
values.

A1l the solutions of equations (41) can be represented by linear
cambinations of C, and S, but these functions (as all the series

in TIy) are not sulted to give the behaviour of solutions near w = O.
Since this behaviour 1s very important for meny physicel applications,
it is necessary to follow a different method of Investigation: Iet

F = (Zne710)2
T = (fine_ie)n

G = (Tpe?)"

% = (T,010)°
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be solutions of the corresponding equations (10) which reduce to the
exponential set for the Incompressible case. Then X_nn, X_nn, Ynn,

and 'fnn are solutions of equations (41). Now, if for negative values
of n the last two must coincide with @, and v (such that, for

L2
instance, ﬁ =1 at w=0) and if for positive values of n +the
first two must colncide wilth Ehe corresponding X, and ®,, i1t is seen
that X,/w, X,/m, ¥, , and W¥, must be equal to wnity at w = 0. It

18 now shown that this i1s possible for all values of n except some
exceptional velues: Let

d log X,
m
aw

Fn i

? (43)
d log In

a(1/m)

[+

dlog ¥

n oo dil7w;

It ig Immediately seen from equations (23) that Rn must satisfy
Riccati's equation

=X
i
H

an = 911;2_3:9,2 ()4‘)"')

1
n a2
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and that R T, and T must satlsfy the corresponding equations

with m and w Interchanged or inverted. Furthermore, these
quantities are comnected by the following relations:

Rp = ;—n (45e)
T, = Tin (45D)
nm — W
'I'_n = iﬂi% (LSG)

It is deduced from equations (43) that

iwli = exp [-j(iw (% —I—;E) d.v] (462)

Sy
= XD o Eralalee (46p)
B m
_ _ W, —m
¥, = exp o T3 dm (46c)
vf'.‘\{‘n=exp F/ w—nﬂ.‘n aw (464)

so that these quantlities are equal to unity and analytic at w=0 1if
all the Integrands are analytic there. It can be shown in fact that,

p
if = p; 18 en emalyticsl function of W mear W = O, the imtegrends

of equations (46a) and (46b) are zero and analytic at w =0 for all
values of n except negative integral and half—integral values (for
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only the negative integers if 5% is an analytic function of w<);

while the integrands of equations (46c) and (L46d) are zero and analytic
at w=0 for all values of n except positlive integral and half—
integral values greater than 1 (for only the positive integers greater

then 1, if -F% is snalytic in w2).

These results reduce to the well-known results when the equations
-are hypergeometric. In this case Lighthill (reference 8) has given the
most complete discussion of the solutions of the equation in ‘lfn and.

deduced lmportant theorems, same of which may possibly be generallzed
following the present method. It can be seen that the exclusion of the
pole et n = —1 for the equations in ¢n and V¥, 1s a general

property, which does not hold for the equations in ¥, and w,.

For n =1 the solutions of equation (44) (and of the analogous
equations) and the corresponding solutions of equations (24) are:

By =L=m, (k7a)
Rp=Z-T, (47p)
F = Xle"ie = wo 10 (47¢)
F = X;0710 = no10 (¥78)
G =Yqelf = r];T 018 (47e)
G = g’leie - % 010 (b78)
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It is seen from equations (24) that the values of G and G (hence

of ¢ and V) corresponding to equations (47a) and (47b) are
identically zero. In fact, i1t is seen fram equations (2) and (3) that
this solution represents merely a displacement of the origin of the
physical coordinates. Equations (47e) and (47f) are more interesting
as they coincide with the well—kmown RBingleb solution (reference 13).
The corresponding values of F and F are determined by equetion (25)
(and the analogous equations). Thus,

1/w 4 1
T e (/1’/wr mr UL/ + o
} (48)
b 10 1/m 1 1
F = —me V/a, ‘-”T-JT d.(l/ml) o
J

plus a constant multiple of we™1€ and me 1€, The coefficients

of o1 in these formules, together with w and m respectively,
represent two independent solutions of equations (L4la) and (L1b)

for n2 = 1. The operators -1 + W %—; and ~1 +m (}a which generally

allow the deduction of two independent solutions of the equations
in ¢, eand ¥ from two independent solutions of the eguations
in X, and a,, suffer an exception for n =1 as they produce only

one set of solutions; that i1s, 1/m end 1/w, respectively; for when
applied to w and m +the result is zero. Thls exceptlonal case is
explained in the section entitled "A new set." When n =1

- eduation (b5c) beccmes indeterminate, but the corresponding
value of T _; can be deduced from this relation as the limiting value

for n->1 of the indeterminate expression. It follows fraom
equation (4k4) that with the condition R,=1 at w=0

R, = %— E%L_l f mlwlz(n—l)dwi + 0[(11 — 1)2]

end Ry =T
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Hence, it is deduced that

W
m m) dwy
lim Dm — W, L/:)

Ta=p51 nwR, —m m (19)
W / W1 dm]_
0
and
m
Y_l = -
2 f wp dmy
4]
Simllar expressions hold for T—l and ?—l' Hence the equations
N
-1 2
(T =¢ =5 o 1 dmy
? (50)
N 2
T =% =% j)mml dwy
W,

represent the second solution of equaticns (¥1c) and (41d), independent
=1 ¢ =i =

of ¥y =% and Yl'w and reducing to zero at w = 0. The

expressions ¢le—19 and Wle"ie represent & kind of motion between

two parallel walls. These solutions could be directly obtained by
inverting and exchanging the variables In equatilons (48) and

putting w, =m,. = 0.
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2
If n->w, oquation (i) shows that R °->R,2 = % Similarly
a

the equations

~
~ 1 awe

’ (51)
N2 _ 1 _a(a/m)
R TG

7

coincide with l/u.l" and 1/B% (equations (12)) and cen be explicitly
calculated by equation (16). Then equaticms (46) show that

x, =% =y _1=% _T=o (52)

—c0 —
v 1/2
where A = log W — 1 — (4 log m/d log w) d log v coincides
0]
with the value deduced by inbegrating the d\ given by equation (11)

A
and determining the constant of integration so that %— =1 at w=0.

Hence o™ is the subsonic asymptotic velue of X, @, @,, and ¥,
for n—> oo
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The solutions of equations (41) just discussed are bound to the
solutions, equations (142), by simple relations. For instance,

\
zzg:i)= Cn(W,m) + Rn(wr)sn(w’m)
f (53)
¥a(w) 11\ =~ 11
2y = oolbd) - Eatmsa(32)

as can be verified by controllling the identity of the conditions
at W= w,.. Hence as w-50 and lCnl and. lsnl‘*“’

1im Cn(vw,m)  1im Sn(m,w) R ()
w—>0 En(w,m) w->0 Cplm,w)  —o''r

11 11

1im Cn(m’w) _1im Sn(ﬁﬁ)
AR L = ()

w—>0 11 w—=>0 c (]___r]_[;) n
Sn(m’w) D\y’

The following interesting expansions are deduced by applying
equations (53) to the solutions in closed form obtained for n = #1 :

~

W = wrCl(w,m) + mrSl(w,m)

(54)

1w g 1 '
W = d(1/wy) =—= 8, (w,m)
c/;'./wrml /l W L )

(and the corresponding expansions with the variables interchanged or
inverted) .
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Finally, it should be observed that d_‘lfferen'liia.ting (for instance)
equation (4la) with respect to w yields'

14 a (P ax,
EEEE’M(@T)]‘L(DE_DEF:O

This equation is of the same general farm as equations (ll-l) with

only one of the varlables inverted and 1 — n° in place of n2; it can

therefore be treated in the same way as equations (41).

Hence two particular solutlons similar to equatlons (1}2),

o) - 2y 0 -

1

el <25 0O e

can be defined through the integrals Ih given by the formuls (26)

by slmply replacing the present variables. For n® >1 +the second
series 1s imaginary and must be divided by 1 +to obtain a real
solution. The general solution far dX,/dw is given by a linear

combination of these solutlions, and the general solution for X, 1is

obtained by integrating and adding an approximate constant. Now, this
must coincide with the one in terms of C,(w,m) and Sn(w,m). It is

then easily derived that

i ¥r Snm,w)
m m

Cplm,w) + =

C \/l—_?(%,w) =
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and.

1
SV{LIE(E’ W) 1 Bn(m; W)
m,m n

Analogous relations obtalined by interchanging and inverting the
variables also hold. For n“ = 1 these relatlons give equations (54)
as a particular case.

Other Interesting relatioms can be deduced in the same way.

Infinite series in the exponential set.— The series in o—ind

and. wne——inﬂ have been used (as series in Xne_ine- end. a)ne_ine
could be) by meny authors In the case of the normal isentropic law
(references 5, 6, 9, and 12).

They seem to have thelr natural field of application in the

problem of two—dimensional gas Jets, as Chaplygin first showed 1n his
classical memoir.

The applicatlon to flows around bodies seems to be more
difficult, especlially for flows with circulation. The difficulty
eriges first from the presence in the hodograph plane of a singularity
at w =W, and fram the ensulng necesslty of employlng more than one
series development In the exponential set with different sequences
of n (ps appears already in the incompressible case) with added
eventual terms In other sets, and of lnsuring that the different serles
are the contimmations of each otl;er.lo This can be achieved (although
in a not very simple way) by putting the conditlon of continuity of the
solutions and of their derivetives on the the transition curves (often
circles), as has been done by Tsien and Kuo (reference 12) and as the
author himself has done In an umpublished work 1n a somewhet dlfferent
way, but it is believed that the main obstacle to this method arises
from the difflculty of insuring that the body wlll have a closed
contour when a circulation is present. In fact 1f the so—called
"natural” series (that 1s a series having the same coefficients as in
a chosen incampressible case with circulation) is used in one part of

10This difficulty is avolded in the method by Bergman (reference 6),
which uses a different type of expanslion and uses the. series In the
exponentlial set only as eventual auxiliary serles.
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the hodograph plane (so that a basic series from which the coefficients
of the other series will be deduced by the foresald method is obtained),
the resulting body will be closed only in the limiting incompressible
case. In a tentative method the authar has tried to obtain the closing-—
up of the contour by teking the coefficilents of the basic series as
simple functions of Rn(wr) (or of the other guantities in equations (43),

W, gonerally coinciding with Wo) containing an arbltrary parameter.

These simple functions reduce to the coefficients of the “natural
series when, for vanishing w,., R, becames unity. The arbltrary

parameter 1s then so determined that the contour closes up. However,
because of the necessity of using, to express this condition, dlfferent
seriles connected by intricate relations, thig method seems to be very

complica‘bed.ll In the method studled by the author, series of the kind
glven by equations (31), (32), and (33) (that can be put in simple
relation with series in the exponential set) could be used, especially
for the condition in transonic and supersonic reglons where the seriles
in the exponentlial set cease to be useful.

It is worthwhile to mention here that the demonstration of the
convergence of the series in the expomential set (that Chaplygin first
deduced in the hypergecmetric case in a somewhat complicated way) can be
obtained very simply and under very wide assumptions for m(w) by using
the properties of the functions defined by equations (43). Teking, for

instance, the series in Xpe 180 = (Xpe™16)", it is immediately seen
that Xj >X.; for, by equations (47) and (51),

§°—° = (d log m/d log w)l/2 = (1 _M2)1/2< 1
1

log (Xy/%) = (/;w [1 - (Rm/Rl)]d. log w> 0

Lirpe problem of the closed contour has been solved in a very
elegant wey by Lighthill (reference 8), who discovered a very simple
development converging in all the field (subsonic and tramsonic) and
‘gave the conditions far the closing-up of the flow behind the body.
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Moreover, for plausible m(w),

Ry, = &
1= o

- (1 w212 £
Rp = (1 — M%) 5

dr dr
are decreasing functions of W, so that aj; <0 and (—1;2 < 0. Teking

now a value of n gregter than 1 it 1s immediately seen from
equations (4%) that if, for same value of W, Ry 2> Ry,

- ~a(R_—R
-"—d-g—qlla;_—ﬁ—l)—>o, and if R, S R_ then ( . n)

if one of the two conditlons is verified for some velue of w, then far
decreasing w the valus of R, will diverge more and more from the
value of Ry and of R,, so that 1t cannot be equal to wnity

at w=0. Hence, if R, =1 at w =0, for other values of w,

R, <R, <Ry and from equations (46) X, <X, <X;.

then >0. Hence

The following limitations for Xn = X " are found by use of
equations (47) and (52), for n > 1:

o™ <xp< W

Naturally, these limitations hold only for real values of R_ and A,
hence for M <1. In the seams way 1t is proved that, for n >1,

m? < oy < enA'

The amalogous demonstration for ¢n and. wn requires the agsumption
a(1/+2)

that T_ 2 =
a(1/m2)

0

must be an Increasing fumction of w. This does



http://www.abbottaerospace.com/technical-library

48 NACA TN 2432

not seem to be too restrictive a condition, for T_  must in any case

be mity at w=0 end infinity at M = 1. According to this
assumption it can be directly verified that

d mw _ m? a a(1/m?)
aw 1/2 -nT 1/3]2 aw [a_(l/wz):l =0

d 1l d1l m
1, (tlogm l+<__&fs__
d log w d log w

a (mw2>= m3 1_‘1(1/”12)
m+ W (m + w)2 d.(l/wz)

By integrating these inequalities between O and w it follows easily

that
m w > m > (d logm 1/ 2 v
v o my dwl = o Wy dml £ \T Tog w) o my d.wl

the sign of equality holding anly at w = O. Hence equations (19)
and (51) show that, excluding w=0, 1 <T_; <T __; and the equation

corresponding to (i) shows that T_;, like T__, 1s an increasing
function of w. Now for -n <-1 from the equation in T ., by a

reasoning identical to that developed for Rp, it can be proved
that 1 <T_j <T__ <T , end that % >Y_; >Y, >Y__. Hemce

for @, =Y_ ™ the following bounds hold, for n > 1:

2 [* i )
mn<(£/; wld.ml> <@, <o
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Simllarly, for Yn

W n
0

The convergence of the Chaplygin (or other) series can be
immediately demonstrated by meens of these bonds.

For negative integral (evembually half—integral) velues of n, for
the reasons discussed in the section entitled "The expomential set," the
condition that R and T are unity at w =0 1s not sufficient to
determine the solution. However, it is possible to give supplemsentary
conditions, which are amitted for brevity, such that the resulting
golutions of equations (41) may be used to construct series converging
in all the subsonlc hodograph field exterlor to a given circle.

A new sot.— Here, only briefly mentioned, is a different set of
golutions of equations (23) in closed form. It has been observed in
the sectlon entitled "The exponential set" that the solutions ¢l

and. Ilfl glven by equations (50) cannot be derived fram the solutions
of the equations in Xn and @, for n° = 1.

Converselyy 1f for gilven G = ¢ne—in9 and G = \lfne_ine of the

exponential set values of F and ¥ are deduced by means of

equation (25), or the analogous equation for 3‘, the solutlons obtained
are still of the corresponding exponential set for all values of n
but 1.

In this case, writing instead of G = @6® ana & =V o9 +ne
more general formules
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corresponding to equations (48), it follows fram equation (25),
with 6. = 0, that

. 1/w m)
—10 1 1 Wylir ie
= —o /::/ _l- d_(._) / Vo dmo + - +

b=
|

=
|

‘ 1/m .
— 1 V.
W\l 2 2
1/mp W,

are new solutlons of the corresponding equatlions in-(23) , Which are not
included 1n any of the sets already discussed.

Then 1f the varlables are inverted and interchanged and the sign
of 6 1is changed, it is seen that

1/w.
1 4p f 11 (1) 1 10
G =—— o0 w4 dm — d (=) + —_—
m /: TN e, T W2/ T FE )R

~ v
-2 Moo ([ L 2) )2
W 1/mr 2 rmr

satisfy the corresponding equations in (23); hence the respective real
and imesginary parts satisfy the equations for ¢ and V.

Now applying again equation (25) to the last expressions, other
golutions of the equations In F and ¥ are found, fram which by
changing again the variables new solutions G and T are found. Hence
it is seen that the repeated application of the described grocess
generates a new get of solutions F and F, and G and G.
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The first terms of the carresponding incampressible set of Gy,

whlch can be easlly obtained by repeated application of the farmula to
which equation (25) reduces for m = w

Fy = % L/;r ' G4 (V) d(%)

(vhere V = we 29) and successive inversion of V, are

v/2
1 v
__lo —
v gwr
2
v v  1(¥r
T lOgWr+2(;§——J>
[ 2
—é‘v log — l+log—Y— _%(V_'_E__)
| r W

THE GENERATIZED POTENTTATL FUNCTIONS

In the preceding sections, it has been shown that the symmetrical
form, obtained by meking the velocity and mass veloclity (and not the
connection between them) appear explicitly in the hodograph equations,
glves rise to an interesting general treatment of these equatioms. I%
has been seen that the complex functions F and G, of which the real
parts are X and @, are commected by symmetrical relations to the

functions F and @', having o end V¥ asg lmaginary parts. In this
section, it will be shown that all these complex functions can be
deduced by simple differentiations from a umique function ¢, called
the generalized potentlal function.
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A second generalized potential function ¥ i1s also Introduced,
with Interesting propertles.

Let the complex velocity and mass velocity be defined by
W

(55)

. 40 _ P
v = m({w)e poV

J

and observe that they are bound by the conditlon that thelr ratio

W P
— = — must be real and equal to a prescribed function of w, ar

v Po

that w must be a prescribed function Q(W/N) of the relative
density. When these conditions are satisfled, the two moduli of
equations (55) will be comnected by IWI = m(|V|). Hence equations (55)
can be written

so that
9 _1 ‘i)
Vv \V
w = H)
TV
and

-
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It is now seen that if W and V are not bound by the foresald
conditions and are independent, these relations can be used to define
generalized complex values of 8(V,W), w(V,W), and m(V,W) and there—
fore of all the related quantities. Hence the equation

d log w d log w d log Q(W/V)

defines a camplex Mach mmber M = M(W/V) which, if the physical
condlitions concerning V and W are satisfied, reduces to the
real M(p/pg) and can therefore be lmmediately deduced without the
help of equation (56) by simply replacing in the expressicn M(p/rg)
the real variable p/py by the generally camplex variable W/V.

Now the hodograph equations, considered for complex velues of the
variables, can be transformed by taklng V and W as new independent
variables. Fram equations (55),

N _ 16
ow
a-—v—- = e_ie Q"E
3 am
v —i0
Il ——=w
b)) ©
ow aw
% _ 16
and
—i6
i oW - me
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so that
3 d d )
_yf9_ ,dmd
W W(BV aw BW)
> (3, 2)
wazn_v(deV+BW [
o d
1 =v W
6 ov * M
S
Hence equations (23a) and (23b) become
W(Fv + %FW) = VB, + W
and.

dw
v(ﬁﬁ'v + f‘w) = VEy + Wiy

NACA TN 2432

(57)

where subscripts denote partial derivetives. These are satisfied if

(582)

(58D)

(58c)
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The first of these equations can be satisfied if a function ¢ 1is
introduced such that

F (59)

/

and the gecond will also be satisfied 1f ® is a solution of the
equation

Voo, = (1 — MP)Wog, . . (60)

where 1 —M® 1g the Punction of W/V defined by equation (56).
The meaning of equations (59) and (60) is the following. If
a ®(V,W) satisfying equation (60) is known, and after &y and oy are

caloulated, the right velues of V and W are introduced (that is, such
that W/ is real and IWl= m(|v|)), then

x
|

= R.P.(0y)

£
||

I.P.(¢y)

will be solutions of equations (8).

Observe that if in equation (60) the two camplex variables are
replaced by the real variasbles 6 and w (and m(w)) by the inverse
relations of equations (57), the resulting equation (in a complex ‘1’%
remains unchanged by exchanging w and m. The functions F and
(amd X and ®) can be deduced by relations containing the derivatives
of ¢ with respect to w, m, and 10.
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Equations (23c) and (23d) can be treated in the same way and the
result is found that if T(1/V,1/W) is a solution of

2 2
1 0% _ oyl 3T (61)
V2 (B 1)2 W2 (a 1)2
v W
then the functions
\
= %
°F
? (62)
g - %
0 W
y,

will be, upon substitution of the right values of W and V, solutlons
of equations (23¢c) and (23d), so that the functions

= R.P.<a—-ﬁi—>
°F
and
¥ = I.P. oF
1
W

will be solutions of equations (6).
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Naturally ¢ end V¥ can also be related to ¢. From equations (24),
with the help of equations (57) and (58), it follows that

.
_v2 o _20 (% Y%
G‘w°vv+v°vw°wva?(v+w

0 (63)

~ 2 ¢W o
G=W¢W+H‘T®W—¢V=W2?TW(T+—¥)

/

Hence, camparison with equations (62) shows that to within an
unessential constant,

- (. %
v- 3. 37 (64)

The physical coordinates are deduced by the following relations
which may be obtained from equations (30) by use of equations (55), (57),

and (58):
Y-

46 V
s + i = LA )
+ © wow t VW)

? (65)
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After essigning to W and V their correct values, separating the real
from the imeginary part, aend using equatioms (2), it can be showm
- explicitly that

co L L %)+ Ll 7
2= g+ (V¢W +V¢W) + (W’ww wqaw)

which can also be written

1 3 d e @
z = T R v(vsv+w5-ﬁ+1)7v +Z 1P W(V?TV+W%+1)—Y—?- (66)

By differentiating this equation, there can be deduced an
expression of dz which must coincide with the expression (2), that is
wlth

dz=d + 1

= (67)

=jg

vhen df and d¥ are obtained by differentiating the expression
derived from equations (63)

g+ iv = R.P.|V° gv(i;_w + ‘”?v) + iI.P. ﬁg -?WG—;I— + ¥)] (68)

It can be shown that the agreement exists if ¢ 1s a golution of
oquation (60), and if W/V 1s real. It seems therefore that the
camperison of the values of z calculated directly from equation (66),
or deduced by integration of equation (67) (using equation (68)), may
congtitute an interesting check on the accuracy of appraximate methods.
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Observe that ¢ = cqV + coW + c3W is a particular solution of
equation (60), the simple meaning of which is that c¢q constitutes an
additive constent of ® and of —¥, c, the same for X and -4,
and c3 (complex) represents a general displacement of the origin of
the physical coordinates.

Partlcular sets of solutions of equations (60) and (61) are easily
deduced from the sets studied in the Ireceding sections by integrating
the relations (59) and (62) and introducing the expressians of w, m,
and O as functions of V and W.

In the incompressible case, V =W, 1 ~M° = 1 and equations (60)

and (61) reduce to identities satisfied by every function of V. The
written relations reduce then to

Fi(V) = ‘:’1' (V)

G—i(V) = ._VQI,il(v) - V‘Di"(V) —%'(V) - V2 %': (‘Div(V)>

S + IN

z1(V) = F;* (V) = 0" (V) = eie(S + iN) = w

IT the solution corresponding to the Incompressible flow around a
given body is mown in the physical plame, @,(V) can be deduced fram

these relations. The profile of the body can, for instance, be defined
by a relation S = P(N) between the subnormal and the normal for ¢ =0
(and by giving this value to the corresponding streamline).

Hence for I.P.(Gy) = 0, that is, for I.P.(V8;") = I.P.(0;') it
follows that

WS = R.P.(V®;") = WP[‘% I-P-(<Di'z]
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The corresponding relation for the compressible case, which
can be easily deduced from the preceding formulas, is

for T.P.|W® %(%i + EWY):, = 0,

R.P.(WEDW + W’vv) = I"PEJLT I-P-(‘bvﬂ

after the correct values for V and W are introduced. The function F
will be the same In both cases 1f the profile 1s unchanged.

The equations (60) and (61) are of the same general kind. It is
possible to pass from the one to the other mot only by a substitution

1like eguation (64) but also by simply putting

T

d = Twuwbx
L : (69)

¥ = T

L
\L]

/

since, as can be immediately verified, ®x must satisfy equation (61)
and Vs, equation (60). The equations may be transformed in many weys
by changing the two independent variables. One of these transformatlons

18 obtained by teking as new independent variables (K being a constant):

f (70)
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The equation (61) in ¥ (or ®x) is thus transformed into

Y Y- ol
Yeq = E[l (1 M)m,e:l(‘ﬁgg ey * Typ) ()

vhere the first factor of the right-hand side is a function of WAV,
hence of 17/&, since

11+ (n/8)
VE 1 ~ (n/¢)

W
v

A gimilar transformation may be performed on equation (60) by
putting E=V +VW anl =V ~W.

Other interesting transformations are obtalned by taking
E=1logV + €(WN) and 7 = 8(W/N) and choosing in different weys
the functions € and O. TIn this case the variabllity of the
n variable can be restricted to the real field. Partlcular cases are
obtained by taking, for instance, ¢ =0, ¢ = log (II/‘V), .

8=1—-M> and ® = w(W/N) (since dlogw -—) An impartent

d log (VM) M2/
case is the one for which & = A — 160 and n = A, where A 1s the
same as in equation (11) or equation (52); this 1s obtalned
da.e -1 ad \ﬁ: —"l%f

= and
d log (VW) (1 +V1—M2) d log (V/W) M2
this transformstion 1s performed, an equation In &, and ¥ (or ome
in ¢ and 11'*) is deduced that may be used to obtaln directly
solutions of the kind obtained by Bergman (reference 6) and
Lighthill (reference 8).

1f

Finally, let equation (60) be wriltten with the actual isentropic
law. In this case

1

1~y
Po 2
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Hence, consideration of the observation followlng equation (56) and
substitution of the resulting value of M(W/¥) in equation (60),
yields:

TRy T 1_731 [K%Y—l—l:] W0

There is a corresponding equation for equation (61). For real W/ the
corresponding velues of 1 — M2 are shown in figure 5 for some values

:—TI= pi as abscissa. It 1s interesting to observe that
0

if 7 1is in the actual range for gases, its value does not seem to

affect to a great extent the shape of the curves, especlally in the

subsonic range. The factor 1 —M® ig linear in W/ for 7 =0 and
in V/W for 7 = 2; for other values of 7 in the actual range it 1s
not far from a straight 1line in the subsonic range.
2
The curve 7 = —1, that is 1 - M = W—2 is also represented in
v
the figure, and carresponds to Chaplygin's approximation. The Kérmén—

. Tgien approximation corresponds to 1 — M2 = K—ge— where the constant K
- v
(see equations (17) and (21)) is so chosen that at infinity (e = p,)

1 - M2 will take the velue 1 —-sz given by the true law.

of 7 with

THE CHAPLYGIN-KARMAN-TSIEN CASE

For the Chaplygin—Ké:rmén—Tsien approximation the right—hand side
of equation (71) (or equation (69)) becomes zero so that the general
golutions of equations (60) end (61) are

~
W(;f'l( E) + fg(fé’

©n
i

& (72)

= 07(&) + ey(n)

=)
|



http://www.abbottaerospace.com/technical-library

NACA TN 2432 63

with ey, ep, £, and fp arbitrary functions of the variables &

and 17 defined by equations (70). The value K = 1 corresponds o
2

Po
Cheplygin's approximation; K = (1 —Mwa) —5 to the Karman—Tsien
o

=]

approx:!ma'bion.le As 1t has been observed I1n the section entitled
"ppproximate Methods" 1t can be convenient to chose K—values between
the two.

The solutions (72) can be interpreted in two different ways.
First they can be regarded as the exact solutions of the correspanding
equations for a gas satisfying the ideal law (18).

With the use of equations (70) for ¢ and 1y, this law can be
written |g[|n| = -H; or for real W/V, hence far real & /y,

e =eq=qE=-=& (73)

This relation allows the expression of ¥ (and @) as the sum of two
arbitrary functions of & and E ar of n and 7.
Tn the second interpretation, equations (72) are consldered as

approximate solutions of the equations for the actual law of gases. In
this case

2
leo] =7 =nF==(1-— (74)

is no longer a constant, but is a function of w.

1255 observed in footnote 4 the actual presentation of this method
is more coherent than the usual one, as the constants H and K of
formule (18) are here deduced for a single reference condition; namely,
the infinite polnt.
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Naturally the last expression, and the relation (73), do not
restrict the independency of ¢ and 1; as they must be used only
after all the formal deductions from equations (72) of the following

kind have been performed. From equations (72) and the application of
equations (59),

1 1
F=0 =V(f SRS S R T f')
W 1 W\ﬁfl 2 W\/E2
Yoo =W P~ e, —=f "
v 1-7h o 2

and

'—'+‘:w—=2fl—§fl' +2f2‘—1]f2’

According to equation (64), the last emession’coincides with -
hence, by equations (72),

ef

o
(o
I
[
1
ure
Hy

op = 2f5 — 1ty

Fram equations (62),

G=¢ + 1y = &y" — ' + qf," — £’

and.

T O®=7+ i¢=% (821" — 217 — utp" + £5')
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so that

¢+ 1By = &) — £+ afp" — £yt = g (6) + gz(ﬁ) (75)

8 and g, being two functions related to f; and ) by the relatlons

\

81! gflm

) (76)

821 = ,qu m

Now, from equation (66) for real W/V (hence if V and W have
the same argument -0, and & and 1 the seme argmment 6):

I

z = e19R.P. e_iel:fl — &Ry + 5 §(§ + )" + Fp —qfy" + 5 q(g + q)fa:l}

+ ieieI-P-{e"ie [fl — 0t 45 e(e — R + £ — 05y — % (e — n5f2'zl}

fl—§f1'+%§2fl“+f2—q2' +J—'—~q2f"+l~

]

g,q(flll + fzn)

1 "
R ¥

(77)
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' This relation glves the physical coardinates as a functiom of the

- 1 1 10
hodogrs; coordinates w and € whe =]=
graph n ¢ [w + e K]e

1 1 10
and = [— —— are introduced into it (with the assigned
R e \ﬁf} &

lavw m(w)).

Differentiating equation (77) yields

2 dz = EBpyMak 4 nefe"’dq + |en] (£ ak + £5,dn) + (£1't + £5") aléql

But dz 1is also glven by equation (2), which may be transformed in the
follovwing way

2dz=%—d¢+iﬁ—%\ffd‘¥='§d(¢+i\/f‘¢)+1]d.(¢—i\lfllf)

or (see equation (75))

2 dz = E2p™AE + 9Pf,™an + |Eq|(2;™aE + £,dn)

Hence, in accardance with the observation following equation (68), these
two expressions for dz colnclde only if |En| 1s constant; that 1s,
if the law commecting £ and 17 is the law ?"{3) (ar (18)), hence the
same law as the ocne for which the equations (60) and (61) admit the
solutions (72). This is what is done in the KArmén-Tsien method. If,
on the contrary, the alternative interpretation of equation (72) is
adopted, the colncidence ceases to exist. In this case, 1f the law
comnecting £ with 1 1is the exact gas law, the error term between the
two values of 2z, that 1s,

be = %/(fl“ + £5") algq|

with |&n| given by equation (74), may be regarded as a measure of the
approximation of the approximate solution (72).
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Observe that if the law (73) is taken, hence if 7§ =—EE,

equation (75) shows that the general solution for ¢+ INEV is a
Tunction of £ alone (containing the constant H), that is, it is a
function of 2 — 10, where A is given by equation (19), a result in
accordance wlth the Chaplygin's monogeneity conditionms.

The expression (77) for =z can be also written by using the
functions g; and g, instead of T, and f, so that (see

equation (76)),

2z = fﬁefl"'dﬁ + /ﬂ2f2wd'1 + Imef(e1" + £5)
— 1. 1
=/§dgl+/ﬂd82+,ﬂ§|/gd81+/%d-82 (78)

If the law (73) is assumed, this equation reduces to

2Z=/§(d81+d82)+/ﬂm

froses [Tm -

vhere g(t) = g1(&) + go(—H/E) 1s the complex potential ¢ + iNEYy in
this case. In the incompressible case H = 0, K = 1, and 2z4 =/ & dg

2
the—v H Tsien's formula = I dg dz; 1
wi t=V. ence Tslen's Z =74 L aﬂ 1 1s
immediately obtained.
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It is well-X¥nown that in the case of the flow round a body Tslen's
formula generates closed profiles only if circulation is absent. Meny
authors have studied extentions of the method to the case with
circulation. Bers, Germaln, and Lerasy (references 13 and 1) have
followed a first way; Lin, Germain, and Gelbart (references 15, 1k,
and 7) a second way; here a third way of constructing flows around
closed profiles with circulation will be shown, based on the subdivision
of g(&) into gy(&) and go(E). TLet g(V,/(z4)) = g1(E/E,) De the
camplex potential of an incompressible flow around a closed profile with
a circulation T. Then, since for & mnear ¢ _,

(E/E,w)k =1+ kEE/Ew) —ﬂ + 0 {Eg/gm) _ 1]2}

it follows that ~N
fEdgl=2fdzi=0
’ )
j[ldg1= f%ﬂzi =—§—2£f(§_§oo)dzi =r
® W,

where the Iintegratioms are performed along any comtour in the physical
DPlane enclosing the profile, or around the corresponding comtour in
the &—plane enclosing &, (for simplicity, suppose V-and & real).
Now generally,

jg thazy ~ ke fp (6~ )azs =-Z g ' (81)

so that

1 _ 1 _ 2
fgd_gl—Qf‘g—zdzi—-g:I‘ (82)

and the value of =z given by equation (79) for a compressible flow
with g = g is not one—valued. Bubt if g = g + g for the

given &, & & can be determined In such a way that the corresponding
residual terms in equation (79) will compensate the value of the
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last written integral. If the value of the circulation must remain
unchanged, & must be one—valued. Thls conditlion is obtalned very

gimply by teking, for instance,

8 = h(g?f/ E’:: ‘e = g%(%)nzi

The consbant h can now be determined so as to obtain the said
campengation. Fram the ldentity

[ o= 525 - 52 [ o)

and from equation (81) it follows that

}Cg—r dgp _r fg—(nﬂ‘) d(ﬁngg)

n+rr

T 2h_&mn—l j[, §—(n+r) iz = T hﬁm—rr

n+r

Hence for real £, and H = - 7,

-

fﬁdge—H/%dgg=—h(§w—qm)r

If equation ("{9) mist be one—valued, the last quantity must be
equal to (see equetion (82))

H(/,Jgd.gl=—2qwr
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Hence the equations

2n E \2 3
. P >
& e~ (Em) / ot (83)

will satisfy the foresald condition of compensation.

Observe now that the constant factor does not depend on n. Hence
the condition is also satisfied if (&o/8)™ 1is replaced by P(Ew/8)/P(1),

vwhere P 1is a polymonial in £/t or an infinite series converging in
all the domain of variation of &. Hence the function

P(£a/t)
o 1B = 6l8) - gy(8) ¢ e / ' (B

where P 1is an arbitrary function of £,/E, 1s analytic in 211 its

domain of variation, and will generate a flow around a closed profile
with circulation T. .

Observe that by using equations (70) for real ¢ and 7, the

expression for the constent h 1is
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For the Chaplygin or Kérmin-Tgien values of K there is obtalned,
respectively, the very simple expressions, both vanishing in the
incompressible case:

h = Jl-ﬁf-l

Particularly simple forms of equation (84) are obtained by
putting n =0 or n =1 in equation (83). For n =1 an expression
is obtained which colncides with what becomes the Lighthill solution
for v = -1 (reference 8). '

The solution (84) satisfies the condition of generating solutions
around closed profiles with circulatlon when [y §&| = Constant, and
z 1s given by equation (79). Now if |n¢| 1is variable, as given by
equation (T74), end the equations (72) are considered as approximate
solutions of the exact equations (60) and (61), 1t 18 still possible to
find solutlions for which 2z, glven by equation (78), is one—valued. If
again gl(g/gw) 1s the camplex potential for the incompressible case,

satisfying equations (80), with I, 1in place of T, and if ge(ﬁ'/nm)
1s a functlon for which the expressions

$7 g, =0

f | (85)

fores



http://www.abbottaerospace.com/technical-library

T2 * NACA TN 2432

(anslogous to equations (80)) hold where the integrations are performed
in the 7 plane along the contour corresponding to the one of
equations (80), then equation (82) and the analogous relation for g,

glive

2T
1 1
jg g 8 E,

1 2I'2
e

go that the sum

1 1 I To
= dg, + - =2(—-—+-—>
f E 1 ﬁn% t, n
(=]
will be zero for

I, =—ler (86)

Hence equation (78) will be one—valued if g, satisfles
equation (85) with I, given by equation (86), and

#+ WKV =g (8) + gz('ﬁ)
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wlll represent, when the expressions (70) for & and n are replaced
by the exact connectioh between m and W, an approximate solution of
the exact equations wlth circulation

z being given by equation (78), and the error term

=-3:: (fgdgl f %)dlf-nl

representing a measure of the epproximation obtained.

Clearly the slmplest way of satisfylng equations (85) and (86) is

thet of takingl3

B =32 6

Naturally this solution still holds when |§1,| = Constant.

An approximate solution for the transonilc case is now noted,
corresponding to the subsonic Karmén-Teien approximation., If M_ =1,

then the KArmén-Tsien value (equation (21)) for X 1s zero. The

131¢ the KhrmAn-Tslen velue (equation (21); is adopted for K,
which makes the right—hand side of equation (71) zero at infinity, then
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corresponding curve of 1 — M2 in figure 5 reduces to the horizontal

exis 1 —M° = 0. In this case the right-hand sides of equations (60)
and (61) are zero, and the respective solutlons are

(<]
|

= fl(W) + Vfg(W?
and

g = % o1 (W) + o (W)

whore the erbitrary fumctlions Involved are bound by the relatlons

Equations (66) and (68) then give

(g 7 -
1 ife & - i Iz 1 n
z =ﬁR.P.(Wf2') +P—IE'+ I.P.(fz)] = £ + = I.P.|W (v + fQZI
§+ 1y = R.P.(£]") + 1P| 2" + W2E," + WEy' — 7
7 2 2 o

The approximate gas law corresponding to 1 - M2 =0 18, by
equation (56), m = Constant, therefore po/p is proportional to w.
Actually m has a maximm at M = 1, and the distance between the
streamlines reaches there a minimm. If the approximate law m = Constant
wore adopted, the distance between the streamlines would be unchanged
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throughout the fleld of motion, and this would glve rise to difficulties.
But 1f the solution 1s consldered as an approximete solution of the
exact equatlions in the tremsonic field (even for M_ # 1 but near 1),

then the exact law for m(w) can be Introduced in the solutions. This
approximete transonic theory seems worthy of develomment.

September 27, 1949
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Figure 1,- The plane of flow x,y or B&,N.
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Flgure 2.- Comparison of the Kdrmen-Tsien and Chaplygin approximations
with the true isentropic law.
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Figure 3.- Variables o« and B as functions of A for isentroplc gas.
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Figure 4.~ Variables oy and By as
functions of Ay for 7 = 1.L,
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Figure 5.- Camparison of the Chaplygin and

-Tslen epproximations of

1 -M2 a8 a function of p/p, with the
exact relation for several values of 7.
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