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A BIHARMONIC RELAXATION METHOD FOR CALCULATING THERMAL
STRESS IN COOLED IRREGULAR CYLINDERS

By Arthur G. Holms

SUMMARY

A numerital method was developed for calculating thermal stresses
in irreguler cylinders cooled by one or more internal passages. The
use of relexation methods and elementary methods of finite differences
was found to give approximations to the correct values when compered
with previously known solutions for concentric circulasr cylinders
possessing symmetrical and asymmetrical temperature distributions.

INTRODUCTION
Use of Cooled Irregular Cylinders

The evolution of aircraft propulsion systems has led to the fre-
quent employment of cooled structures. The concentric hollow cylinder
is a familiar example, although in some cases irregular cylinders such
as cooled turbine bledes with several internal passages (reference 1)
are under consideration. A method of calculaeting stresses in thin-
walled turbine blades of the air-cooled type 1s presented in refer-
ence 2, but the general problem of calculating thermal stresses in
long, hollow, thick-walled irregular cylinders has not been solved.

Previous Work on Thermal Stresses in Hollow Cylinders

Several methods of cslculeting thermal sbresses for various special
distributions of temperature in long hollow cylinders of particuler
shape have been developed. Some theoretical aspects of the general -
problem have also been discussed. In reference 3 the problem is o
regerded as an ordinary stress problem with givern body and surface
forces replacing the effects due to temperature distribution, whereas
in reference 4 the equilibrium and boundary conditions of the theory
of elasticity are used without modifications to exhiblt the temperature
effects as body and surface forces. The method of reference 4 was
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appliled to several special problems that had already been solved as
well as to problems of composite bodies and eccentric circular
cylinders. No epplication of analyticel or numerical methods of
calculating thermal stresses in cooled irregular multiply connected
cylinders has been published.

Scope of Present Investigation

An investigetion was conducted at the NACA Lewls laboratory to
celculate thermal stresses in cooled irregular multiply connected
cylinders. The problem of thermal stresses in irregular cylinders
is formuleted in a manner that permits solution by the use of finite-
difference methods. The contour integrals of reference 5 expressing
the single-valued character of the displacements for arbitrary circuits
around the internal boundaries are written in forms sulteble for
numerical methods of differentistion and integration. The boundary
conditions based on the assumption of force-free bounderies and single-
valued displacements are formulated in terms of derivatives of the
stress function as suggested for uniform-temperature problems in
reference 5, and stress functions are set up in a manner thet is en
extension to the thermal-stress problem of the work of reference 8§
on doubly connected domains at uniform temperstures. The relaxation
techniques of reference 7 are used in solving the finite-difference
problem of determining the stress functions. Detaills of the method
are 1llustrated by examples. The method is applied to a symmetrically
heated, hollow circular cylinder and also to a hollow circulsr cylinder
with asymmetrical heating to show that the relaxstion technigque gives
approximations to exact answers obtaired by direct methematicel methods.
Comparison of stresses calculated by .he relaxation techniques with
those determined by exsct methods is ilso made to compare the relative
accuracy of several numerical methods of differentisting the stress
Tunction to obtaln stresses. The calculations for the concentric
cylinder are described in detasil sufficient to permit the method to be
applied to more irregulasr cylinders.

SYMBOLS

The following symbols are used in this repory:

8;784 0782 constants of 1ntegration
B modulus of elasticity in tersion and compression
l,m direction cosines of normel draswn outward from reglon

bour.led by plane curve
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w,v,w

XY,z

distance in Xy-plene normal to plane curve
residual in relaexation calculatbion

polar coordinates

arc length of plane curve in xXy-plane
tempergture gbove inltisl stress-free state
components of displacement

rectangular coordinstes

coefficlent of linear thermel expansion

shearing strain components in rectangular coordinsates

unit elongations (strains) in x-, y-, and z-directions,
respectively ' :

Poisson's ratio

normal components of stress parallel to x-, y-, and
2 —asen R

shearing-stress component in rectangular coordinstes

Alry's stress function

component of rotation sbout z-axis

J2 32
harmonic operator -— + —
2 2
ox oy
biharmonic operstor T 2 55 + T
ox ox“y dy
THEORY -
Assumptions

The following conditions are assumed to exist:

1. Steady-state heat flow exilsts with temperatures wuniform along
any line initlelly parallel to the axis of the cylinder.
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2. Heet sources and sinks are agsumed to be distributed on the
external and internal boundaries.

3. The temperature distribution is assumed to be determined by the
boundary temperatures and ILeplace's equation.

4. The meterial beheves 1ln an elastic manner.

5. The veriation of the elastic constants (modulus of elasticity,
Polsson's ratio, and coefficient of thermsl expansion) with temperature
may be neglected in determining the thermal stresses.

6. Plane sections initilally normel to the axis of the cylinder
remain plane.

7. The streins and rotation are constant along any line initially
parallel to the axis of the cylinder.

The extent to which & particular structure would fulfill these
conditions would depend on the particular circumstances. The last two
essumptions are eppropriate when the cylinder 1is long in comparison with
its cross-sectional dimensions or when end conditions impose suitable
restraint. The sixth assumption allows bending of the cylinder ebout
axes perpendlcular to the axial direction of the cylinder in s manner
that might vary in the axial direction. The last assumptlon permits
planes initially perpendicular to the axis of the cylinder to take on
a warped shape as a result of the deformation but restricts the bending
to & circular arc; that is, the radius of curvature of lines initielly
parallel to the axls of the cylinder does not vary slong the length of
these lines, The assumption of no variation of rotation in the axlel
direction is equivalent to assuming that the cylinder does not twilst.

Basic Bquations

The case of plane strain where body forces are glven by the
gradient of a potential is treated in reference 5. As is shown by the
detailed derivation in appendix A, the governing equation of refer-
ence S5 gpplies to the thermel-stress problem deflned by the preceding
assumptions. This equation 1s

v = 0 (1)
vhere § 1is Airy's stress function defined by

2193


http://www.abbottaerospace.com/technical-library

2195

NACA TN 2434 5

X ayz
32
oy = 5—% ‘ (2)
X

. %

Txy Oxdy J

As shown in appendix B, the axlal stresses can be calculated from
the equation

0‘z=E(ax+'by+c)+v(Gx+Gy)-o;EI' (3)

Boundary Conditions

Two basically different types of auxiliary condition are establishéd
for the set of physical conditions assumed to exist at the bounding
cylindrical surfaces. These conditions are:

(1) Conditions stemming from the nature of the forces applied to
the surfaces

(2) Conditions stipulsting that the displacements be single-valued

In calculating the stresses due to the temperature distribution,
other stresses such as those due to centrifugal force and fluld pres-
sure are to be calculated separately and the total stresses are to be
obtained by superposition. All internel and externel boundaries are
therefore postulated to be free from epplied forces, and the bounﬁary -
conditions (reference 8, p. 21) become - o

ch+T}qym=o

(¢)

where
1=
ds
m= - &
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Substitution from equations (2) into equations (4) ylelds

3% ay . 3%¢ ax _

dy? ds

Oxdy ds

__2.82 a_.y.i.a_zﬁgic.zo

Oxdy ds

from which

Ble
ANe

&

as

along the boundaries.

Conditions for Single-Valued Displacements

The defining equations for strains and rotation are

From equations (8),

dx% ds

7R
]
(@]

-~

ou
dx

~.

ov
oy

du  ov
9y Ix

a(a_v_a_uﬁ
2\gx 9oy

,

NACA TN 2434

(5)

(6)

I
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du _ N
dx “x :
ov _
du _ 1
oy zlxwy ~©@

(7)
o {
dy ~ ¥
w_ 1%y %%
dx 2 ox oy
dw 1%y Fy
oy 2 dy x 7/

The change in rotation for an arbitrary path P; of integration
starting at some point (xg,¥y) and returning to the seme point after
enclosing (and only enclosing) the internal boundary Ci is

0 N Ny
H =f}g@=§£99ax+£ay (8)
o ox oy :

From equations (7) and (8), the condition that ® be single valued

is
0 oy 3 3 o€
) LTy % 1Ty Ofy )
[;JO - 2 3x Jy dx + 2 oy | ox pr =0 (2)
Py

By use of equations (A8) and (A9) of eppendix A, equetion (9) may
be written

§§fﬁds=—*“E§E& -"'.(10)
on 1-v on

P1 Py
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The change in the x~component of displacement for an asrbitrary path
of integration starting at some point (xo, yo) and. returning to the

same point after enclosing the internal boundary Cy 1is

(0]
,E;L.—.%du: a—12'-dx+a—1'1dy . (11)
ox oy
Pi Pi

0
[¢}}
—~
From equations (7) and (11), the condition for single-valued u N
is . :
1
fcxd:u(gyxy-m dy = 0 (12)
Py
For the term involving rotation in equation (12), integration by
parts glves
0
- wdady = - oyl + Y dw -
0]
1 Py
where

I

because of the single-valued character of w achieved by imposing
equation (10). Furthermore,

% o dw )
Yy dw = — dx — d
§y(8x +8y ”

- 1%y .a_fzs) (laﬁw BCY) i
"§Y(2 = oy FTPI\EEy /Y

Py Py
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Equation (12) can now be written

LY

1 1 arxy
ax + = b2y 23X gy -
“ R A AR v

o€, 1 arxy acy
¥ —gg'dx 27 Ty y+y 5 e =0 (13)

g6tz

In equation (13), integration of the first two terms by parts gives

0 1 0
x ax + E"ny ayl = |x€x o + T | N xy o -

Py

where

-l

because the strains are single valued. Equation (13) becomes

> 2
jg(y;y >ax+§( a; rr L "a?)dy:o

Py

(14)

Substituting from equations (A8) and (A9) of appendix A and
stipulating that the stresses are single valued give equation (14) as

st eaflr Do o)

P _ P
1 - i
(15)
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If the integrations of equation (15) are performed slong the

internal boundary Cj, then from equations (5), .
.-..—.l_ i%ds:O
1L-v ds ox
Ci

Because the integrand of the preceding integral is an exact differential,
the integrel has the same value (zero) for all reducible paths; hence
for the arbitrery circuit P, equation (15) becomes

ﬂg(y@fﬁ_xélzﬁ)ds=- “ B (y-ag—xg'?-)ds (16)
on ds 1-v on ds
Py Py

2193

Similar reassoning from the single-valued character of the y-component
of displacement leads to the equation

2 2 )
@i‘%—ﬁ+xa—Z—Q)ds=- o E (yg+x-e-?-)ds (17)
s n

1-v ds on
Pi Pj_

Bouations (10), (16), and (17) are similer in form to some equations
derived by Mindlin in reference 9. The equations of that reference
apply to integration paths taken along the boundaries.

Boundary Constants

The initial objective is to determine the stress function § so as
to solve the boundery-value problem associated with equation (1). Numer-
ical differentistion could then be performed to determine the stress
components according to equations (2).

The assumption of stress-free surfaces resulted in equations (5).
With a;; end 855 as constants of integration, these boundary con-

dltions may be integreted to give along the boundaries
. 811
dx

3 (18)
g?; =842 .
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In general,
d¢=§gdx+§édy
ox Sy

and vhere a4z 1s a constant of integration, integration of the pre-
ceding equation along & boundary and use of equations (18) give

¢6T2

i = ayix + 8gp¥ + g3 : (19)
along a boundary. e

Differentisl equation (1) and boundary conditions, expressible by
equations (18) end (19), do not completely determine the stress distri-
bution. HNo tempersture terms are present, and the values of a5,
ayp, and a3z s&re still to be specified. The initial step in obtain-
ing the compatibility condition (equation (1)) was to raise the order
of the first differential equation of equations (A2) by differentieting
once with respect to x and once with-respect to y. These differ-
entiations, although useful in simplifying the form of the equation,
require that additional factors be considered. In the case of
rultiply connected regions, the resulting equetion (equation (1)) does
. not preclude the occurrence of stress distributions due to mechanical

dislocetions (reference 9). The occurrence of mechanical dislocations
is eliminated by imposing conditions that rotation and displacements
be single valued. These conditions are to be used in eveluating the

constants of equation (19). The physical conditions of the problem will
then be satisfied, for the stress function has been defined so as to
satisfy the equilibrium conditions; the compatibility condition is
satisfied by the use of biharmonic functions; the assumptlon of force-
free boundaries is satisfied by conditions (18) and (19) on the stress
function; and the constants a4y, ajp, &and ayz are to be evaluated
so as to satisfy the conditions of single-valued rotation and
displacements. Thet adjustment of the values of &j;, 832, and ay3
is sufficient to satisfy the conditions of single-valued rotation and
displacements will become evident in the next section. A method of
determining the constants that will be appropriate for numerical
techniques is needed. '

Determination of Boundery Constants by Formaetion of

Special Solutions

A method of using special solutions to determine a45, a5, and
. a3z for a doubly commected domain at uniform tempersture was described
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by Prager (reference 6). A similar method wes suggested for the multiply
connected domsin by Southwell (reference 10). The method of Prager is .
here extended to domains with more than one hole and with tempersture
distrlbutions present. The method is then modified to a form thet is

suitable for numerical techniques.

Let ¢1J(i =1,2, « . ok, « o .n; J=1, 2, 3) be special

solutions of equation (1) that are defined over the domain bounded by
the external contour Cgy and the Intermal contours C;, Cz, « . .

Cxs» + + » Cyq. Because eguation (1) is linear, the products of the 3
¢1J and the arbltrary constants 214 mAy be superposed to glve the N
camplete solution of the boundary-value problem accordlng to the scheme
3
¢ = E ai,j ¢iJ (ZO)
1=1 J=1

provided that the boundary conditions for the ¢ij are properly
selected and that the values of the boundary constants a3 8&re prop-
erly eveluated. .

The boundary conditions for the ¢ij must be selected so that the
function given by equation (20) willl satisfy equations (18) on all the
boundaries. Because the stresses are given by second derivatives of @,
the addition of a lineer function of the coordinates to $ will leave
the stresses unaltered. The assumption is now made that thlis addition
is accomplished so that the boundary constants of equations (18) and
(19) are zero on the external boundary. The boundary conditions on
the ¢ij for the external contour Cgp are therefore taken as

o
f13 = 52 = 0 on Co

The boundary condltions for the ¢ij on the internal boundaries must

now be selected so that 3n linearly independent solutions for the
¢ij will be obtained and so that the function defined by equation (20)

will satisfy equations (18) on all the internal boundaries. This
selection is accomplished as follows: i

Let

3
Big = %1;1 =0 (21) _
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on all boundaries except Ck. On Cy, 1let _

3
o = T @2
d
Pz = ¥ P& (23)
P = 1 %=o (24)

Certein geometriceal aspects of the cholces expressed by eque-
tions (21) to (24) are now mentioned. The cbservation is made, for
example, that the equation

P _ ay
dn ds

is a restriction on ¢k-|_ in addition to the restriction of ¢kl =X

on Cg, inasmuch as @i = x prescribes values of @y only on the

line defining the boundary Cyx, whereas the normel derivative

a¢m_dy

on  ds

specifies the rate of change of ¢kl a8 the boundaxry is crossed in a

direction normal to the boundary.

The slope of the plane ¢kl = x 1in a directlion normal to the
contour Cj is Ofk1/dn; but because for this plene @x1 = x, the

slope mey be written as ax/an. In the direction n, the slope of
the surface ¢kl is glven by equation (22) as

1 _ ay

on . ds
but in the xy-plane,

d—y- - a_x

ds on

Therefore, in the direction of n, the slope of the surface ¢kl (in

equation (22)) has been teken equal to the slope of the plane @i =

and because the intersectlon C'jy of the cylinder through Cy wlth the
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surface ¢kl lies in the plane ¢kl = x, the surface ¢kl is tangent-
to the plane @1 = x along C'kx. The particular solution ey fr1
therefore defines a surface tangent to the plane ¢kl = apix. Equa-
tions (23) require that @y be tengent to the pleme @ip = y along
the intersection C"yx of the cylinder through Cx with the surface
fro, and equations (24) require that @x3 be tangent to the plane

¢k3 = 1 along the intersection C"'y of the cylinder through Cx

with the surface ¢k3'

The tlree speclal solutions, ayifyi, 2xofn, and sy sz, asso-
clated with Cx are seen to be tangent to three Planes, one of which

passe’s through the y-axis, one of which passes through the x-axis,
and one of which 1s parallel to the Xy~plane. Determination of 8y »

axp, and &,z 18 seen to be equivalent to determining the slope of

the plane through the y-axis, the slope of the plane through the
x-axlis, and the helght of the plane parallel to the xy-plane. Super-
positlion according to

P = 81fin * obin + oyafis

1s thus seen to satisfy the requirements of equations (18) and (19),
but the constants 8y1, 8o, 8nd 8xz must be properly chosen. Super-

position of all the aij¢ij will still leave equations (18) and (19)
satisfied on C,. because of the requirements laid down on all the ¢13
by equation (21). :

The ¢ij were defined as special solutions of equation (1), which
is equivalent to writing

4
v ¢1J =0
(i = l, 2, * s k, e o » n; j =‘.l, 2, 3) (25)

Equations (25) together with boundary-condition equations (21) to
(24) constitute 3n boundary-value problems for the 3n particular
solutions ¢ij‘ These individual boundsry-value problems with ¢ij
and B¢ij/6n specified on every boundary are now to be solved by methods
already described by Fox and Southwell (reference 7). With the assumption
that the ¢ij are so evaluated, the next step is to calculate the values

of aij.

The method for determining the ayy may be symbolically expressed

by substituting the complete integral as expressed by equation (20) into
the contour integrals of equations (10), (18), and (17). This
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substitution requires that, on each kB internal boundary, contour
integrals involving all the @5 j be formed as coefficlents of the ajj.

Formation of these contour integrals then permits writing simultaneous
equations for each kb®h boundsry (k=1, 2, . . . n) so that 3n
equations are obtained for the aijy where the contour integrals

involving the @;j become coefficients of the ayj:

n 3
Z%J§%u=_o@ A oo (26)

on 1-v on
== Py Px
n 3
E &8 4 &Py 5 @ B 3T ar
Zaij§y on Py A e T
i=1 j=1 Py Py -
(27)
n 3
&%, 5 3y 4 o E ar T
§§:aiv3 V=g tr 5 T Tv Tas T *5/%
i=1 j= (28)
Pk Py

Because there are exactly 3n equations with exectly 3n unknowns
(the e‘ij)’ the determination of these constants is sufficient to insure

the occurrence of single-~-valued rotetion and dlsplacements.

NUMERICAL TECHNIQUE

The purposes of this section are (1) to illustrate, by a concrete
example, the detalled steps by which a solution of a problem may be
obtained, (2) to show, by comparison with a problem for which the

solution is already known, that the application of relaxation procedufes

to the finite-difference method outlined in the preceding pert of this
report ylelds & method giving results that approximate the correct
answers, and (3) to present the results of an investigation of some
factors affecting the accuracy of the answers for some particular
conditions encountered in the relaxation solution of & thermal stress
problem.
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Illustrative Bxample

The detailed instructions enabling the relaxation calculation of
thermal stresses in an irrsegular cylinder are presented in appendix C.
The particular problem illustrated is that of a concentric circular
cylinder possessing an asymmetrical temperature dlistribution; however,
the description of method may be applied to cylinders of more complex
shape. The cholce of the concentric circular cylinder enabled the
relaxation work for the stress functions to be confined to a 90° sector.
There would be no fundamental distinction in carrying out the cal-
culations for an irregular profile - relaxation would merely have to be
performed over the entire cross sectlon entailing more labor. (Although
circular boundaries were involved, the advantages of using polar
coordinates were not utilized., The use of rectangular coordinates in
the presence of circular boundaries involves boundary technigue problems
typical of a more irregular region.)

The results of the relaxation calculation (reference 11) according
to Laplace's equation for the temperature distribution are presented
in figure 1, Results of relaxation calculations for speclal solubtions
of the biharmonic equation are presented in figures 2 to 4., Contour
integrals were calculated as i1llustrated by table I and the stress
function is presented in table II. Tangential stresses (table II)
were ocalculated by computing the second derivatives of the stress func-
tion with respect to radius (reference 8, p. 53) according to the
S5-point method of reference 12 described in appendix D,

Exact values of radial and tangential stress were calculated as
indicated in appendix E and are algo listed in table II, The maximum
tangential stress 1s seen to be much learger than the maximum radiasl
stress, The error in the relaxation calculation of the maximum tan-
gentlal stress was about 5 percent. Comparison of the values of tan~
gentlal stress calculated by the exact method wlth values calculated
by the relaxation method is alsoc presented in figure 5,

Investigation of Factors Affecting Accuracy .

Several factors Influencing the accuracy obtainable in calculating
thermal stresses by the method Just described were investigated by
applying various celculation techniques to a problem for which anawers
could be calculated by exact mathematical methods. The example chosen
conslgsted of & concentric cylinder subJjected to a symmetrical tem-
perature distribution., Detaills of the relaxation calculation are
presented in appendix F,

Ths results of the relaxation calculation for the temperature dis-
tributlon are presented in flgure 6., Because dimensions of the oylinder
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were exactly the same as those of the illustrative exampie previocusly
discussed, the special solutions @i, P13, end fPiz determined in that

exemple are useble in the present example., This situation illustrates
an important feature of the use of relaxation methods in caloculating
thermal stresses; that 1s, once the time consuming biharmonic relaxatlon
work for the special functions @4y, Pip, P13 has been completed for a
given shape of body, relatively little extra work 1s required to study
the effects on thermal stresses of changes in temperature distribution.

For the symmetrical temperature distribution of figure 6, the
boundary constants aj; and a3z were found to vanish, The values of

a3z for the paths a, b, and o of figure 4 are presented in table III.

The Airy stress function and the stresses calculated from it by numerical
differentiation according to appendix D are listed in table IV,

Exact values of Alry's stress funoctlon were calculated according to
appendix G, The value of the arbitrary constant D 1n equation (G4)
wes adjusted to give § =0 for r = 12, Results are listed in
table IV, BSecond derivatives of the exact values of Alry's stress funo-
tion were then calculated by the numerical methods of appendix D to give
the tangential stress values listed in table IV. Exact values of tan-
gential stress were calculated using the second of equations (B1) and
are also listed in teble IV,

Comparison of the errors in tangentlal stress of table IV shows that
the errors associated with the numerlcal differentiation of the relaxa-
tion calculated Airy functlon were much larger than those associated with
the numerical differentistion of the exact Airy function. (Errors in the
meaximum stress were 21,5 and 6.5 percent, respectively.) Thils comparison
suggests that the relaxation ocalculated Alry functlon was an lmportant
source of error, '

The relaxation calculated stress function was calculated as the
product a3z ¢13 (appendix F). An exact value of a3z was calculated
by observing that the exact values of ¢ in table IV range from zero
at r =12 to -467,627 at r = 4; whereas in figure 4 the values of
¢13 range from zero at r =12 to 1000 at r = 4. The exact value
of ajz 1s therefore

ayz = ~467.627 _ _467,627

1000

Ag indicated by the data of table III, the errors assoclated with
the processes of integrating difference quotlents to calculate the
boundary constants can be significant but are small if averaged over
several paths,
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The extent to which errors ln the relaxatlon calculation of the
Alry function iInfluence errors in the stresses was evaluated by rouni-
ing off the previocusly determined exact values of Airy's stress func-
tlon to three significant figures. Corresponding stresses and errors
are presented in table IV, In general, the errors assoclated with the
three-figure Airy function are seen to be significantly lower than those
agsociated with the relaxation calculated Alry function. Apparently,
the equlvalent of three-figure accuracy was not achieved in the relaxa-
tion calculatlon of the Airy function, Comparison of the values of
tangential stress calculated by the exact method with values calculated
by the relaxation method is also presented in figure 7, Improved
accuracy could be accomplighed by (1) further reduction of residusls
with the introduction of another significant figure, (2) the use of
a finer net spacing, (3) the use of more elegant finite-difference
methods, or (4) scme combination of (1), (2), and (3). A critical
discussion of some factors influencing the accuracy of relaxation pro-
cedures 1s contained in reference 13.

CONCLUDING REMARKS

This investigatlion has ylelded a numerical method for calculating
thermal stress In a cooled irregular cylinder possessing one or more
cooling passages under steady-state temperature conditions, Application
of the method to structures such as internally cooled turbine blades is
suggested, The use of relaxation methods and elementary methods of
finite differences has been found to glve approximstions to correct values
when compared with previously known solutions Por concentric circular
ocylinders possessing symmetricel and asymmetrical temperature distri-
butions,

Lewls Flight Propulsion Leboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, May 10, 1951.
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APPENDIX A
DERIVATION OF BIOARMONIC EQUATION

An outline of the derivatlon of the governing partlal differentiasl
equation for the stress function ls given in reference 4, A debailed
derivation using the conditions imposed in the section on assumptions
follows:

612

The defining equations for the normal strains (reference 8, p. 7)
are

o114

€x

€y (A1)

l¥ ¢

€

Z 2z

and the defining equations for the shearing strains are

St )

du . ow

= ——— —_— A2
Txz dz + ox L (a2)

ov , ow

The defining equation for the rotation (reference 8, p, 162) is
w,:.J;(iv.__a_u (A3)

The assumption that the strains and rotation are constent in the

direction of the z-axis (axis of the cylinder) permits writing

dcx _ 3y _ 3z _Vyxy _dxz _ My _dw_, (Ae)
3z oz oz oz dz oz oz
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The condlitions that the strains be compatible with dilsplacements
specified by u, v, and w are (reference 8, p. 196)

\
azcx + azc;y- = az7xz '
ayz dx2 oxJy

(a5)

ox oy oz/ )
From equations (43) and (A4), equations (A5) become
62€x d% 32y .}

__—-+—-Z=
3y  x%E  OxY

(a8)
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The first of equations (A6) remains whereas the fourth and £ifth of
equations (A6) vanish identically. The second, third, and sixth of
equations (A6) may be written

sy Sy Py
= = = 0 A7
3523z  3x%d OxJOyoz (A7)

Because of the assumptlon that plane sections initlally normal to
the axis of the cylinder remain plane after the deformation, the
dlsplacement 1In the z-directicn may be written

w = £(z) [ax + by + ¢

showing that equations (A7) vanish identically. The preceding proof
that the last five of equations (A6) vanish identically is essentially
a demonstration that these campatlbility conditions are satigfled as
8 consequence of the initial assumptions, Of equations (46), the
only nonvanishing equation 1ls now the compatibility condition

d2¢, . Bzcz ] 2y

ayz axz XQy

The generalized Hooke's law eguations (reference 8, p, 204) are

(a8)

-

cx-_-%[ox-v(oy.l.oz)_ +qﬂ:'w

-
1
€y =% S, - u(ox.;.oz)_ +al 3 (A9)

1 - V(0 40 )]
€Z=E[°z (o, + y)_+aﬂ.‘J

Elimination of O, Dbetween these equetions ylelds

€x=%[(l-vz)0x-U(l+\’)0y+(l+v)aET-UEcz]
(410)
€y=%[(l-vz)cy- V(L+V)0, + (1 +V) BT - VE ¢,

Airy's stress function 1s defined by
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oy = 28

ayz

-
Oy S (2)

Equations (A10) and (2) are used with the direct method of calculat-
ing thermal stresses; thaet 1s, the equilibrium, boundary, and compati.-
bility conditions are used without regarding temperature terms as body
and surface forces. The equilibrium equations (reference 8, p. 195) are
therefore written without body forces. These equations were reduced to
those of reference 8, page 21, by using the assumption that plane sections
initially normal to the axls of the cylinder remain plane after the
deformation, so that

P, AT
o TSy
- (All)
i'iz X =0
oy ox

Substitution of expressions (2) in equations (All) shows that the
gtress function has been defined so as to satisfy the equilibrium equa-~
tions identically. The copdition remaining to be satisfied by ﬁ is
the competlbility condition (A8), Substitution of expressions (2) in
equations (A10) yilelds . '

€ _.3:(_2- v_—ﬁ v2v2¢-vEez> + (1L +v) o

* dy? dx
(a12)
gy.:l(a_ﬁ- v_ﬁ-v2v2¢-vEc)+(1+v)aT
2

The shearing strain is expressed (reference 8, p. 10) in terms of
the shearing stress by
2(14v

Txy

_ - 2(1+v) o2g
E oxdy

Txy
(A13)

CRTZ
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By use of equations (A6), (Al2), and (A
written

vif = - = E g2
1-v

For the assumed bemperature conditions,

vép = 0

and hence the governing equation for § is
vig = 0

a3

13), equation (A8) can be

(1)
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APPENDIX B
CALCULATION OF AXIAL STRESS

After Oy and Oy have been calculated according to equation (2),
the normal stress O, in the axial direction may be determined. The
third of equations (49) is

1
€z=EE7z - U(Ux+0y)] + of
from which

0, =¢, B+ v (0g +0y) - ¢ ET (B1)

As stated in the sectlon Assumptions, the cylinder is free from
applled forces and therefore the total force in the axlal direction
and the x- and y-components of a bending couple are zero.

J[V"oz dxdy =0 |
A
ffxoz ax dy
A
/'fycz dx dy
A .

Becausge of the assumption that plane sections initially normal to
the axis of the cylinder remain plane after the deformation, the
gtrain In the z-directlion may be written

(B2)

it
o
4

n
(]

€y =8X +by+c (B3)
where a, b, and c¢ are constants.

Substitution of expressions given by equations (Bl) and (B3) in
equations (BZ) glves
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affxdxdy+bffydxdy+cffdxdy i
A A A
=--%':-’./:/" E-’(Ux+o;y;) -mE‘ﬂdxdy
A

affxzdxdy+bffxydxay+cffxdxdy
A A A
=-%J]‘x Ea(cx +°y) -a.E‘lE,dxdy> (B4)
. A

aj:fxydxdy+bﬁyzdxdy+cffyudy
A A A

= - v (0, +0,) ET|dx d

T J x"'y - x dy

A -

Equatlions (B4) are three simultaneous equatlions from which the
constents a, b, and ¢ may be evaluated. Substitutlon of the
expression for €, glven in equation (B3) for ¢, in equation (Bl)

glves

GZ=E(ax+by+c)+v(0x+Oy)-a.ET (3)

from which the axial stresses may be determined.
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APPENDIX C

DETAILS OF RELAXATION CAICULATICN OF TANGENTIAL STRESS
I CONCENTRIC CYLINDER WITH ASYMMETRIC
. TEMPERATURE DISTRIBUTION
The temperature distribution was assumed to be determined by tem-
peratures in OF of zero on the internsl boundaery of 4-inch radius and
500 + 1000 cos & on the external boundary of 12-inch radius., The
values cf the elastic constants were assumed to be

@ = 8,0 X 106  (in./in./°F)

E = 17.5 x 105 (1b/sq in.)

v = 0.3

The results of the relaxation calculation for the temperature
distribution according to the technique described in reference 11 is
presented in figure 1. In all calculations, the origin of coordinates
was located at the center of the cylinder. In the present case (one
internal boundery), the indices of equations (21), (22), (23), and
(24) become

l1=k=n=1
J=1,2,3

In order to eliminate the use of decimels in the work of relaxation,
equations (21), (22), (23), and (24) were modified as follows:

Cn the exterior boundary,

By _ O O
b - g < s - B0 - T

On the interior boundery,

1y &y
¢ll = 250 x _5?1_.. = &50 is
a¢12 dx
= 250 : =25
¢12 oV °% ds
375
13
ﬁls = 1000 “Sn = 0
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The boundary value problems Just defined for the biharmonic functions
$11, f12, and @1z were then solved by the techniques of references 7 and
11 to yield the solutions presented in figures 2 to 4. (The dimensions of
the cylinder were stuch that the distance between nodal points could be _
convenlently taken as 1 inch., For more general cases & method of handling
dimensions, nodal distances, and derivatives, such as described in refer-
ence 7, can be followed.)

The next step 1s to calculate the values of the constants a;q,
e1p, and a3z according to equations (26), (27), and (28)., To that end,
the appropriates contour integrals were calculated as illustrated for
functions involving @7 end T along path ¢ 1in table I. The

numbering system for polnts in the tables corresponds to the numbering

system exhiblted by the small diagram in figure 2, where J 1is the station

along the path of integration and J = 1 on the positive x-axis. o
With the use of averages of contour integrals for paths a, b,

and ¢, the simultensous equations (26), (27), and (28) become

-200 X 2853

1241.3 ayz

8466.3 a12 = 0

8466.3 a17 = ~200 X 9532.3

from which

~-459.,7

813
812 = 0

According to equation (20),
§ = a3y P11 + 213 F1g + 813 P13
from which

§ = -225.2 ¢11 -459.7 ¢13
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The solution of thls equation for points along the positive
x-axis (@ = 0°) 1s presented in table II. Tangential stresses were
calculated from the relaxation solution for the stress function by
taking second derivatives with respect tc radilus according to the
formulas of appendix D. These results are sglso presented in table II.
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APPENDIX D
NUMERICAL DIFFERENTIATICON OF AIRY'S STRESS FUNCTION

The purpcse of this section is to present the methods ueed in
appreximeting to the second derivatives of Alry's stress function., Ths
function tc be differentiated 1s expressed by

¥y = £(x)

where Iin the present appllecation y 1s Alry's stress function and x
1s radlal distance on & cross section of the hollcw concentric cylinder.
Where p 1s an integer, h is a uniform tabular interval of the
independent variable, and x is an arbitrary point from which the
distence ph is measured, let

X, = X3 + ph (p1)

The values of second derivatives were calculated by the five-
point formulas of reference 12. TFor the various values of p, these

formuies are: With p = 0O,

p? yo = _E;E (35 yp - 104 y1 + 114 y5 - 56 yz + 11 y,) (p2)
12h
with p =1,
D2 yy = _E;E (11 y5 - 20 33 + 6 ¥g + 4 ¥z ~ ¥4) (D3)
121
with p = 2,
1
D2 yp = ~== (= 55 + 16 §3 ~ 30 ¥3 + 16 ¥z - ¥4) (D4)
2 0 5
12h
with p = 3,
1
with P = 4,
1
D% y, = =3 (1155 - 56 yy + 114 y3 - 104 yz + 35 y4) (Ds)

Equation (D2) was used to calculate derivatives at r = 4, equa-
tion (D3) was used for r = 5, equation (D4) was used for r = 6 to 10,
equation (DS5) was used for r = 11, and equation (D8) was used
for r = 12,
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APPENDIX E

EXACT DETERMINATION OF STRESSES FCR CONCENTRIC CYLINDER
WITH ASYMMETRIC TEMPERATURE DISTRIBUTION
The radial and tangential stresses, respectively, in the case of a

symumetrical btemperature distribution are given in referesnce 8 on
page 372 by

N\
oET 2 2
0r= i -ln"—b-— a —-.b-—- lnl’.
b r 2 2 72 a
Z(l-v)lng b" - a L
(E1)
oBET
°6= 2 = l-ln.?.‘- a? (l+l)-:-)ln£-
- o b™ - a r
2(1 -v)in = y

where a 1s the radius of the internal boundery and b 1is the radius
of the external boundary, and where T; is the excess of the inner

boundary temperature over the temperature of the external boundary.

From reference 4, the stresses in a concentric circular cylinder
possessing the temperature distribution

<o
T=Alnr+A+ E (Ap ™ + C, ™) cos nd +
n=1
(= Bn @ + Dy r"?) sin ne (E2)

where A, B, C, and D are constants, are

rwds =
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ol _ _OEA ln(}i)_a_z_b_z_'_xflnh -
r 2(1-v) r rz bz _ az a

fers (bz - rz)(r2 - az)] (cl cos € + D; sin e)
2(L - v) L (a2 4+ p2)23

i 22 . .2
S S 1n(lz)+gz.b2_+_r§1n2_ i
2(1 -v) L MW/ r2p2 g a

L(ES)

sin 8)
/

of 402r2-(3r% - b2)(r? 4+ aﬁ%] (C, cos & + D
2(1 - V) (2 + vB)r® : *

The temperature distribution in OF is specified by T = G on the
internal boundary and by T = 500 + 1000 cos € on the extermal boundary.
The stresses will be calculated by superposing stresses for a symmetrical
temperature distribution on those calculated for a speclal agymuetrical
distribution. The given temperature distribution is resolved into two
components: a symmetricel camponent defined by T = O on the interior
boundary and T = 500 on the exterior boundarys; and the speclal asym-
metrical component defined by oundsry temperatures of T =0 on the
interior boundery and T = 100C cos 6 on the exterior boundery.

Phe stresses calculated for the symmet.'ical ccmponent of the
temperature distribution were calculated according to equations (x1).

Now equation (E2) is to be written so as to satisfy the boundary
conditlons on the asymmetrical component of the temperature distribution,

The boundery conditions are
at r =8 T =20
at r =D T = 1000 cos @

Tn order to satisfy these conditions and equation (E2), let

=0 (£4)
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Equation (E2) is thereby reduced to

0]
Alr +__3: cos €
r

T =
On r = a,
0= (5la -+ —l) cos €
a
from which
A =-32
al
On r =D,
Cl)
1000 cos @ = |A-D + =] cog O
(1 5/ °%°
from which
Cc
Alb+lelooo
or
C c
-2+ 22 < 2000
az b
or
2 2
cl_(__.___la - b%) ~ 1000
ab
from which
c. - - 1000 8%p :
l— A ———— . JE—
'bz-az

Use of equations (E4) and of the preceding value of C; in equa-
tions (E3) shows that the components of stress due only to the tem-
verature distribution specified by T = 1000 ccs 8 on r =Db are
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1000 oF 22b (b2 - r2)(x? - a?) cos 6

o’ =
r2(1-v) r3 A - ad
2 2 2 2 (E5)
2 - - b2 2
g = 1000 o alb 4sér (.'_’;r'4 b4)(r + aé) cos @
2(1 -v) r3 - a

Radial and tangential stresses were superposed from stresses cal-
culated according to equations (El) and (E5) to glve theé exact stresses
listed in table IT. :
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APPENDIX F

DETATLS OF RELAXATION CALCULATION OF TANGENTIAL STRESS
IN CONCENTRIC CYLINDER WITH SYMMETRICAL
TEMPERATURE DISTRIBUTION

The temperature distribution was assumed to be determined by tem-
peratures of 0° F on the internsl boundary of 4-inch radius and 500° F
on the external boundery of l2-inch radius. The relaxation solution for
the temperature distribution is given in flgure 6. The values of the
elastic constants were assumed to be the same as those used in
appendix C, namely,

8.0 x 108 (in./in,/OF)

o =
E =175 x 105 (1b/eq in.)
U = O.S

As in the asymmetrical case treated In appendix C, the indices of
equations (21) to (24) were taken as

l1=k=n=1
J = l: 2:.3
and these equations were modified as follows:

On the exterior boundary,

o1 iz _ His

B11 = Pyp = P15 = 5 S - ;- °

On the interior boundary,

o1y a
¢ll=250x 'Tn=2505.'§

12 dx
¢12 =250 § ol -250 i
¢13 = 100C Eg%; =0
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These boundery values are the same as those used for the preceding
problem involving the asymmetricsl temperature distribution. The
biharmonic functions @17, f1p, and @iz &are presented in figures 2
to 4, Calculation of the contour integrals by the methods described in
appendix C and soclution of equations (26) to (28) show that

all=&lzz=0

and that the values of a7z for paths &a, b, and c¢ are as given in

table ITII, Ths values of Alry's stress function ag determined’ entirely
by the numerical method were then calculated usling the relaxatlion values
of ¢13 aryl the average of ajz for paths a, b, and ¢ according to

$ = a1z iz -

Values so calculated are presented ln table IV, Tangential stresses
vere calculeted from the relaxation solution for the stress function
by taking second derivatives wlth respect to radius according to the
formulas of appendix D, These results are also presented in table IV,
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APPENDIX G

EXACT DETERMINATION OF AIRY'S STRESS FUNCTION FOR
CONCENTRIC CYLINDER WITH SYMMETRICAL
TEMPERATURE DISTRIBUTION

The purpose cf this section 1s to present the formula used In
calculating Alry's stress function for the concentric circular cylinder
with a symmetrical temperature distributicn. A pcssible form for the
stress function is given in rsference 8 on page 55 &as

f=Alnr +Br Inr +Cr2 + D (G1)

where A, B, C, and D are constants and the corresponding stress
components are given by

Op =2 +B(1+21nr) +2C
¥ (62)

Gg=--4 +B(3+21nr) +2C
72

The thermal stresses are given by equations (El), For comparison
with the first of equations (G2), the first of equations (EL) is written

olET 2 pa
i a¢ b ln.g 1

O, = - _—
T 1 - v)lnlgbz - a2 o

aET
L b%‘--(l+21nr)+
2(1 - V)ln —
a8
BTy 1 82 b
_b--z-'—lnb-mln'a— (G3)
2(1-v)lna-

Comparison of equation (G3) with the first of equations (G2) shows
that necessary conditions on the constants of equation (Gl) are
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oET 2 42
A= - b:bzln:z
2(L - V)In= bP® - &
oET
B = i b%
2(1 - v)In 2
ofT g 1(_1 a2 b)
C = il-L-1nv - in R
b2(2 22 -aZ =
2(1 - V)lIn 7 _

Because the stresses are calculated from derivetives of Alry's
stress function, the value of the comstant D in equation (G1)
may be taken arbitrarlily. The values of A, B, end C as just deter-

mined are substituted in equation (Gl) to obtein

GET 2 2
¢= = 5 -%rzln.—:‘--%rz-—z-a-'——-z(%—-bzlnr)lnh+D
2(1 - v)In 2 L

(G4)
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Toteal

TABLE I - CONTOUR INTEGRALS ALONG PATH c

(a) Integrale involving v2p,,.

39

2 2 2 2 2
avlg av%s avlg, | ovs avlg, | v
J Vz¢ 1 Vzﬂ 1 - vzﬂ 1 VZ¢ 1 1—'1 x |x —d x T—-J' ¥y |y Yy —g-l
[
35 5 ds neg n-g o ds n 8

1| -113 =113 ] -96 =170 74 5.5 0] 407.0 0 Q [4)
2] -103 =113 1o -81 -105 24 5.8 55.0 | 132.0 1 10.0 24.0
3 -106 ~-103 -3 -83 =142 59 5.5 -16.5| 324.5 2 -6.0 118.0
4 -85 -106 21 -71 =127 56 5.8 115.5 | 308.0 3 63.0 168.0
5 =57 -85 28 =51 -92 41 5.5 154.0 | 225,5 4 112.0 164.0
6 -29 -57 a8 -26 59 33 S.5 154.0 | 1Bl.5 S 140.0 165,0
7 =52 -29 -23 -27 -59 32 51 -115.0 | 160.0 5.5| =-126.5 176.0
8 -66 -52 -4 -42 -82 40 4 -56.0| 160.0 5.5 ~77.0 220.0
9 -64 -66 2 -49 -92 43 3 6.,0f 129.0 5.5 11.0 236.5
10 =38 -64 a8 -43 =73 30 2 52,0 60.0 5.5 143.0 165.0
1 -9 -38 29 -18 =19 1 1 29,0 1.0 5,5 159.5 5.5
12 9 -9 18 Q o} 0] 0 o] o] 5.5 98,0 0
13 38 9 29 18 19 -1 -1 -29.0 1.0 5.5 159.5 =5.5
14 64 38 26 43 73 ~-30 -2 -52,0 80.0 5.5 143.,0 | -165.0
15 668 64 2 49 92 -43 -3 -6.0| 129.0 5.5 11.0 | -2356.%
16 52 66 -14 42 a2 -40 -4 S56.0}1 160.0 5.5 -77.0 | -220.0
17 29 52 -23 27 59 =32 -5 115.0 | 160.0 5.5 -125,5 | -176.0
18 57 29 28 26 59 -33 | -5.5 | -154.,0| 181.5 S 140.0 | -165.0
19 as 57 28 S1 g2 -41 | =-5.5 -154.0 | 225.5 4 1iz2.0 | -184.0
20 106 85 21 n 127 -56 | -5.5 | -115,5| 308.0 3 63,0 | -168,0
21 103 106 ~3 83 142 -39 | -5.58 16,5} 324,5 2 =-6.0 | -118.0
22 113 103 10 81 105 -24 | -5.5 -55.0 | 132.0 1 0.0 ~24.0
23 113 113 4] 96 170 -74 =5.5 ol 407.0 o] (o} a
24 103 113 -lo 81 105 -24 |} -5.5 53.0 | 132.0 -1 10.0 24.0
25 108 103 3 a3 142 -59 | -5.5 -16,5 | 324.S5 -2 -§,0 118.9
26 85 lo6 -21 71 127 =56 | -5.5 115,55 | 308.0 -3 83,0 168.0
27 57 85 -28 51 92 -41 | -5.5 154.0 | 225.5 -4 112.90 164.0
28 29 57 -28 26 59 =33 =5.5 154.0 [ 181.5 -5 140.0 155.9
29 s2 29 23 27 59 -32 -5 -113,0 150.0 -5.5 -128.5 176.0
30 €8 52 14 42 82 -40 -4 -56.0 160.0 -5.5 =77.0 220.0
31 64 66 -2 49 92 -43 =3 6.0} 12%,0 | =-S5.5 1l.0 236,.5
32 38 64 -26 43 73 ~30 -2 52,0 €0.0 | -5,5 143.0 135,90
33 S 38 -29 18 19 -1 -1 29.0 1.0 {=-5.5 159.5 5.5
34 -9 9 -18 0 o] 0 o] 4] [¢] =-5.5 93.0 o
35 ~38 -9 -29 -18 ~1l9 1 1 -29.0 1.0 | -8.5 159.5 -5.5
36 -84 -38 -26 -43 ~73 30 2 -52.0 60.0 =5.5 143.0 | -165.0
37 ~B86 -64 T -2 -49 -62 43 3 -5,0) 128,0 } -8.5 . 11,0 ] -2%6.5
38 52, -66 14 -42 -82 40 4 56.0 180.0 =5.5 =77.0 -220.0
39 ~-29 -52 23 -27 ~59 32 5 115.0 { 180.0 | =5.5] <~126.5] -176.0
40 -57 -29 -28 -26 -59 33 5.5 | -154.,0| 181.5 -5 140.0 | -165,0
41 -85 -57 -28 -51 -92 41 5.5 -154.0] 225,5 -4 112,0 | -164.0
42 -108 -85 -21 -71 =127 56 8.5} ~115.5| 308,0 =3 63,0 | -168,0
43 -103 =106 3 -83 =142 59 5.5 15.5| 324.5 -2 -6.0 | -118,0
44 -113 ~103 =10 -81 -105 24 5.5 -55,0 | 132.0 =1 10.0 -24.0
0 0| 7540.0 1914.0 o
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TABLE I - CONTOUR INTEGRALS ALONG PATH c - CONCLUDED

(b) Integrals involving T.

NACA
a7 or

Ty 2y ar| a |

J TJ+% TJ-% ds Tn+% Tn-% on x X a8 X 3 J i Y
1] 387 | 387 0] 491 266 225| 5,5 ) 1237,5 0 0 0
2 418 | 387 31{ 504 | 286| 218 5.5| 170.5 1189.0 1 31,0 | 218.0
3| 472 | 418 54| 540 | 342 | 198 ) 5.5] 297.0 1089.0 2 108.0 | 396.0
4| 539 | 472 67| S92 | 418| 176 | 5.5{ 368.5 888.0 3 201.0 | 528.0
5| 609 | 539 70! 652 | 496 | 1856 | 5,5| 385.0 858,0 4 280,0 | 624.0
6] 676 | 609 67| 714 | 573 | 141 | 5.5 368.5 T775.5 5 335.0 | 705.0
7| 544 | 676 | -132| 645 | 573 72 5] -660.0 360.0 | 5.5| -726.0{ 396.0
8| 422 | 544 | -122| 522 | 4%8 84 4| -488.0 336.0 | 5.5 -671.0| &62.0
S| 315 | 422 | -107| 411 | 316 95 3] -321.0 285.,0 | 5.5} -588,5| 522,5
10| 228 | 315 | -87| 316 | 216 | 100 2| -174.0 200.0 | 5.5| -478,5| 550.0
11| 166 | 228 | ~62| 239 | 143 96 1| -62.0 95,0 | 5,5 | -341,0 [ 528.0
12| 123 | 186 | -43| 181 99 82 0 0 0| 5.5| -238,5| 451.0
13 90 | 123 | -33| 137 74 63 -1 3%.0 -83.0 | 5.5| -181L.5 | 348.,5
= 14 59 90 [ -31 98 53 45 -2 62.0 -80.0 | 5.5| -170.5 | 247.5
15 22 59 | -37 58 26 32 -3| 111.0 -96,0 | 5.5| -203,5{ 176.,0
16 | -22 22 | -44 15 | <10 23 -4| 176.0 -92,0 | 5.5 | -242,0 | 126,.5
17 | =71 | =22 | -49| -356 | -54 18 -5| 245.0 =90.0 | 5.5 ] -269.5 99.0
18| -85 | =71 | -14|-105 | ~54 | -51 |-5.5 77.0 280.5 s ~70.0 | ~255,0
19 [ ~94 | -85 -9{-115 | -67 | -48 {-5,5 49,5 264,0 4 -36,0 | -192.0
20| -97 | -%4 -5} =121 | -72| -49 |-5.5 16,5 269.5 3 =9.,0 |-147.0
21| ~96 | -37 1]-323 | «71 | ~S2 }=5,5 -5,5 286,0 2 2.0 | ~104.0
22| ~93 | -98 3)-122 | -88 | 58 |=5.5} =18.5 308.0 1 3.0 | -56.0
23 | -93 | -93 0|-121 | -63 | -58 |-5,5 0 319.0 o} o) 0
2¢ | -98 | -93 -3 | =122 | -66 | =56 |-5,5 16,5 308.0 -1 3.0 56.0
25 | -97 | -98 -1]-123 | =71 | =52 {-5.,5 5.5 286.0 -2 2,0 | 104.0
26 | -9¢ | -97 3|-121 | -72 | -49 |[-5,5| -16.5 269,85 -3 -9,0 | 147.0
27| -85 | -94 9|-115 | -87| -48 |-5.5{ -49.5 264.0 -4 -36.0 | 192.0
28| -71 | -85 14 }-105| -5¢ | -51 (-5.5] -77.0 280.5 -5 -70.,0 | 255,0
29 | -22 | -71 49| -38 | -5¢ 18 -5 | -2¢5,0 -90,0 |-5.5| =269,5 | -99.0
30 22 | -22 44 13 | -10 23 -4 | -176,0 -92,0 |=5,5 | =243,0 [-126,5
31 59 22 37 58 28 32 -3 | -111,0 -96.,0 |-5.5 | -203,5 |-176,0
32 90 59 31 98 53 45 -2 | -62.0 -90,0 [~5.5| =170,5 |-247.5
33 | 123 90 33| 137 74 63 -1} -33,0 ~63.,0 [=5.5| -181,5 |-346,5
34 | 168 | 123 4% | 181 99 8z 0 0 0 |~5.5| -236.,5 |-451.0
35 | 228 | 186 62 | 239 | 145 o8 1 62.0 96,0 [=5.5 | <341,0 |-528,0
36 | 315 | 228 87| 316 | 216 | 100 2] 174.0 200.0 |-5.5 | -478,5 |-550,0
37| 422 | 315 | 107 | 411 | 316 95 3| 321,0 2685.0 [-5.5 | -588,5 [~522,.5
38 | 544 | 422 | 122 | 522 | 438 84 4| 488,0 336,0 |-5.5 | -871,0 |-462,0
39| 576 | 544 | 132 | 645 | 573 72 5| 660,0 360.0 [-5.5 | -726,0 |-%96,0
40 | 809 [ 876 | -67 | 714 | 573 | 141 | 5.5 | -358.5 7755 -5 535,0 [=705.0
41 | 539 | 609 | ~70 | 652 | 496 | 158 | 5.5 | -385.0 858,0 -4 280,0 |-624,0
42 | 472 | 539 | -87 | 592 | 416 | 178 | 5.5 | -388.5 968.0 -3 201.0 |-528.0
43 | 418 | 472 | -54 | 540 | 242 | 198 | 5,5 | -297.0 1089.0 -2 108,0 |-396,0
44 | 387 | 418 -31| S04 | 286 | 218 | 5,5 | -170.5 1199,0 -1 31,0 [-218,0
Total 2853 0} 15,843.5 -6527,0 o}
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TABLE II - STRESS ALONG POSITIVE X-AXTS IN CONCENTRIC CIRCULAR
CYLINDER WITH ASYMMETRICAI. TEMPERATURE DISTRTBUTTION
Radius Stress Relaxation Exact stresses Error® in
(in.) | function | tangentisl (1b/eq in.) relaxation
stress stress
(1b/sq in.) | Redial | Tengential | (1b/sq in.)
4 -684,300 121,012 o} 126,988 -5,976
5 -652,832 65,289 18,126 62,800 -4,511
6 -554,142 25,558 22,172 35,409 -9,851
7 -428,561 2,370 20,982 11,875 -9,305
8 -299,828 -11,372 17,673 -6,277 5,095
9 -182,297 -23,815 13,498 | -20,741 3,074
10 -88,278 -32,835 9,013 -32,929 -294
1 -26,440 -35,852 4,473 -43,542 ~7,830
12 o] -33,817 0 -53,012 -19,395

8positive signs denote relaxstlon values lsrger in absolute
magnitude than exact values; negative signs denote relaexation
values smaller in absolute magnitude than exact values.

TABLE IIT - VALUES OF a3 AND

ASSOCTATED ERRORS

a Error
13 (percent)

Exact -467 .627

Path =a -555.0 18.7

Path b -423.8 9.4

Path c -416.6 10.¢
Average of

e,b,c -465.1 .5
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TABLE IV - NUMERTICALLY CALCULATED STRESSES AND ASSOCIATED ERRORS FOR CONCENIRIC

CYLINDER WITHE SYMMETRICAL TEMPERATURE DISTRTBUTION

Radius|{Exact values|Relaxation|Exact values |5-point method|S5-point method [S-point method
(in.) | of Airy's |values of [of tangential|for tangential|for tangential [for tangential
stress Alry's stress stress using | stress using | stress using
function gtress (Ib/sq in.) relaxation exact values | Airy's func-
function values of of Airy's tion exact to
Airy's stress stress three
function function figures
(1b/sq in.) (1b/sq in.) (1b/sq in.)
Stress | Error2|Stress |Error? |Stress |Errord@
4 -467,627 -465,100 66,988 81,357/14,369} 62,620|-4368 | 60,600[ -6,400
5 -439,879 | -438,124 36,582 42,286| 5,704} 36,989 407 | 36,600 0
6 -374,651 -367,894 17,284 14,844 -2,440| 17,254 -30 | 17,600 300
7 -291,678 -281,851 3,636 -620| 4,256 | 3,627 -9 3,800 200
8 -204,799 -195,807 -6,746 -8,449| 1,705 -6,766 20 | ~7,300 600
9 -124,507 -118,135 ~-15,058 -15,969 911 {-15,054 -4 1-13,800f-1,300
10 -59,152 -56,277 -21,964 -21,588] -376|-21,965 1 [|-23,400[ 1,400
11 ~15,677 -15,813 ~-27,864 -24,845} -3,019 |-27,883 19 |[-27,400| -500
12 0 0 -33,012 -25,780{-7,232 |-32,776| -236 |-26,400|-6,600

8positive quantities denote approximate values larger in absolute magnitude than exact val-

ues; negative quantities denote spproximate values smaller in absolute magnitude than exact
values.

2612 ‘

2y

peyz2 NI VOVN



http://www.abbottaerospace.com/technical-library

« z 2193 L3 t

FEYE NL VOVH

AN

T~
]
K

B
1.

|
—
g .

[y
;
i
L3
i
:

-

&

t

]
b

H
¥
:13*

Flgure 1. - Resulis of relmxation caleulation of asymmetrical temperatiure d.istrib&bicn. Temperatures Iin %: on imer boundary,
T = 0; on outer bovndary, T = 500 + 1000 cos 6. Tempsraturs values on inbegration pathe are cbtained by averaging temperature
values at four nearest nodal pointa. 5
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Figure 2. - Results of relaxation calculstion of @7;. Values of V2¢ on integration
paths are obtalned by averaging V2¢ values at four nearest nodal points.

Vi = g1 + g2 + B3 + B4 - 4.
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Figure 3. - Results of relaxation caloulation of @y5. Values of V2¢ on integration

paths are obtained by averaging V2¢ values at four nearsest nodal polnts.

V3 =By + fo + Bz + B4 - 40.
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Figure 4. - Resulis of relaxation calculation for ¢15. Values of V2¢ on integration
paths are obtalned by averaging V2¢ values at four nearest nodal points.

VE =Py + Pp + f3 + By - 48,
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Figure 5. - Comparison of tangentlal stresses calculated by relaxation nethod with exact stresses;
concentric e¢ylinder with asymmetrical temperature distribution.
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Pigure 5. - Results of relaxatlon calculation for ‘temperature distribution in concentrig
hollow cylinder with symmetrical temperatgre distribution. Immey radius, 4 inches;
outer radius, 12 inches; immer surface, O  F; oubter swface, SO0~ F.
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Flgure 7. ~ Compariszson of tangential stresses calculated by relaxation method with exact streases;
eoncentric cylinder with symmetrlcal temperature distributlon.
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