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ANATYSIS OF AN AXTAL COMPRESSOR STAGE WITH
INFINITESIMAL AND FINITE BLADE SPACING

By H. J. Reissner and L. Meyerhoff

SUMMARY

A method of designing circular blade systems of finite spacing is
developed.

First, the theory of a flow through a system of infinitesimally
spaced surfaces is formulated by means of a continuous axially symmetric
force field which is uniform in the circumferential direction. This
force field replaces the effect of the blade system, with its hub and
shroud boundary surfaces.

Second, the force field in the space between the blades, the hub,
and the shroud is replaced in the equations of finite spacing by those
inertia and pressure terms which were omitted in the equetions of.
infinitesimal spacing. These terms will change the values of the flow
variables of infinitesimal spacing.

In order to determine these changes, a series development is used
for the velocity components and pressure functions in powers of a param-
eter function V. The series development in powers of ¥ leads to
equations of first, second, and higher orders for the determination of
increments which correct the velocity and pressure functions. In this
report only the equations of first and second order are derived explic-
itly. The solution of first order shows the important result that, at
the entrance and the exit of the compressor stage, the force vector used
for the infinitesimal spacing or, what is equivalent, the increments of
odd order must be zero at entrance snd exit. This is necessary in order
to prevent discontinuity of pressure and velocity at inflow and outflow.
This conclusion is taken into account in a detalled determination of the
flow variables of infinitesimal spacing. In this way it is insured that
in finite spacing no discontinuity appears, neither for the pressures
nor for the velocities, except across the blade surfaces.
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INTRODUCTION

The following steps are covered in the present paper in the develop-
ment of a method of designing circuler blade éystems of finite spacing.
First, the theory of a flow through a system of infinitesimally spaced
surfaces is formulated by means of a continuous axially symmetric force
field which is uniform in the circumferential direction. It replaces
the effect of the blade, hub, and shroud boundary surfaces. Second, the
force field in the space between the blades, the hub, and the shroud is
replaced in the equations of finite spacing by those inertis and pressure
terms which were omitted in the equations of infinitesimal spacing.

These terms will change the values of the flow variables of infinitesimal

spacing.

In order to determine these changes, a series development is used
for the velocity components and pressure functions in powers of s param-
eter function V. This function is in a certain way connected with the
angular distances between a system of streamlines (called "frozen" or
"fixed") and the system of streamlines of finite spacing. The frozen
streamlines, arranged at the desired spacing angle, are tgken from the
field of infinitesimal spacing and are shown not to change their
form. The series development in powers of V¥ leads to eguations of
first, second, and higher orders for the determination of increments
which correct the velocity and pressure functions. In this report only
the equations of first and second order are derived explicitly, though
8 higher development-does not present any difficulties. The solutions
of equations of first and second order are given.

In the equations of first order, which determine the increments of
the flow variables of first order, the force field and the flow variables
of infinitesimal spacing and derivatives of the parameter function
eppear. A triple redundancy of variables in these equations mekes 1t
necessary and of advantage to make appropriate assumptions for three

- redundant variables, in this case for the derivatives of V. These
derivatives of ¥ are valid for the equations of all orders. In this
report they have only been applied for the equations of first and second
order. However, only from the equations of first order the blade and
streamline surfaces and also the pressure and velocity distributions of
finite spacing are determirded in this report.

The method of this determination applies the differentlal equations
for the deformation in the angular and in the radial direction. Of the
three functions &9, ©&r, and V¥, one is redundant; &g is preferred
as the redundant function in the form of a polynomial, which serves by
means of its coefficilents to obtain an appropriate airfoil shape and the
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paremeter function . After this function V¢ is determined, the
increments of any order (e.g., Vﬁwn> of the flow variables can be calcu~
lated explicitly. T

The solution of first order shows the important result that, at the
entrance and the exit of the compressor stage, the force vector used for
the infinitesimal spacing, that is, the increments (u; and so forth) of
odd order, must be zero at entrance and exit. This is necessary in order
to prevent discontinuity of pressure and velocity at inflow and outflow.
The last part of this paper takes this conclusion into account in a
detailed determination of the flow variables of infinitesimal spacing.

In this way it 1s insured that in finite spacing no discontinuity
appears, nelther for the pressures nor for the velocities.

In the example, the circumferential veloclty aeppears as a potential
circulation, the power distribution becomes uniform, and the pressure
distribution satisfies a prescribed average compression ratio and sppears
as gradually increasing with the radius.

This work was done at the Polytechnic Institute of Brooklyn under
the sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics. ' '

SYMBOLS R

r, 9, cylindrical coordinates

u, v, W velocity components in r, ¢, and =z directions,
respectively
P pressure
o] density
dp
P enthalpy (pressure-density function) N

ky, k@’ k; Impressed force intensity per unit of mass in r, @, and =z
directions, respectively; used for infinitesimal spacing

V4 ratio of specific heats -

¥ angle indicating angular distance from a streamline surface
of infinitesimal spacing
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T = r/re

t =z/1

oA gpacing angle

Subscripts:

o] flow functions 1n a blade system of infinitesimal spacing
1, 2, 3, . .-+ orders of development in powers of y

in - (entrance) intake position at leading edges of blades

ex (exit) outflow position at trailing edges of blades

i hub redii S

e shroud radii

. GENERAL ANALYSIS

Infinitesimal Spacing

A detalled account of the analysis for .infinitesimsl spacing is given
in references 1 and 2, An outline of this previous work is repeated here
since it is necessary for the further extension to finite spacing.

It is shown in reference 1 that the action of a blade system with
its hub and shroud (which rotamtes with constant speed) can be expressed
for the case of infinitesimal spacing by a force field of axial symmetry
and circumferential uniformity. This force field is denoted by

k., k¢, ks Force/Mass

The further assumption of nonviscous and isentropic flow makes 1t
convenlent to introduce the, enthalpy function P, which replaces the
two variables p and p and simplifies the analysis. Based on the
relation S . .

3/%in = (Q/pin>7



http://www.abbottaerospace.com/technical-library

tl

NACA TN 2493 ' >

]
the enthalpy function P = LJ/'dp/p becomes

P=—2_1p/
y =1

Eliminating p, one obtains

o _[2 VT
Pin Pin

where

Py, = _ Pin
7 =1pin

The subscript ( )in denotes velues at the intake station.

The dynsmic (Euler) equations of flow are referred to e cylindrical
coordinate system (r, @, z) rotating with the constant velocity o in
which the corresponding velocity components are u, v, sand w.

The system of equations governing an axially symmetric, circum-
ferentially uniform motion, characterized by the subscript o, is given
by (see reference 1)

(&) The dynamic equations

d 2 : o3P

Uo %o Vo g -l P 2Vl + —2 = (1a)
or oz T or
o gzg- Wo gzé-+ Yo% 2uyw = ko (1p)
z T
ow dw, OP R
u Py —m ok —2 =k, (1c)
O dr dz Oz
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(b) The:. condition of nonviscous flow

kpug + kgvo + kg¥g = 0 (14)

(c) The continuity equation

o - l)Po[B(uor) . gﬂ ‘g g_?; W ;159_ -0 (1e)

r or

All derivatives with respect to ¢ are omltted, because clrcumferentially
uniform symmetry 1s required. '

(d) The Bernoulli energy integral. If the dynamic equations
(equations (1a), (1b), and (1lc)) are multiplied by u, v, and W,
respectively, added, and the condition (14) of nonviscous flow is
observed, the energy equation along any streamline is obtained; namely,

@ - (@r)? + 28 =.q;2 - (arsg)? + 2Py (1£)

where
g2 = u2 & v2 + wo (1g)

The five equations (equations (la) to (1f)) contain seven unknown
variables (uw, v, W, P, ky, ko, and k;). Therefore two variables
are prescribable. The prescription of-the enthalpy function P and
one of the velocity components u or w seems most appropriate to
solve the continuity equation (le). The procedure is shown in refer-
ences 1 and 2 and also in the example discussed in a later section of
this report.

Transition to Finite Spacing

The flow through & blade system of finite spacing, in contradistinc-
tion to the case of infinitesimal spacing, is not uniformly symmetric in
the circumferential direction. Because of this fact, the dynamic equa-
tions and the continuity equation must be complemented by the J/dp '
terms and freed from the force-field components (kr: kQ, end kgz).
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The complemented equations must be written in the following form:

The dynamic equations

w Za - 2V -~ 0Pr + OP _ 0 (2a)
dz T or
W %%.+ %g + 2um + gga = (2p)
dw , OP _ '
W o + S = 0 ‘ (2¢)

The continuity equation

dp ) dur ov ow) _
wat 4 (y = 1) P(;—S; + 5 SE) =0 (24)
where
4 _du, d v, 3
& v T dp W T
and

dur v ., ow _ -
i _— vy, = div (q)

The physical interpretation of transition to finlte spacing, by
giving up the uniform axial symmetry, may be stated as follows: The
streamlines calculated for infinitesimal spacing are no longer in dynamic
equilibrium, if the original force field is abandoned and the circumfer-
ential (3/d¢) inertia forces are added. However, one set of streamlines,
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of a number given by the required number of vlades, can be shown to
remain in dynamic equilibrium. All other streamlines will be shifted
and deforned by the removal of the original force field and the addition .
of the circumferential inertia forces and pressure gradients; this means

that the flow variables u, v, w, and P will be changed, the change
evidently increasing with the distance from the unchanged streamline.

T

T

The values of these changed variables ngy be written in the form

o
I

ug + U
vV=vy+V

Wo= Wy + W

lav)
1

where, in the enalysis to follow, the values of U, V; W, and II
are assumed to be so small that powers and products of these functions
higher than the first and their derivatives can be neglected. 1 mnis
assumption must of_course be Jjustified by the order ofmagnitude of
the results.

If, with these assumptions, equations (la) to (le) and (2a) to (2a)
corresponding to one another are subtracted, the resulting system of
equations appearS‘in the following form:

o d ' '
au Uo Yo v oIT _ _

av. Vo v U i 1 dIT
W + U W2 +2 Hvo +dr) - TV, Uy F == ko, (4Db)
°© dz Br Bz ( ° ) r; " o r ° I‘ Bq) ?
d
W 9E+-ano+waw° H_-kz (ke)

@)

dz or___ 0z oz

development in terms of the powers of the spac1ng parameter. ¥ intro- - i
duced below; it is used here only for the sake of gimplicity. .
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) ow oP oP
4TI 1 4T o o o
fog * 07 ”II<;'5;- aT> s YRt
10Ur . 1oV, W\ . '
<7-1)Po(;s;—*;sa*a—z)‘° ()

In these equations the force components ky, kg, and k, and all
other terms with the subscript o must be considered as already deter-
mined from the analysis and computation of the system of infinitesimal
spacing.

The next step of the analysis is the choice of an individual stresm-
line of the stream field of infinitesimal spacing lying fixed in the
stream field of finite spacing. On this "frozen" streamline the require-
ment will be enforced that all dependent variables (velocities and
pressures) will be equal to those in the system of infinitesimal spacing,
which means that this streamline will be in a dynamic equilibrium, As
soon as one moves away from this streamline, the changes U, V, W,
end IT and also changes of the variables r, z, and ¢ will arise
for the generation of dynamic equilibrium.

This change of variablés may now be expreséed by ¥ as an angular
barameter appesring in the following formulas:

U= Z un(r_,z)'q{n

=1
V = Zgjfvn(r;z)vn_
n=1
f (5)
W= z wn(r,z)qrn
n=1

II = ZZ: Pn(r,z)\lrn
n=1
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If the variables of infinitesimal spacing. are taken into account the
formulas above change to - N x:?...___. PR S

u=ug + wul(r,z) +—w2ﬁ2(r,£7 e .
Vo= vy + Yyvi(r,z) + ¢2v2(r,z) + ...
| > (5a)
wo= Wy o+ Yy (r,z) + Wgwe(r,z) + . .
P = P, + VP (r,z) + ¢2P2(r,z) e .
S

In the analysis to follow, only the- terms of first and second order

shall be developed.

In order to express equations (4a) to (L4d) in terms of the series
development (5a), the derivatives of equations (la) to (4d) must be
expressed as shown by the following examples: _ Sl

~
LS %g = Wglul 41 +'¢< Loy 2u2 ag)
AT _p A, %L d 67
¢ - lar ” Ilr(iar * o2 o . (6
3 _p M 2
So " Py 5o + 2\VP2 o

-

Derivatives of-the type shown above must now be inserted in equa-
tions (k4a) to (L4d). If then the terms with the factor V° =1 (first
order) and also the terms with the factor ¥l = (second order) are
collected, two systems of equations are obtained. They must then be
used to determine the values of the variables uy, vy, w3, and Pj
and the values of the variables up, vp, Wp, and Pp. There appear
also the variables Jy/Or, oV/dp, and O¥/dz, which must also be
assumed or determined, as will be shown below.

)
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Using the expressgions of derivetion as exampled above, one obtains
the following two sets of equations. .

The equations of first order of common fa.ctor 1{.r° = l are as

follows:

The dynamic ‘equations

Yo :-_ﬂf 'U.l + P- B_Ilf = - (78.) R
a . 1o | " . -
v, + P = = =K
0 d.Z 1 l T F‘) cp (Tb)
v o _ ,
v, & w. o+ P = -k (Tc)
©az 1 5 z
The energy (Bernoulli) integral based on.
kruO + kq)vo + kZWO = o K P
| | R *uoly # oy Hwgwy =0 [ T (7d)
.- e ey . - - 13 ¥’ ¥ ===
" The éoﬁtinuiﬁy éqﬁafibﬁ g "
av V.. Vi.d¥ oV
W, = P, '+ - Pilug — "+ == + =] =0 -
04z "1 (r-=1) °< 1ar = 3¢ 1 dz . (Te) i
The equations of second order of common factor ﬂ:l =V are as
follows: - -
The dynamic equations
3 _ duy du, du, vy BPl
2P W, =—— = Uy =— - W, =+ 2 — (Vs + ar -—- -—-
2% "o g 1 3r 13z = (Vo ) Buz¥s
' (Sa)
19v dvy 3, v, uy U1Vo - YoV T
2 = W, — - -— - — - 2 = + ) + ——
F2 7 % v MMy My r (vo ) r -
: B e e B e I A T B e e T B
EVEWT C—li R ouary SaaFlecasen 1T A0k {8v)
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22 3z Yo Tz p R 152 T &

(8c)

The continuity egustion

3P oP apP B dw )
a¥ _ 9 _ S _ I -1 s, 0.9
Poo dz e i Y132 Yo Iz (r - 1) l%-T-(ar T * oz *

— e —— —_— —_— DU —— 84
Po(rar+3z YRSt et Ty (84)

VARIABLES FOR FINITE SPACING

The Parameter Function v

A simple method of successive solutlons for the flow variables of
successive orders can be developed by an appropriate choice of the
partial derivatives of the parameter ¥. The choice of ¥ is arblitrary
(within certain limits}, because the four equations (equations (Ta)
to (7e}) contalin seven varisbles (nmamely, uj, Wy, P;, o¥/dr, v fog,
and 3Y/0z}. The Fifth equation (equation (T7d)} is satisfied identically
&s seen below.

The following assumptions for the redundant functions prove to
be appropriate for the blade design:
'\
v ﬁ
< = f(z,\irm,rin) |

S¥ _ .

ga; o ?, (9)
¥ _ g

or

For & single streamline V¥;_ end ry, are constant parameters, but for
s field of streamlines they asre functions of ¢ end r, respectively.
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The total derivative of ¢ then becomes

ay - _o¥
% - fEtTin) T 5,

and ) (9=}
¥ = f g (Z:’Fin’rin) dz + Comstant

The function f above will be formulated in the next section

such as to be adapted to the design of the blade profile and the stream-
line between the blades.

Variables of First Order

Ais a result of eguations (9} one obtains fram the dynemic equz-
tions (7a} to (7c)

a
— u W é = k. (102}
ay o
1% dlz ST e (10c)

These values, inserted in the energy integral (74}, as mentioned above,
setisfy it identiecally.

The continuity eguatfon (Te} furnishes the relations for Pys
namely,

P = - ;g)-. (r - 1), (11)
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which, combined with the relation for. w; given by equation (10c) yield

poou Dolr - jay (112)

Po(7 - l) - W02 dz

o ay

5 (11b)
P0(7 .- l) = Wo ’*d.Z. .

Wl’—'kz

so that first-order terms are expressed by quantities kﬁown from the
equations of infinitesimal spacing.

Boundary Conditions  for Force Fleld of Infinitesimal Spacing

To prevent flow discontinuities at entrance and exit, the values -
of the series terms of—odd powers in IV, 1like ZujV¥y, $vyV¥, and so
forth, must become zero at—entrance and-exit. By inspection of the
results of first order given above, it 18 seen readily that this condi- .
tion is satified if the values of k.., k¢, and k, of the force-field
intensity in the field of infiniteslimel spacing are zero at intake and
exit. This requires anticipated restrictions in the integration of the
equations of infinitesimal spacing. These restrictions will be applied
in a following section.

Variébles of Second brder
Bquations (8a).to ((8d) show readily the.solution for the variables’
Uy, Vo, Wp, end Pp (for the assumptions given above of g% =0,
o _ 0, and %i;—- oL ¥y ); namely, o

1 (_ duy Buo - éu T vy . BPl
z

(0]
u2 2W-O~¢' WO dz - 'Lll BI‘ - Wl az +_2 -r—' Vo,abs. - g) (128)

dv v v u UV - ULV
1 1 ‘o o} 1. 10 o'l
Qﬂb o= - Uy = - wy S - o) x-“vo,abs. __________) (12p)


http://www.abbottaerospace.com/technical-library

NACA TN 2493 15

. e g 3y »
Y2 = 2wty (-WO % STy s P 12c)
3P 3P . ap | du )
1 0 &1 T W
a1t E iE om0 ”E’l(ar * r) *
au:Lr an )
o(r or 8z - A (124)

The solutions of the first- and second-order equations with the
choice dy/dz # 0 have the advantage that the first-order solutions
are independent of the second-order solutions.

STREAMLINES OF FINITE SPACING OF FIRST ORDER

In the method applied in this paper, the streamlines of finite
spacing are derived from a finitely spaced set of infinitesimal ("fixed"
or "frozen") streamlines. For this procedure one has to consider first
the derivation of & blade profile between a pair of frozen streamlines
and secondly the derivation of free streasmlines between one frozen
streamline of the pair and one side of the blade profile. This will be
done by introducing the tangent equations of the blade and the free
streamlines in the following manner. .

Streamline Equations of Finite Spacing

The streamline equations of finite Spacing are

dr _u_ Y tu¥ _ [dro\l + i/ (132
dz W Wy + WY dz /1 + le/wo ‘
co_v_Totvav o dp 1l tyvi/vg (13b)

To
dz w Wo t W1¥ dz 1 + WWl/wo
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- If it is anticipated that Vuy, Vv, and wvl are sufficiently
small compared with unity, the equatidns above can be changed to

Adr - 1) dafgr) wofuy W
o TR T (13¢)
r - 4 a
o - To o, ae9) , 5 M, ;_q("_l i "_1) (133)
dz de dz oVo ¥o

and, after the spplication of the expressions (lOa), (11a), and {11b)
of the variables of first order,

a(er) _y (B uo kg (13e)
dz V' w2 Yo Poly - 1) - W2
a(50) _y Yo ky
T, ——Il + Jp e = —_— (13£)
°© 4z ¥ d.z R ( wog Vo By - 1) - %2)
and ' —-%E.

The sbove two eguations (equations (13e) and (13f)) alone control
the three functions of z (¥, &p, and Br). Hence one of these func-
tions can be prescribed and the others derived from it. It seems
appropriate to prescribe 39 = £(z), since 3P meinly determines the
airfoil shape (which is the primary objective).

Streamline Deformations &r and 59

Equations (13e) and (13f) may now be applied to derive, by means

of the prescription for gﬁégl, the deformation d(:r) and the func-

dz
tion of the parameter V.
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It is then advisable to introduce from equations (13e) and (13f)
the following abbreviations:

N
H, - - ks N u_e_ k,
';T:g WO PO(7 - l) - Wo2
> (1%)
5 Xz
o 2 Wo Po(7 - 1) - w2

/

The terms H, and H¢ are known functions of 2z along the streamlines

of Infinitesimal spacing. In the next section the flow varisbles of
infinitesimal spacing (kr, kKp, kz, ug, Vo, Wy, and P,) appearing
in the functions H, and Hp are determined such that the conditions

of prevention of discontinuities are satisfied at entrance and exit.

d(lo
The elimination of the expression Ilf/ ' = 1/%5& from equa-
tions (13e) and (13f) gives
d(sr) B v, Hr d(%p)
- {(Br) — = —_ 1
The integration of this equation leads to
Z
-Z
dr = eZ2 c +£ e 2Zl dz (15a)
wvhere ¢ =0 in order to meke ®dr =0 at 2z =0, and
7 = d(8p) Hp
Tz Hy
> (15b)
7 = H_T VO
2 r. W
0 Hq) o o
J
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Here 2Z; 1s an arbitrary function of z, determined by the choice of

the deformation function &g, which latter prescribes the airfoil pro-
file; 22 is a function given by the flow variables of-infinitesimal

spacing.

The function &p will be assumed as & polynomial

n=n
8¢ = Ba*(re - rin) ZE:? anzn Ba = Vip (16)

n=1

where Ny = Npyn.q &8nd the coefficients &, must be determined such

that 8¢ and OBr equal zero at entrance asnd exit and also such that the
profile boundary has the shape of an airfoil. The factor a, indicates

the angular distance of the entrance point of & blade streamline from the
next frozen stresmline, B indicates the distance of an Intermediate
free streamline, and o, + «_ = a, the spacing angle, (See figs, 1 and 2.)

The purpose of the factor (re - rin) is to make the inside of the

casing, slong which the blades rotate,; cylindrical. This is shown by
equation (15a) which explicitly written is

z _ .
Br = eZ2f e Z2Ba.(re - rin) E annzn'l E——: dz (15¢)
0

Determination of Function ¥

The paremeter function V¥ can be found by means of equations (13e),
(152), and (16) as follows:

d(1og, W)/dr = H, /dfi:r) (17)

(17a)

2 d(sr)
W=cle@L %d_z/ dzr

where at the entrance point (z = 0) 1t is seen that ¢y = Vi = Bo .
locates the leading-edge points of the blade profile, This definition is
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also true for the free streamline surfaces between one of the frozen
surfaces and the blade surface. It may be expressed in the following
menner: ¥ = Ba, at z =0 (since ¥ =cj = Ba, at z = 0), where B

is a constant varying from O to 1, thet is, from the leading edge of a

frozen streamline to the leading edge of a free streamline surface '
(0 < B <1) end to the leading edge of a blade surface for P = 1 B
(see fig. 1).

Conditions for Closing of Leading and Trailing
Edges of Blade Profiles : [ —

The streamlines forming a blade profile must intersect at the leading
edge (z = 0) and at the trailing edge (z = 1). This condition must
be formulated by 8r =0 and 8 =0 at 2 =0 and z = 1. The condi-
tion is satisfied identically for 2z = 0 if in equation (15a) the inte-
gration constant c¢ 1s made equal to zero; this is seen from equa.-
tion (15a) (if c = 0) and from equation (16). For the trailing
edge 2z = 1, one has to require that

1
(8r>z_1 = L Z exp'(-Zg) dz =0 (18a)

and L

(80) 2 = Bay(re - 7in) f (2a27) = 0 (18b)

n=l1

Both conditions must be satisfied by means of the coefficients an
appearing in the power series of 8¢ and in the function Zl'

Special Case of a Blade Profile with One Side Coinciding with a
Streamline Surface of Infinitesimal Spacing

The determination of the blade shape can be simplified by pre-
scribing ¥ = O on one side of one of & pair of the frozen streamlines;
for instence, V¥_ = 0. It follows then from equations (13a) and (13b)

that ©®r- and 8&p- are also zero for this streamline. With this
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prescription, this side of the blade profile retains the shape of the
streamline surface of infinitesimal spacing. The other side of the
blade profile must _then be approached from the other one of the pair of
frozen streamlines, which is located at the spacing angle distance a
from the first one of the pair (see fig. 2). This makes Y, =2 at
entrance and exit, so that d¢p+ and B8ry give the other side of the
blade profile by means of equations (15a), (16), and (17a). The values
of ¥ = Ba, vwhere B £1 or % 0 furnish the free streamlines between
the blades by means of equations (15a) and (16).

FLOW VARTABLES OF INFINITESIMAL SPACING WHICH SATISFY
CONTINUITY CONDITIONS OF FINITE SPACING
Boundary Conditions and Available Assumptions for Solutions
of Equations of Infinitesimal Spacing
The boundsry conditions and avaeilable assumptions for the solutions
of equations (la) to (1f) of infinitesimal spacing are given as follows
in items 1 to T: '

(1) The ratio of radial and exial velocity

(uo/wo> <<1

(2) The exial velocity w, to be constant; that is,

(o]

W = Wipn = Constant

(3) The absolute circumferential velocity to be zero at the in.take;2
that is, o
=0

= v, + ar

vabs.,in in in

(4) The fact that the enthalpy compression ratio m across one
stage differs very little from unity; thatis,
2=

m = Pex/Pin = <Pex/Pin> 7= (pex/pigo 206

25 prerotation (Vabs.,in % O) would not give asny difficulty.

ol
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so that one can write -

PO/Pin =1+e¢€
vhere ¢ < < 1. (For example, if Po,ex/Pin = 1.2,
- 0.286 _
then P, oy [Py = 1.2 = 1.052.)

(5) The function ¢ is assumed in the form

¢ = R(T)Z(¢)
with the length ratios -
I =7
Te =
z
7=¢
where
T shroud radius (constant)
44 length of & single stage

The functions R(T) and Z(f) must be determined from the boundary
conditions given below.

(6) The radial velocity u, to be zero at intake and exit; that

is, u, =0 at { =0 and { =1; furthermore, in consideration of

the conditions that P; =0 and in consequence k., =0 at £ =0

du,
and at ¢ =1, it shall be required that a-59-= O at { =0 and ¢ = 1.

(7) As a consequence of the restrictions on ky, , and k,

(see the dynamic equations of infinitesimal spacing (1la) to (1f)), due to

the requirements in items (6) and (2), it 1s necessary to impose the
following boundary conditions for the enthalpy P,; namely,

oP,
(a) 3 =0 at § =0 and 1.0, to satisfy k, = 0 at
¢ =0 and 1
dP, )
(b) == =0 at § =0, to satisfy k. =0 at ¢ =0

oF
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OP — —
(c) 559 = Py, %% = vy + amre)a T l, at ¢ =1,

to meke k. =0 at (=1

2
(4) gzg at { =0 and ¢ =1 (see equation (20a) and
item (5))

Finally, it is required that the average enthalpy rise be

(e) Maverage = (Po/bin)average =mv—at { =1 (across the
exit section)
Variation of Radial Velocity

With the relations of items (1), (2), and (4) and the length ratio
£ = z/1 the continuity equation (le) becomes

Su T Te " e
o T My

With the separation of variables for € in item (5) the integral of
the equation above is -

_ dz ¥
ur = -2.5 E% Win ° bég)

_ RE)F & + F(t) (19)
ry. :

In order 1o satisfy the condition thet the shroud shall be cylindrical
(ug,e = 0, Tg = 1), the arbitrary function F must be

oz(¢£) SN
F(t) = 2.5 =2 w;_ R(F)F dF
ELY: L/;i e

where

Te=1
JP Rr dF = Constant -
Ty
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Equation (19) is then changed to

oz

r - .
u T = 2.5 1?'W1n SE RT 47 (20).

]

The requirement of item (6) that u, =0 at ¢ =0 and =1 is .

obviously satisfied by the condition that <§E) = 0. The second
; £ Je=0, t=1
u

condition of item (6) that EEE =0 at. { =0 and § =1 is, as one

sees by differentiation of equation (20),

S%é =0 at (=0 and ¢=1 (208.)

Enthalpy (Pressure) Variation in Axisl and Radial Directions —-
The boundary condition (c) of item (7) requires that the enthalpy

oP _
derivative —2 at (=1 must be a function of the velocity ($D>

ar c:l

expressed by

— \2 -1
Pin g—; = (vo + curre> T (21)

Along any streamline, the general expression for v, is given by

the Bermoulli energy integral (1f). This equation, with the conditions
in items (1) and (4), becomes

-~ =
vo2 = -2¢P;, + (ar)ere (22)

By partial differentiation of equation (22), from one streamline surface
to another, one obtains along the stage length and for this case at the
exit cross section

de - v, _ 2
Pin =~ Vg S%Q + wgrre (22s)
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If Pyp g%_ is eliminated by means of equatlions (21) and_(22a), the

following eguetion appeafs for vo at ¢ =1:

) .
g "'_YTO' = -2ure (23)
T T
and the integral
-1
<?O)C=l =—a(wre)? + AT (232)
or
(Vo + wfre)c=l = <A/f)§=l | (23b)

The significance of equation (23b) is the fact that the circumferential
flow is & potential circulation.

The Integration constant—A must be positive since it indicates
the value of the absolute circumferentisl velocity and the moment of
momentum and also with it the torque and the power of the compressor.

It will be shown later that the required values of the-power controls the

value of the constant A.

The necessary values and conditions are now available for the
determination of the enthalpy function. In item (7) the enthalpy ratio
is given in the form

P
in

where it will be assumed that

7 = <a§ bt + ct3 4 déu-} e§5>

S0 -1+ R(F)Z(Y) | (ak)
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and where the requirements to be satisfied are ..

—_— =0 atc:o andl
ot

2 - ) -
g’—gg=o at £ =0 and 1

If from these conditions the coefficients a, b, c, d, and e are
determined, the function Z " becomes ' ' B

7 = e§3(C2 - 2.5¢ + 5/3)

so that T < (2ka)
Fo_ =1+ eR(E)g3(§2 - 2.5t + 5/3)
Pin .

The function R(T) will be determined as follows. ‘By differentia-
tion of equation (2La) with respect to T, the enthalpy gradient is
found to be . : . .

oP
P =2 = e 2 3(2 - 25t + 5/3) (2w

oP o : .
The condltion S%g =0 at { =0 4is automatically satisfied.

The value of R(¥) in equation (24b) will now be determined from

ap . .
condition (c) of item (7) for §=9 at ¢ = 1; namely,
r

oP, 2 -1

5 (o romet)E
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oP -
It is important to note here that S=2 at ¥ =1 is a positive gradient
r
because of the square on the right side (a fact necessary for the deter-
mination of the integration constants which appear belqw),

The value of- vo at ¢ =1 was given before by equation (23a);
nanmely,

— -1
Vb = Ty + AT

(23a)

Inserting this value of v, into equation (c¢) of item (7) as given

oP
above and then equating the relatlon resulting for 153 to that given by

o
equation (24b) (with ¢ = 1), then
9.139. = Ps. & 9R x Aaf-3 (2he)
ot 025
whence the value of R 1is
PigeR = -30%7% 4 Be (25)

with the integration constant—3B, which will be expressed in terms of—
the constant A, from the required average compression ratio.

The formula for P, (see equations (24) and (25)) can now be
written in the form ' '

-2
1;_:; “1- (3A2'r' - Be)§3(§2 =250+ 5/3)p Tt (26)

The formula developed for the radial velocity u, can now be
obtained after the functions R(¥) and Z({) are explicitly replaced
in equation (20) by equations (2le) and (25). If thie is done, then
equation (20) becomes

r - .
up = 12,5 = F Yot - C)EEAzloge T+ ]%e-(l - ;zﬂ Pt (2D)

T
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Finally, it must be satisfied that at § =1 the average enthalpy
ratio rise has the required value m¥*. This condition can be satisfied
by the available constants A and Be of equation (26) by integration
of the enthalpy function across the annular cross section at { =1
(taken between the radii T; and T, = 1), as shown below.

1 1 B, |
m* OnF dF = 2nF| X aF (28)
Ti,ex Ti,ex iz
where
- ry
i,ex = o

and where, from equation (26), for ¢ =1,

P

Oex

1
=] - =
Pin §=ll 6

<3A2?ex-2 - Be)Pin'l (26a.)

After substitution of equation (26a) in equation (28) and Integration
over the exit cross section, the following relation is found between
the constants Be and A:

2 = A 2
-A7log, Ty ex+ (l- T ex )(l'm*)Pin

- 2
1-74ex

Be = 6 (28a.)

Replacing the constant Be in equation (26) by the value in equa-
tion (28a), one obtains the final form of the enthalpy function; namely,

—~ ~

g

loge('f?-_’ex>

1- (fi ,_ex)

]

e}
]
=
}

A
H
+
no

- 6(1 - m*)>§3(c2 - 2.5 + 5/3)Pin-l
(26b)
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The Values of Force~Field Caomponents

The ‘formulas for the blade shapes expressed in equations (13a)
and (13b) depend mainly on the compoments kp, ko, and kg of the
force field. These components are given by the dynamlic equations of
flow equations (la), (1lb), and (1lc), after the conditions of items (1)
to (7) are taken into account in these equations. The values following
from these conditions are given for u and its derivatives by equa-
tions (27) and (28a), for € by equation (26b), and for v by the
Bernoulli equation (22). It follows then that

2
d v o+ ar ' de..
kp = Wip a:o - K‘p - ) + Pin S§ (29)
d¢
kz = Pin dz (30)

Torque and Power Calculation
The derivation of the relations needed to calculate the
torque and power of the compressor for infinitesimal spacing is given
in reference 1. This derivation may be repeated below in brief.

It is shown in reference 1 that the torque (or power) equation can
be obtained by the use of the Bernoulll energy equation in the form

d
Yo EZ(rOVO,abs.) = KgTo (31)

where

Vo,abs, = Vo * &¥
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and . S

Equation (31) represents the torque per unit of mass acting on a stream-
line element.

The mass of a volume element is given by

po(2nr dr az) ’ (32)
Hence the differential torque acting on an element is given by
My = po(2nr ar 4z )ker (33)
or, by means of equation (31),
dMg = poWo(2mr dr dz) Lfrv (33a)
o¥o! 3z\tVo,abs.

Since the flow is steady, the mass flow through any cross section per
unit of time is constant. Hence equation (33a) becomes

d a
dM, = (Constant) E(I'Vo,abs ) dz = 2mryy ArynPinVin E(I'Vo,abs.) dz
(33b)

so that the total torque - My - follows by integration from eqpation (33b);
nemely,
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or, explicitly,

2 2
My = Kpiriwin<rin,e = Tin,i )(rvb,abs.)z=l (34a)

where in equation (3ke) it is taken into account that (Vo upg,)z—0 = O
as previously prescribed. The value of Vb,abs> st z =1, ({=1),
is derived by means of equation (23b) and is given in the form '

<fo,abs.>§=l = (Vo + dr)C=l =.A<r/re)§=l'l

Replacing v, gy in equation (3ka) by its value given in equation (23b)
and introducifig nondimensional radii ratios T = r/re and Ty, = rin/fe

into equation (34&), one obtains the following relation for torque M,
and power:

-

- 2
Mo = ﬂpinwinre3(l =~ Tin,i )A
e (34b)

Power = Mw/550 hp

o
It is observed from equation (34b) that the power is uniformly dis-
tributed across the exit section. Equation (34b) also shows that the
torque, required to drive the compressar, depends upon three quantities,
namely,

s 2 2
(a) The entering mass flow T n¥inTe <i - Ting )

(b) The shroud radius 71 (which is constant)

(¢) The absolute rotational velocity (Vo,abs.)zzz = (Vo + wr)zzz

at the exit station, dependent by equation (23b) on the
constant A = F(vy + ar)e.;.

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., June 2, 1950
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Figure 1.~ General case. .
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