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TECHNICAL NOTE 2536

CRITICAL COMBINATIONS OF BENDING, SHEAR, AND TRANSVERSE
COMPRESSIVE STRESSES FOR BUCKLING OF
INFINITELY LONG FLAT PLATES

By Aldie E. Johnson, Jr., and Kenneth P. Buchert
SUMMARY

Three-dimensional interaction surfaces are presented for the com-
putatlion of elastic buckling stresses for an infinitely long flat plate
subjected to combinations of bending, shear, and transverse compression
in its plane - a loading approximating that occurring in a shear web.
Surfaces are presented for two sets of edge conditions: both edges
simply supported and lower edge simply supported, upper edge clamped.
Presént results are in good agreement with data for one-load and two-
load limiting cases previously published.

INTRODUCTION

A loadipg that occurs in the shear webs of thin wings of aircraft
is a combination of bending, shear, and transverse compression, the
transverse compression being induced by spanwise bending of the covers.
The buckling strength of an unstiffened infinitely long flat plate under
such a loading is computed approximately in the present paper by the
minimim-potential-energy method.

The assumptions made for the analysis are that the plate is elastic
and infinitely long, and that the bending moment, shear, and transverse
compression are constant along the length of the plate. The lower edge
is assumed to be simply supported and the upper edge, either simply
supported, elastically restrained agalnst rotation, or clamped. The
neutral axis for bending stress is assumed to be halfway between the
upper and lower edges.

The results of the analysis are given in the form of interaction
curves and the detalls of the solutions are given in the appendixes.
A comparison of the present results with existing analyticel data for
one-load and two-load conditions is made. No previous data are known,
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however, for a supported or restrained flat plate subjected to combina-
tions of bending, shear, and transverse compression.

kg, ks g

m,n,p,1,J

FpsResfe

SYMBOLS

arbitrary coefficients used with subscripts

plate flexural stiffness per unit width, inch-pounds

=3
1001 - u2)
width of plate, inches

Young's modulus of elasticity, pounds per square inch

nondimensional buckling stress coefficients under system

of combined loadings: (kB = EEZSE); (?T = ;2§£>3

2
ocb +

T

integers, also used as subscripts (single prime (') and
double primes (") are used with m, n, p, and i to
indicate odd and even imtegers, respectively)

force per unit length acting in middle plane of plate in
x~direction, pounds per inch

force per unit length acting in middle plane of plate in
y-direction, pounds per inch

shear force per unit length acting in middle plane of
plate in x- and y-directions, pounds per inch

__B . o\
<RB ) (qB)cr)’ (ﬁT Tcr>’

buckling stress ratios:
%

-5
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S stiffness per unit length of elastic restraining medium,
inch-pounds per inch per quarter radian

t thickness of plate, inches

W deflection normal to plane of plate, inches

XY coordinates

B ratio of half wave length of buckles to plate width (A/b)

€ nondimensional restraint coefficient h%?); 0 for simply
supported edges, « for clamped edges

71:7o Lagrangian multipliers

A half wave length of buckles in x-direction, inches

OB bending stress at buckling at edge of plate under system

of combined loadings, pounds per square inch

T5 00 shear and transverse compressive buckling stresses,
respectively, under system of combined loadings,
pounds per square Inch

(0B) cpsTers (0C) e plate buckling stresses due to each type of loading
applied alone, pounds per square inch

81,65

and arbitrary coefficlents
B1:80

K Poisson's ratio

RESULTS AND DISCUSSION

Results in chart form are presented for the case of both edges
simply supported and for the case of lower edge simply supported, upper
edge clamped. The solution, however, for the case of lower edge simply
supported, upper edge elastically restrained against rotation is given
in the form of a determinambtal buckling equation. The loading and edge
conditions considered herein are shown in figure 1.
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Both edges simply supported.- Combinations of hending, shear, and
transverse compressive stresses which cause buckling of an unstiffened
infinitely long flat plate with both edges simply supported were
calculaeted in the manner described in appendix A.

The results are shown by a three-dimensional Interactlon surface
in terms of the stress ratios Rg, Ry, and Rz in figure 2. Buckling
occurs for any stress combination which corresponds to a poinmt on or
outside the interaction surface. 1In order to convert a combination of
values of RB, R;, and R, dinto the corresponding stresses, the

buckling stress for each type of loading applied alone must be known.
These buckling stresses, as given by the present solution, are as
follows:

For pure bending
(UB)cr = 23.90 % (1)

for pure shear

)

= 5.36 —= 2
Ter b2‘b (2)
and for pure transverse compression
- ™D
(Uc)cr b2t (3)

(Equation (1) checks the value for (O'B)CI. given by Schuette and

McCulloch in fig. 9 of reference 1; equation (2) checks the value
for Tcp given by Timoshenko on p. 361 of reference 2; equation (3)

1s essentlally the Euler column buckling equa:l:ion.)

The interaction surface is symmetric about the planes R, = 0
and Rpg = 0. The shape of the Ilmteraction surface is suggested by its
traces on planes corresponding to constant values of 0, 0.5, and 0.8
for the stress ratios. (For example, the shaded planes in fig. 2
correspond to Ry = 0.5 and Ry = 0.5.) The flat portion of the
interaction surface at R. = 1.0 indicates that appreciable bending
and shear stress may be applied to the plate without reducing the
critical transverse compressive stress. In the region Ry = 1.0, the

plate buckles esgentially as an Euler column.
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In figures 3, 4, and 5 the interaction surface is described by
two-dimensional plots which are more suitable for obtaining quantitative
Information. The calculgtions indicate that where a sharp change in
slope occurs in an interaction curve, with the curve becoming vertical
(for example, the curves for Ry = 0 and 0.5 in fig. 4 and Ry = 0.8

in fig. 5), the buckle wave length undergoes a sudden transition from
some finite length when R, < 1 %o an infinite length when Ro = 1. On

the other hand, a gradual transition to verticality in an interaction
curve (for example, the curves for R, = 1.0 in fig. 3 and Rg =0

and 0.5 1n fig. 5) indicates a gradual transition to an infinitely
long buckle wave length.

Additional information regarding buckle wave length is given in
table I together with a tabulation of the critical combinations of
stress coefficients.

As noted previously, the one-loasd limiting-case solutions are in
good agreement with previously published data. In addition, the inter-
action curves for two components of loading check with existing data:
The curve for R; = 0 in figure L agrees well with figure 3 of refer-
ence 3. The curve for Rp = O in figure 5 is practically idenmtical

with the curve for € = O in figure 3(b) of reference 4. No known
data, however, are available to check the present shear-bending inter-
action curve (fig. 3). ,

Lower edge simply supported, upper edge clamped.- Combinations of
bending, shear, and transverse compressive stresses which cause buckling
of an infinitely long flat plate with the lower edge simply supported
and the upper edge clamped were calculated in the manner described in
appendix B.

The results are shown by a three-dimensional interaction surface
in terms of the stress ratios Rp, R;, and R, in figure 6. In

order to convert a combination of values of Rp, Ry, and Ry into

thelr corresponding buckling stresses, the buckling stress corresponding
to each loadlng applied separately must be known. These single-load
buckling stresses are as follows:

For pure bending

. 7°D
©8)cy = 39-96 5 (1)
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for pure shear

T, = 6.637 ZD (5)

b2t

and for pure transverse compression

(%) oy = 2045 ;“2-2:& (6)

The value of the numerical coefficient in equation (4) is about 5 percent
lower than the value given in figure 9 of reference 1 because more terms
are used in the present solution of the deflection function. The value

of the numerical coefficient of equation (5) is about h% percent lower

than the value given by the approximation suggested in reference 5. This
approximation 1s determined as the geometric mean of the two values of
the coefficient determined for an infinitely long flat plate with both
edges simply supported and with both edges clamped. Equation (6) reduces
to the Euler column buckling equation given on page 89 of reference 2
when the conversion from plate stiffness to column stiffness is made.

The general nature of the interaction surface is similar to that
for the plate with simply supported edges (fig. 2) with some significant .
differences. Because of the unsymmetric edge conditions, the surface
is not symmetric about the RB = 0 plane sinte posltive and negative

bending moments have different effects, but the curve is symmetric about
the R; =0 plane. The perfect flatness at R, = 1.0, which was
observed in the Interaction surface for the case in which both edges

are simply supported (fig. 2), does not occur in the present case. The
surface, however, is sufficienmtly flat in the region of R, = 1.0 to

indicate that, if an exact solution could be obtained, it would probably
lead to a perfectly flat portion.

The bulging out of the Interaction surface indicates that the
application of a positive bending moment (positive directions shown
in fig. 1(a)) actually increases the buckling strength of the plate
with regard to the other two types of load. This increase in buckling
strength indicates that the beneficial effect of the tension on the
simply supported edge is greater than the detrimental effect of an
equal compression on the clamped edge.

Projections on the coordinate planes of the traces of the planes
shown in figure 6 are shown in figures 7, 8, and 9. Quantitative
information is more readily available from these figures.
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Some information regarding buckle wave length 1s given in table II
together with a tabulatlon of critical combinstions of stress
coefficients.

As noted previously, the single-loading limiting-case solutions
are 1n good agreement with previously published data; however, no direct
comparison for the interaction of two components of loading can be made
for the condition of lower edge simply supported and upper edge clamped,
because this condition apparently has not been studied previously for
the particular loading cases considered herein.

Lower edge slmply supported, upper edge elastically restrained,-
No calculated results are presented for the case of lower edge simply
supported, upper edge elastically restrained; however, the stabllity
determinant derived in appendix A and given in table IIT can be used
directly for solutions. The rotational-restraint parameter ¢ s&ppears
only in the term Tqg4.

CONCLUDING REMARKS

Three-dimensional interactlion surfaces have been presented for the
computation of buckling stresses for an infinitely long flat plate
subjected to combinations of bending, shear, and transverse compression
in its plane - a loading epproximating that occurring in a shear web.
Reduction of the present solution to cases of one load or comblnations
of two loads glves results in good agreement with previously published
data. The interaction surfaces have been presented for two sets of
boundary conditions, namely, both edges simply supported and lover edge
simply supported, upper edge clamped. A theoretical solution has also
been derived for the case in which the lower edge 1s simply supported
and the upper edge is elastically restrained against rotation, but no
computed results are presented for this case,

Langley Aeronsutical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., July 30, 1951
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APPENDIX A

THEORETICAL, SOLUTION FOR UPPER EDGE EITHER SIMPLY

SUPPORTED OR EILASTICALLY RESTRATNED

Details are presented of a minimm-potential-energy solution for
the buckling stresses of an infinitely long flat plate, with the lower
edge simply supported and the upper edge either simply supported or
elastically restrained against rotation, subjected to combinations of
bending, shear, and transverse compression in the plane of the plate.
The deflection function used satisfies, term by term, the conditions
of zero deflection and zero moment at the lower edge and zero deflection
at the upper edge. Lagrangian multipliers are used to satisfy the rota-
tional boundary condition at the upper edge.

Upper Edge Elasticelly Restrained

Deflection function.- The deflection of a plate subjected to the
loads shown in figure 1(a) is assumed to be of the form

o (>}
= = any = ' ony.
W = sin — E a, sin =¥ + cos 3 g by sin (a12)
n=1,2,3,... n=1,2,3,...

where ap and bn are constants. The rotation 6 of the upper edge
(y = b) is assumed to be expressed as

X X
6 = 61 sin = + 6, cos 5~ (A2)

where 67 and 6, are constants.

The deflection function represenmted by equation (Al) satisfiles,
term by term, the boundary conditions

Wy = 0 (A3)

Wy =0 (Ak)
B (85)
(aye)y=0
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The compatibility condition

- v _
<$>y=b -0, (46)

is satisfied by the deflection function provided the following con-
stralning relatlonships are satisfied:

2]

18
6 =% Y na (-1)%
1 b pa,53,...

- (AT)

n
b, (-1)
n=l,2,3’ e e

6, =X
27y

_ Potentlal-energy expression.- The potentisl energy F for an

. infinitely long flat plate, with the lower edge simply supported and
the upper edge elastically restrained against rotation, buckling under
stresses in its plane is (from reference 6 and p. 325 of reference 2)

2 82w>2 32y 32 ( 3% )2
— + —] -2(1 - ) - 5% dx dy +
fol | =i
A A
v P A AG
2[:: 5(02)y ax + %f;ofxw qu(&) * 55) *

Ny ov a—"’de ay (a8)

F =

vl iw)

ox dy

where, for the present case,

N, = ( -%)oBt

N}' = —Uc’b
Nky =Tt
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Substituting expression (A1) for w and expression (A2) for 6
into the energy expression (A8) and performing the indicated integra-
tions gives

N 2 2
=X E 1, 2n” A o) . bEeBfp 2 2
F-—E <B3+ 5 +Bn)(an +bn)+ 5 (61 +62)+

n=1,2,3,...
by m
M __m
B am8n (m2 "~ n2)2 +
n=1,2,3,... n=1,2,3,...
> mn
DI}
m=1,2,3,... n=1,2,3,...
3 = =
ko' Z oo Z .
T a “n~ + bnzn +
n=1,2,3,... n=1,2,3,...
3y > _m _
bk s amby -5 (A9)

m=1,2,3,... n=1,2,3,... (m t n always odd)

where

kp, k., X desired stress coefficients

€ rotational-restraint coefficient

o'l

B =

Minimization by the method of Lsgrangien multipliers.- By the
principle of minimum potential energy, F (equation (A9)) must be
minimized with respect to all independent undetermined deflection
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parameters in this equation. Inasmuch as the parameters ap, by, 61,
and 62 are not independent but are related through the constraining

relationships (A'T), this minimization can be accomplished by means of
the method of Lagrange's undetermined multipliers. The function

o]

(o]
n

b 51,53, .. n=1,2,3,...
(410)
1s set up. The potentlal energy F 1s a minimum when
§G=88G=BBG=BBG=BG=8G=O (A11)
2y b, 6, 6, 07, 872
(3=1,2,3, ...)

Performing the differentiation on the paremeters ap and b, gives

00

da 1 5 o I 16ky emia
Sar = 2a;l—+ 1= - B i= + 17| + -
m=1,2,3,... (
16k bymi yymi(-1)1
T > * 1 = =0 | (A12)

m=1,2,3,... ™ -
(m * 1 must be odd)
(1=21,2,3, ...)

6 1 2 2 y| | 16k 2miby,
gq-%i[—§+(§-skc)i + g1 + 5 -
B IIEB img - 125
5,3, ...

16 mi 1(-1)31 ‘
LS5 8y +72"( ) “ 0o (A13)

(m * 1 must be 03d)
(1=1,2,3, ...)
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Minimizing with respect to 6; and 6, gives

dc _ W0y

891 = Tgr -7.=0 (Alll')
2
@2 = ﬂ?-l‘ - 72 =0 (Als)

Minimizing with respect to the Lagrangian multipllers gives the following
original constraining relationships:

(=]

¢

GpTetE g eear-o (416)
n=1,2,3,...

oG x . n

=t E S (-1 =0 (a17)
n=1,2,3,...

Equations (A12) to (Al7) comstitute an infinite set of homogeneous
slmultaneous equations in the unknowns apn, bp, 71, 79, 67, and

2. These equations can have other solutions than the trivial one of
any bpy « « - =0 only if the determinant of the coefficlents of the
unknowns is zero. The vanlshing of this determinant is therefore the
condition for buckling; stress combinations which cause the determinant
to vanish cause buckling of the plate.

Instead of using equations (A12) to (AlT) directly, it is advanta-
geous first to combine them and then to reduce the system of equations
to a simplified form. This simplification is possible because each of
the equations represented by equation (Al2) contains either a gingle
odd-subscript deflection coefficient (am bn) or a single even-subscript
deflection coefficient (ap, bp); the same fact is true of equations
expressed by equation (Al3). This fact affords the possibility of
solving for and eliminating each even-subscript deflection coefficient
in terms of all the odd-subscript coefficients; the reverse 1s also
true. The number of equations required for an accurate solution is
thus reduced approximately by one-half. The simplification just
described is carrled through in detail in the following discussion.
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When odd and even values of the subscripts are designated by single
and double primes, respectively, the set of equations (a12) mgy be broken
Into the following subsets:

=]

6 m"i'e
o]+ (2 - Brg) (1102 + p(an)t] 4 2 Z et
: l;3 <B kC) 8 n"=2,4,6,... [ - (1)

oo

8k,r bmum"i ! 71].[1 1 '
— 5 5~ 3 =0 (a12)
(m")= - (1)

m"=2,1,6, ... (1t =1, 3,5 .. .)

1 2 ny 2 wylt 16kp m'i"am‘
aqu—?;+(-B—-BkC)(i) + B(i ):, + —— , 5+
B n“p 1y2 . (1m)2

w55, (0% - 60

oo

8 b_m'i" "
k’l’ m! 71 =0 (Al2)"

) +
7 - (m')< - (1")2 2b
m'=1,3,5;- - (1" =2, 4, 6, . . .)

Similarly, equations (Al3) can be written as

bR+ (2 - Be)(11)2 + B(i!)ﬂ 4 2ok Z P! -
i 1:53 (B ) e an)a _ (i,)QJZ

m"=2,4,6,...

wmit !
8k_‘. 8 _ Yondi -0 (Al3)'
. (m)2 - (112 @
m=2,4,0y...
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o

6 e
biﬂ[%"(E—ﬁkc)(i")hs(i")ﬂﬁ:ﬁ I

2|2

b2 B 12 - (i"

: m'=1,3;5, .+ [(=")

X Wt et (A13)"
" w5, @2t (1" =2, b, 6, . . .)

Solving equations (Al2)! for a4y and substituting imto equations (Al2)" gilves

ui _2__ ny2 nl-l-
%L%B Bkc>(i) + 81 )J R

16k = m'i" / 1 16k, p'm' o
B Z w2 - (13 (2 ) (m) 2+ 8y K& Z [me- )P
m'=1,3,5, ... ka3 B p"=2,L,86,...
Bk et A Z bpim! 4" i )"
" ol @ @nE ® Cw5E.., Tt @
(i" =2, 4 6, . . .)

9¢Ge NI VOVN
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Substituting the velue of by: obtained from equatioms (413)' into (Al2)" gives the following
equations in which all the deflectlon coefficlents have even subscripies:

u-J-'_+ g.-
aiE3 (B

g ) (1% + a(i")ﬂ E

9£G2 NI YOVH

lng mt" é/ 1 ) 1ng Z | P"m'i{)" _
=p ty2 | (4 1 /2 )2 ' nep M2 _ tr1y2|8
w55, Km) (17 KB3+(B Bkc)(m) + Bl "2, 1,5, ... Ep )€ - (m ):l
% i A Ak s
T nme _ 2 Zb
g, g, ... (B (m')
B_i,‘r, m'i" / 1 . 16k byup"m’ .
1ye _ o0 1.2 2 ' nep "me _ 2le
m'=1,3,5,... (m')=-(1") 3+(B Bkc)(m) +p(m') o255, .. EP ) - (m ):]
8k aPnP"m' L7 7" o (126
T (p")e _ (ml)E 2b Zb
p"=2’)-|-, TR (i" = 2, l‘-, 6, P -)

CcT
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Treaeting equations (Al3)' and (A13)" in s similar menner gives

biﬂ[ﬁ-g + (% - Bkc)(i")e + a(i")ﬂ +

16113 i "I / l6kB Z b np "m!

2 " | 2
ﬂQB m'=l,3,5,... () - )ﬂ \B (E Bkc)(m )2+B(Iﬂ )ll- " p" l:‘p )2 (m' )]
Bk'T B-PuP"m' . 721'011'

" Pu=2,;’_“ (Pﬁ)2 - (m')2 b

8k_ i " / 1 16kg Z p'a! apn
I t n\ 2 ’ - . o =
m'=1,3 5 . (m )2-(1 ) %+(§--Bkc>(m')2+ﬂ(m‘)h ﬂaﬁ P"='2,ll-, . [P )2-(111 )2]2

8k b wp'm! mm’ f
- P +7l,£,b +72211=0 (A19)
2 2
,6, (P") = (m') (i“ - 2, 1|-’ 6, .. .)

9T

otée NI VOV
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Eliminating 61 between equations (A1lk) and (Al6) and then eliminating all velues of &p:
by meanes of equations (A12)' gives

»

o

_ hep 1 1 _ Lo s -
3 Z— i L+ (% - B]":c:)(lm')z + plmn) || B p"=2;,... BP")E ) (m,)e:le

m'=1,3,5,... B3
L.
8 = bp"p"m' 7’ zw
_;rkl. D P + 1 + ‘)-FbGB a'P"P" _ ?,l =0 (Alll-)l
" (Pn)E - (m,)E eb n'3
P =2, 14,0, p"=2,ll-,6,...

Similarly, eliminating 6, between equations (Al5) and (Al7) and then eliminating all the valuer
of b,: by means of equations (Al3') gives

- M m' 1 - 16k3 anP"m' N
e 1,(2 "2 b | =28 2
w'=1,3,5,... [3* (2- pig) (m')2 + () £"=2,5,5,... [(2m)2 - (m'_)"j
Sk app"m! 7oma' | Ypep 9 "
- e ) = + 3 byrp" - 7, =0 (415)!
P =2 . P . p"ﬂe, 90y 0

Solution by stebility determinant.- Equations (A18), (A19), (A1k)', and (Al5)' constitute
e system of homogeneous simultaneous equatlons contelning as unknowns 7y, 7o, &and all the
even-gubecript deflection coefficlents. Egquating the determinent of these equations to zero

glves the buckling criterion in the form of a determinantel equatlion.

Y¢

9£Ge NI YOVN

LT
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In order to determine the combinations of Xk, ki, and ks which

satisfy the equations, the values of two of the stress coefficlents and

B can be substituted into the determinant of coefficients, and the value
of the third stress coefficient which satisfies the determinantal equa-
tion can thus be obtained. A graphical minimization of the thlrd stress
coefficient with respect to B gives the combinations of minimum
buckling stress coefficients.

Upper Edge Simply Supported

Solution by stability determinant.- The stability determinant
derived in the preceding section and given In table III can be used for
the solutlion when both edges are simply supported. The last two rows
of the determinant are first multiplied through by the restraint coef-
ficient ¢. Equating ¢ +to zero (for simple support) then reduces all
the terms in these two rows to zero except for the elements on the
principal diagonal. The subdeterminant consisting of the first six
rows and first six columns of the original determinant can then be
factored out and equated to zero. MNumerical calculations yielding the
results in table I were made by using the first four rows and columns
of this factored determinant. Half wave lengths of buckling are given
in the table together with the critical combinations of kg, kg,

and ks which satisfy the determinantal equation. These calculations
are the basis of figures 2 to 5.

Special calculations for Rp = 1l.- Consideration of the physics of
the problem suggests the possible existence of a flat portion in the
interaction surface at Rz = 1 and parallel to the BRgR, plane. In

order to investigate this region, kg = 1.0 was substituted into the
fourth-order determinant, and critical combinations of kg and kg

were obtained. These combinations led to the curve for Rp = 1.0 in
figure 3, which checks closely with the results of reference L.

»
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APPENDIX B
THEORETICAL SOLUTION FOR UPFPER EDGE CLAMPED

Detalls are presented of a minimm-potential-energy solution for
the buckling stresses of an infinitely long flat plate, with the lower
edge simply supported and the upper edge clamped, subjected to combina-
tions of bending, shear, and transverse compression in the plane of the
plate. Calculations were first made by using the stability determinant
based on elastically restrained edge deflection functions given in the
previous appendix, with ¢ = o, After the calculations were completed,
however, 1t was discovered that greater accuracy for the same amount of
work was obtainable by using a deflection function which satisfies,
term by term, the zero-slope boundary condition at the upper edge as
well as the zero-deflectlion, zero-moment conditions at the lower edge.
The zero-deflection condition at the upper edge was satisfied by use of
Lagrangian multipliers. This solution was used to calculate salient
points on the interaction surface (values given in table II) which were
then used to adjust the originslly calculated interaction surfaces. The
adjusted values appear in figures 6 to 9.

Solution Based on Elastically Restralned Edge Deflection Function

The simplified eighth-order stability determinant derived in appendix A
and given in table IIT was used to calculate the interaction surface of
a plate, with the lower edge simply supported and the upper edge clamped,
by setting the rotational restraint coefficient ¢ equal to o« and by
determining the values of kp, k., kp, and B which cause the deter-
minant of coefficients &, bp, 77, and 7, to vanish. The results
of these calculations have been adjusted on the basis of the calculations

derived in the next section.
Solution Based on Clamped-Edge Deflection Function

Deflection function.- The deflection of the clamped-edge plate
shown in figure 1 is assumed to be of the form

x© 00

n X 5
a, sin -T‘;)Z + cos % b, sin % (B1)

w = 8in %?
n=l,3,5’ cv e

n=1,3,5,...
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where the series coefficients an and bn are constants. The deflec-
tion ¢ of the upper edge is assumed to be expressed as

g =49 sin.%? + @o cos %% (B2)

where ¢l and ¢2 are constants.

The deflection function (Bl) satisfies, term by.term, the boundary
conditions

Wy=0 = 0 (B3)
CIR
y=0
(%) =0 (85)
¥y=b
The compatibility condition
Vy='b = ¢y=b =0 (B6)

is setisfied by the deflection function provided the following con-
straining relationships are satisfied:

: -l
he )
n=1,3,5,..-
. - (B7)
. pl
gy = b(-1)2 =0
n=1,3,5,... J

Potential -energy expression.- The potential energy F for an
infinitely long flat plate, with the lower edge simply supported and
the upper edge clamped, buckling under stresses in ite plane (p. 325 of
reference 2) is
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N
22 | 2%\2 22 3% (a%)aj'
IR =2 R = B
ow\2 ow\2 awaw
o oo B 1 o B

where, for the present case,

=
I
g

ol =

N, = ( - %Z)aBt
N}" = -Uct
Nﬁy = 7%

Substituting the expression (Bl) for w into the energy expression
(B8) and performing the indicated integrations gives the expression to
be minimized as

“’ 2
F = kyn?p E ﬁ%+ bn)*“@ﬁ’ 2 z aam?
1,3,5 ... & n=1,3,5, .. m=1, 3, . n=1,3, y - (n + m)

D ZZJE"-LZZ—%"M
 (n+m)2 (n - m)

m=1,3,5; .- - 1=1,3,5,... (n - m) md,3,5: . n=1,3,5,.. mel, 3,5, -0+ 191,35,
n‘mwé @lﬂoa '“M
2 - 2 0
3
ks z ey E 2%, + X232 Z ——;z - (-1)EEFEl
1,3;55 - n=1, 3555.0- m=1,3,5; .. I'“l:3:5;

HE L ALE e L
TP\, 555, m1,3,5, 1,55, - "5

n an2 + i n"'bn2 (29)
n=-1,3,5, n=1,3;55+-- (2 # n?)

Wwhere

EB,kT,kC desired stress coefficients
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Minimization by the method of Legrangian multipliers.- By the
principle of minimum potential energy, F (equation (B9)) must be
minimized with respect to all independent undetermined deflectional
parameters in this equation. Inasmuch as the parameters a,, bp, @1,
and ¢2 are not independent but are related through the constralning
relationship (BT) , this minimization can be accomplished by means of
the method of Lagrange's undetermined multipliers. The function

= n-1 n-1
G=F -7 en(-1) 2 -7, bo(-1) © (B10)
n=1,3,5, ... n=1,3,5,...

is set up. The value of ¥ will be a minimum when

oG Jee; oG oG
= = = =0 (B11)
Baj Bb'j 871 872

Performing the differentiation on the paremeters a, and b, gives

S S T
65.;-0—2}:31[25 12+1I-kBT[2B m (i_m)2
m=1,3,5) .. m=1,3,5;...
i4+m i1-m
( : odd> ( 5 odd)
kcﬂh53 N 2im im
—g— 2a112 + K 73p° bp|—=—75 - (-1) -
m=1,3,5,... i® - m
) B + ) + 16 - 71("1) (Bla)

(i2 # m@)
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and
3G 2. Pi 2b §?: Zby,
=0 =2k —= 4 hkpn? _— —om
EE; B™ P i2 + Hgh (i + m)2 (1 - m)2
m=1,3,5,... m=1,3,5,...
(i s odd) (i == odd
. v
. g3 2im -
R I S b
m=1,3,Dy... m
nhb 1 Eig 31lL ié—
| (.ﬁ_ P B LB ) (B13)
(12 # wP)

Minimizing equation (B10) with respect to the Lagrangian multipliers gives
the constraining relationships

m-1
.%G-l- =0 = - ap(-1) © (B1%)
m=1,3,5,...
. m-1
_%G; =0=- by(-1) 2 (B15)
2 m=1,3,5, ...

Equations (B12) to (B15) conmstitute an infinite set of homogeneous
simultaneous equations containing the coefficients apn, by, 77,
and 7p. The simultaneous solution of this set of equations gives- the
combinations of buckling stress coefficients, the accuracy of the solu-
tion depending on the number of equations solved simultaneously.

Solution by stability determinant.- Equations (B1l2) to (B15) con-
stitute a system of homogeneous simultaneous equations containing the
unknown deflection coefficients a, and b,. Equating the determinant

of these equations to zero glves the buckling criterion in the form of
a determinantal equation. In order to determine the nontrivial combina-
tions of kp, k;, and k; which satisfy the equatlons, values of two
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of the stress coefficients and P can be substituted into the deter-
minant of coefficients and the value of the third stress coefficient
which satisfies the determinantal equation can thus be obtained. A
graphical minimization of the third stress coefficient with respect

to B gives the combinations of minimm buckling-stress coefficients.
The results of the calculations based on the llhth-order determinant of
coefficients (table IV) are given in table II.

The calculations for the infinitely long flat plate with the lower
edge simply supported and the upper edge clamped, based on the stability
determinant for the elastically restrained upper edge (table IIT), were
graphically adjusted on the basis of calculations given in tdble II and
are the basis of figures 6 to 9.
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TABIE T
CAICULATED BUCKLING STRESS COEFFICIENTS AND HATLF-WAVE-LENGTH RATIOS

FOR INFINITELY LONG FLAT PLATE WITH BOTH EDGES SIMPLY SUPPORTED

kp ke k, Mo
23.90 0 0 0.7
22.82 2.00 0 .8
18.38 k.00 0 .9
9.60 5.14 0 1.1
0 5.36 0 1.2
22.66 0 .5 T
21.50 2.00 .5 .8
18.50 3.26 .5 1.1
1k.10 k.00 .5 1.2
0 k.53 .5 1.5
21.82 0 .8 T
20.32 2.00 .8 .8
17.00 3.10 .8 1.3
12.00 3.68 .8 1.8
o] 3.89 .8 1.8
0 o} 1.0 o
21.22 0 1.0 .9
20.70 1.00 1.0 .9
19.27 2.00 1.0 1.0
17.79 2.50 1.0 1.2
15.30 2.85 1.0 2.0
1k.1h 2.88 1.0 -

%
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‘TABLE IT
CAICULATED BUCKLING STRESS CCOEFFICIENTS AND HALF-~-WAVE-LENGTH RATIOS
FOR INFINITELY LONG FLAT PLATE WITH IOWER EDGE SIMPLY

SUPPORTED AND UPPER EDGE CLAMPED

kp L3 kg A/
39.96 0 0 0.5
36.51 4,700 0 .6
20.00 7.963 0 1.1

0 6.637 0 1.2
38.30 0 1.0225 .5
0 4,818 1.0225 1.6
37.25 0 1.636 .5
35.80 2.700 1.636 .6
20.00 k.578 1.636 2.8
0 3.193 1.636 2.3
36.52 0 1.922 .6
20.00 2.789 1.922 6.0
o] 1.832 1.922 k.o
0 0 2.045 ®

:
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TABLE IIT

STABILIYY DETERMINANE FOR INFINITELY LONG FLAT FIATE WIZE THE LOWER EDGE SIMPLY SUPPORTED

AND THER UPPER FDGA BLASTICALLY FESTRATIND ACGATROT ROTAFION, BUBJECZED TO RERDING,
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TABLE
STABILITY DETERMINANT FOR INFINITELY LONG FLAT PLATE,

CLAMPED, SUBJECTED TO BENDING, SHEAR,

a1 bl 8.3 b3 a5 b5 37
s By, o -2, - 2 = -2
0 &s+é:—k°——31 K - o, 2 170
o I ﬁ+i.2?3-33 0 - LBy o
= 23 ° %*9‘23%-33 s -2t %",ﬁ
j?; 17:?7 2 71? 2‘ka“i“’f'a&’ﬂs e
o a e, B, em
= - = R, - B e Wi
%; Egﬁ _E;g_ 'E? % —ngﬁ -2kp
3 w3 om = m g
# T -F - = el !
3 o = me m e =
2 mm o m em 3 me o
-1 1] 1 ] -1 ] 1

o
)
[
o
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Iv

VITH THE LOWER EDGE SIMPLY SUPPORTED AND THE UPPER EDGE

AND TRANSVERSE COMPRESSIVE STRESSES
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- — - - - - —~— > '—_>x
Pt =7
(a) Loading and coordinates.
Rotdational
Simple  support lastic  restraint Lo oumped
Simple support Simple support Simple support

SNACA

(b) Edge conditions.

Figure 1.- Schematic description of loading and edge conditions for
infinitely long flat plate. Positive directions indicated by arrows.
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Figure 2.- Interaction surface for buckling of infinitely long flat plate
with simply supported edges subjected to bending, shear, and transverse
compressive stresses.
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Figure 3.~ Shear and bending interaction curves for buckling of an
infinitely long flat plate with simply supported edges.
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Figure 4.- Transverse compression and bending interaction curves for
buckling of an infinitely long flat plate with simply supported

edges.
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Figure 5.- Transverse compression and shear interaction curves for
buckling of an infinitely long flat plate with simply supported

edges.
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Figure 6.- Interaction surface for buckling of an infinitely long flat
plate with lower edge simply supported and upper edge clamped,
subjected to bending, shear, and transverse compressive gtresses,
as shown in figure 1.
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Figure T.- Shear and bending interaction curves for buckling of an
infinitely long flat plate with lower edge simply supported and
upper edge clamped.


http://www.abbottaerospace.com/technical-library

NACA TN 2536 39

m — 10
|0 — ]
] | —

/ 2 : "

l! / = / 8

| -

| / avde

l L '

l .24 Rg

/
e
<,/ .h

\ ‘ AERE RN 0
1.0 8 6 a 2

Re ‘ZEE;:;7

Figure 8.- Transverse compression and bending interaction curves for
buckling of an infinitely long flat plate with lower edge simply

supported and upper edge clamped.
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Figure 9.- Transverse compression and shear interaction curves for
buckling of an infinitely long flet plate with lower edge simply
supported and upper edge clamped.
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