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By F. Edward Ehlers and Hirsh G. Cohen
SUMMARY

The flow of a compressible fluid through a channel having locally
supersonic regions is studied by using the Tricomi equation in the hodo-
graph variables as an approximation in the sonic region to the equation
of flow of an 1rrotational, inviscid gas. It is shown that this is
equivalent to studying the flow of a gas having a pressure-density rela-
tion matching the isentropic relation to the third derivative st the
gsonic point. A one-parameter family of solutions of the Tricoml equa-
tion is used which provides symmetrical accelerated-decelerated flows.
The variation of this parameter alters the Mach number at the center of
the throat, the velocity distribution and gradient along the center.
streemline, as well as the shape of the channel, that is, the curvature
of the bounding streamline.

As speclfic examples, flows are computed having Mach number equal
to unity and to 0.86 at the center of the throat section. Constant-
velocity lines are plotted and it is found that the velocity gradient
becomes zero gt three places along each streamline outside of a limiting
streamline for values of the parameter greater than zero (M < 1 at
center of throat section). For the parameter equal to zero (M =1 at
center of throat section), the velocity gradient along the streamlines
and the curvature is discontinuous at ell points of the two character-
istics which meet the center streamline.

Other solutions to the Tricomi equation are discussed which héy:be

used to formulate channel flows. The exact nature of these flows has
not yet been investigated. ’

INTRODUCTION

In the investigations of the effect of free-stream Mach number on
the 1ift and drag of an airfoil in a uniform stream, it was found that
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the 1ift did not begin to decrease or the drag increase until the free-
stream velocity exceeded the critical free-stream velocity, that is,

the velocity for which the local velocity of sound is Jjust attained at
some poinmt of the body. Thus it appeared that, for free-stream velocities
1n between the critical free-stream velocity and the velocity for which
the 1ift characteristics changed rapidly with Mach number, there might
exist about the body a locally supersonic region which contained no shocks,
although such shock-free flows have never been observed experimentally.
A similar phenomenon occurs in the study of flows through a gradual
constriction. When the exit pressure of a nozzle is decreased, the
mean velocity at the narrowest cross section and also the total mass
flow are increased. However, when the mean velocity at the constriction
reaches the local velocity of sound, the mass flow reaches a maximum;
and the flow then changes from an accelerated-decelerated flow to one

in which the fluid is always accelergted in passing through the nozzle.
Further decreases in the exit pressure fall to increase the mass flow
but only introduce shocks into the supersonic side of the nozzle to
satisfy the conditions of conservation of mass, momentum, and energy.
One question which occurs regarding such a process is: Do there occur
isolgted regions of shock-free supersonic flow in the neighborhood of
the wells before the mass flow reaches the maximum and the flow becomes

purely accelerated?

This work was done at Brown University under the sponsorship and
with the financial agsistance of the National Advisory Committee for
Aeronautics.

SYMBOLS
X, ¥ Cartesian coordinates (z = x + 1y)
u,v velocity components in x- and y-direction, respectively
V4 ratio of specific heats
- 1
B o1
aq Mach angle

T = q@2/28 (1 = 1 corresponds to limiting speed)

velocity vector

o] magnitude of velocity vector
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e inclination of velocity vector with x-axis

2r(1 - )P

]
[
i

1-(28+ 1)7

Tpo = Bl

21(1 - 1)
c local speed of sound normalized to speed of sound in

still air

o] density of fluid normalized to stagnation density
v specific volume
P pressure of fluid corresponding to density p
Pg critical pressure (pressure at s = 0)
M Mach number (gq/c)
g = 2.1120s*

1 + 1.230ks*

(2p+1)~1 B
2T
-
s = (2 X?)l/3
o} 1 7
P velocity potential
stream function

¥' = oV = (1.45320 - 0.8466ks)¥
P conjugate potential to V¥' (by equations (6))

symmetrical stream function given by equation (19)

¥ stream function given by equation (15)
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w = tan‘l -2M
62 + 3(53 - 503)
1
By = [(o, cos 2 - 9)2+ (a, sin € + J\.)E]g
a 8in %'+ A
Q = tan-1
a cos % -0 -
& = tan~1 >
%o
4 .3 2
g=\|=82+20
9

no= \l(e - iA)2 ¢ 5 g3 —~(6 - ir)

EARTY INVESTIGATIONS OF LOCALLY SUPERSONIC REGIONS

The first attempt to comstruct a flow through a channel having
locally supersonic regions was made by Taylor in 1931 (reference 1).
He expanded the velocity potential in a double power series about some
central point of a two-dimensional nozzle whose walls consisted of two
arcs of circles. Taylor was able to obtain several flows which were
symmetric in the velocity about the line of centers of the two circles.
The values of the maximum velocity on the straight streamline for these
flows were bounded by a certain velocity for which the local velocity
of sound on the wall wes Just barely exceeded. From this result,
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Teylor concluded that the potential flow through a channel with locally
supersonic regions was impossible. GOrtler (reference 2), however,

felt that Taylor's conclusion was unfounded, for if more terms of the
power series were taken and the boundary conditions on the wall satisfied
to more terms in the series .expansion, then the difficulty which Taylor
encountered in determining the coefficients might not exist. G@ortler,
using much of Taylor's computations, satisfied one less relation of the
boundary conditions than Taylor and thereby had two free parameters to
vary instead of one. One of these parameters represented the wvelocity
at the center axis of the throat of the nozzle, and the othér, the
velocity gradient along the center axis at this point. By varying the
velocity gradient GOrtler obteined a sequence of channels which exhibited
loceally supersonic regions near the channel walls at the constriction.
As the velocity gradient was increased, the locally supersonic region
gradually extended toward the axis, When the local velocity of sound
was attained at the axis, the flow became identical to Taylor's unsym-
metrical flow through a Laval nozzle., GOrtler showed that the locally
supersonic region cannot extend to the center axis 1f the velocity
gradient is to be continuous along the center streamline, When the
sonic velocity is just attained on the axis, but not exceeded, then the
condition of continuity of the gradient will require a zero gradient at
the sonic point. Under this condition the following theorem, proved by
Gortler, shows that the sonic line must be a straight line and the
curvature of the wall at the throat must be zero.

Theorem: ILet an Inviscid flow of a compressible gas
be given which is symmetrical gbout the y = 0 axis and is
analytic in the neighborhocod of a point x = x5 and y = O.
Further, suppose that the local velocity of sound is attained
at this point of the center axis and that the velocity gra-

dient vanishes; that is, u(xo,O) =1 and %ECXO,O) = 0.

Then it follows necessarily for all y's in the neighbor-
hood that u(xo,y) = 1, %E(xo,y) = 0, and v(xo,y) = 0.

Plows having locally supersonic regions in which the sonic velocity is
Jjust reached on the center axis, therefore, will not be analytic in the
neighborhood of the center-axis point of the throat. Such a flow has
been computed by Tomotika and Tamads and a similar flow -having symmetry
about both horizontal and vertical axes 1s glven in this work. The
veloclty gradient in both flows has a jump at the center of the nozzle.

The work of Tomotika and Temada (reference 3), using an approximate
gas law, and of Frankl (reference 4), GOrtler (reference 2), Oswatitsch
and Rothstein (reference 5), Fox and Southwell (reference 6), and
others, using power series, already indicates strongly that solutions

e e = e ¢ = e - = e ot = A o e S < = TE s ST ST e = e
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which have locally supersonic regions for the exact flow equations do
exist. Recognition must be given, of course, to the lack of knowledge
about the convergence of the power series, and to the fact that the
Tricomi equation which the Japanese authors usé approximates the actual
gas only in a small neighborhood of the sonic velocity. Yet, the fact
that both methods give flows having locglly supersonic regions clearly
points toward a similar result from the exact equation for an isentropic
compressible, inviscid fluid. But the existence of these solutions by
no means settles the matter. It is to be noted that "existence" is
used in the mathematical sense., Actually, all experimental results
(Liepmann (reference 7) and Frankl (reference 4)) show that irrotational
flow bregks down soon after the appearance of the lower critical Mach
number (Tsien and Kuo (reference 8)). None of the experiments shows
locally supersonic regions of any appreciable extent without shocks.

GENERAL PROPERTIES OF A LOCALLY SUPERSONIC REGION

Frankl (reference 9) and Nikolsky and Taganoff (reference 10) have
made some genersl investigations of the properties of the locally super-
gonic regions without shocks. Frankl (reference 9) showed that the

- symmetric flow over an obstacle which is symmetric about two perpen-~

dicular axes is uniquely determined by the boundary conditions on the
portions of the arcs DFD' and EGE' in figure 1 which lie outside of the
reglon defined by the two pairs of characteristics BD and BE and B'D’
and B'E' and the conditions gt infinity. The segments of the body DE
and D'E' between the characteristics then depend upon the rest of the
body and the free-stream Mach number. Thus it appears that symmetric
flow with supersonic regions does not exlst for an arbitrary body,
although for a given free-stream Mach number there might well be a
large class of profiles for which such flows do exist.

The results of Frankl can be shown more rigorously and easily by
making use of the following uniqueness theorem proved by Tricomi
(reference 11):

In a domain bounded by a curve in the subsonic region
with its termini on the sonic line in the hodograph plane
and two intersecting characteristics drawn from these ter-
mini, the solution of the Tricomi equation is uniquely deter-
mined by the values prescribed on the subsonic arc and on
one of the characteristic segments bounding the domain.

The cheracter of the flow through a nozzle having locally‘supersonic
regions is shown in the hodograph plane in figure 2. If the value of
the stream function is given on the arc BCD and the segment of the
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axis OAB and the characteristic ED, then the solution is gilven uniquely
inside the region BCDEOB. In the physical plane, this means that the
solution is given uniquely in the region A'B'C'D'E'0'A' (fig. 3) since
the arc OA in figure 2 maps into the line 6 = 0 (0'A' in fig. 3) the
line AB into the center streamline, and the characteristics DE and EO
into the Mach lines D'E' and E'0O'. The same thing can be shown for
A'O'G'H!'I'J'A' since symmetry is assumed., Since the values of 6, q,
and ¢ are known on the two Mach lines E'O' and O'G', then.the solution
is determined inside the quadrilateral E'L'G'O'. Thus the flow field
is entirely determined by the boundary conditions on the arcs C'F'

and M'I', and by the velocity distribution on the center streamline JB'
and on C'B' and I'J'.

The fact that, for an inviscid flow which has locally supersonic
regions, the boundary cammot be chosen in an arbitrary manner actually
has little significance in the flow of real gases. In such flows, there
exists a boundary layer near the walls and a pertinent question regarding
locally supersonic regions may be stated as follows: Does the boundary
layer adapt itself so that locally supersonic regions can occur without
shocks, or are shocks always present in locally supersonic regionst

Nikolsky and Taganoff have discovered some of the properties which
a locally supersonic region in an inviscid flow free of shock waves
must have. Briefly these properties are as follows:

(1) The slope of the contour at any given point in the locally
supersonic region is the arithmetic mean of the slopes of the velocity
vector at the points on the transition line which are the termini of
the characteristics originating from the given polnt of the contour.

(2) If one moves along the transition line in such a way that the
region of subsonic velocities lies on the left, then the velocity vector
will always rotate clockwise.

(3) If, in the supersonic zone, a segment of a characteristic of
one family is given such that the characteristics of the other family
originating from points of this segment extend to the transition line,
then the inclination of the velocity vector and its magnitude are '
monotonic functions along the given segment of the characteristic.

(4) The magnitude of the velocity along a rectilinear section of
the profile in a supersonic zone must decrease in the direction of flow.

(5) Prandtl-Meyer flow between two characteristics of one family,
with the characteristics of the other family rectilinear, cannot be
completely realized up to the transition line in the finite region.
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(6) Characteristics of the first family which originate from points
of a rectilinear section\of the profile cannot extend to the transition
line, but must instead terminate in a compression shock.

Nikolsky and Taganoff also discuss the possibility of the Mach lines
forming an envelope in the supersonic zone. They show that if the solu-
tion to the flow over a body is found which satisfies the boundary con-
ditions then the Jacobian of the transformation from the hodograph plane
t0 the physical plane cannot vanish on the boundary, since the curvature
of the streamline must be zero when J = O, By using the property of
statement (3) above they show that if the Jacobian does not vanish on
the boundary then it cannot vanish in the locally supersonic region in
the flow field outside the body. They give as the criterion of break-
down the relation . .

where ¢q 1is the velocity magnitude, 6 +the angle of inclination of the
contour, and «; the Mach angle associated with the local Mach number,

What Nikolsky and Taganoff failed to notice, however, is that the above
equation is the condition that the streamline representing the body be
tangent to a characteristic in the hodograph plane. If the derivatives
with respect to 8 and g of the stream function are finite, then the
streamline will have infinite curvature at the point where the relation
above is satisfied. What Nikolsky and Taganoff have actually shown may
be stated more precisely in the following form:

Theorem: If, along the portion of a streamline lying in
a local supersonic region of flow, there exists no point at
which the curvature becomes infinite, then there cannot exist
any limit line inside the supersonic zone lying between the
given streamline and that streamline which is Just tangent
to the transition line.

However, if one considers the continuation of the flow pattern then one
may find & streamline for which the curvature is infinite and hence the
Jacobian J = 0. Nikolsky and Taganoff were unable to show that J =0
on the transition line was an impossibility under the conditions of the
theorem above. Friedrichs (reference 12), however, showed that, under
the hypotheses of the theorem above, infinite acceleration and infinite
curvature of the streamlines could not occur on the transition line
between the two streamlines mentioned in the theorem. In investigating
the proximity to breakdown of a potential flow over an obstacle, it
seems advisgble to study the continuation of the flow into the region
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inside the body and investigate how near .to the body streamline lie the
cusps of a limit line, If 1limit lines lie near the body, then it is
probable that a slight change in the boundary ‘or an increase in the
free stream would result in an inability to satisfy the boundary
conditions. ‘

APPROXIMATE HODOGRAPH METHOD FOR TRANSONIC FLOW
. INVOLVING SOLUTIONS TO THE TRICOMI EQUATION
In this discussion an approximation to the compressible-flow hodo-
graph equations will be used in which the Tricomi equation replaces the

usual second-order linear equation for the stream function. In the
notation of reference 13, the equations

Pg = T1¥;
(1)
o = -To¥g

1-(28+ 1)t 1- M2

‘ or(1 - T)B+L e
exact linearization of the equations of irrotational motion of an
inviscid, compressible fluid. If a new variable

where Tq = 27(1 - 7)~B and Tp

represent an

(2p+1)~1 _
- LELJL;ELE’dT

*—
8 o7

T)

is introduced into eguation (1), the equations

Po = Vg

(2)

R o . emreemm e e e A mam o R w7
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1 - M2
p2
equation for V¥ results when ¢ is eliminated from equation (2):

are obtained, where a*(s¥*) = . Then the following differential

Voxgx + W¥(s¥)¥Ygg = O (3)

The general forms for two simultaneous differential equations in
two independent varisbles which reduce to the Tricomil equation have been
developed by Loewner (reference 14). One such form will be considered
here. Iet ¢ and ¢ be defined by the relations

_ 1 7
¥y = Earq@
! ()
L gy = s0p¥p
a )

and let a transformation of the dependent varigbles be given by

¥ o= an¥

@ls = “7%; Ps > ‘ (5)
: _ 1 daoy

Pl = -—= g + —
2] o) e * 35 5

On eliminating ¢' from equetion (5), it can be seen that, for com-
patibility with equation (4), the quantity w; must take the form

@y = as + b. When equations (5) are substituted into equation (%) the
results are

Vg = 9'g
(6)
¢,S = _wae
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Elimination of ¢' from the above equations leads to the Tricomi
equation .

Ylgg + B¥'gg = O , (7)

Now equation (4) may be written in the form of equation (3) by the
introduction of the independent variable s¥* defined by

v

st = | £_ 4 constant = —= .
wle b(as + b)
if
b6s*
0¥ = —m—_————
" (1 - abs*)?
- M2
The function w* cean be made to approximate 3;—2;1— in the neighbor-
p

hood of the velocity of sound best by determiningzthe two constants so
that the first two derivatives of w* and l—:§M— coincide. From

p
this, with 7 = 1.4, the results
“
ot = 9. ko0ks¥ i
(1 + 1.230ks¥)”
> (8)
s - 2.1120s*
(1 + 1.230ks*)
and
¥ = (1.45320 - 0.8u466ks)~1y (9)

are obtained. The relation between s and s* 1is shown in figure k4
and tabulations of s, q, 1/q, 1/p, s¥, and w; are given in.
tables I and II.
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EXACT EQUATION OF STATE LEADING TO THE TRICOMI EQUATION

This reduction, which consisted essentially of changes in the2

dependent and independent varisbles and an approximation of la:E}L-
p

to the second-order term in its power-series expansion in terms of 8%,
may be regarded as producing the exdct equation of flow for a gas having
a somewhat altered pressure- density relation. This would correspond
to viewing the KArmén-Tsien or the Chaplygin epproximation for the hodo-
graph relations as the exact equations for a gas having a pressure-

density relation of the form p = A + %5) Using Bernoulli's equation in
differential form, the equation .

2

1-M 2,3 (10)
p2 ds*

1 - M2

is obtained, where v = 1/p. If the approximation a*(s*) for T
P

is now used, a differential equation for v 1is obtained whose solution
yields the relation for p ‘s a function of s* for the new gas.
Although the equation is nonlinear, it is of the Riccati type, and can
be solved either by expressing v as & power series in s* or in closed
form by making a suitable substitution for the dependent variable, Since
the behavior of the flow near s* =0 1is desired, the power-series
expansion was developed and it was found that the specific volume could
be expressed as

%:15wu-gw&ﬁ+sﬁwuﬁﬁ_3auﬂyﬁ+8&wu#ﬁ_

203.32(s%)7 4+ . . . (12)

The first four terms agree with a similar expansion of l/p for the
isentropic pressure-density relation with 7y = 1.k.

Using the relation between s* and g (equation (11)) and =
Maclaurin expansion for l/q, the series expression for the velocity is

- 1.0954 + 1.7280s% + 1.7199(s%)2 - 3.9340(s%) ¥ + 6.7097(s%)5 -

e

9.5639(s%)6 + . . . ' (12)
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From this and Bernoulli“s equation an expression may be obtained for -the
pressure as follows:

D - pg = 0.8333s% - 1.3145(s%)2 + 0.6912(s%)3 - 0.3816(s*)* +
1.0939(s*)7 - 1.3948(s*)6 + . . . ' (13)

Equations (11) and (13) then constitute the pressure-density rela-
tion leading to the Tricomi equation. These expressions give agreement
with the usual isentropic relations up to the third derivative of P
with respect to p at the sonic velocity.

However, the use of a power series to obtain l/p is hampered by
the fact that the series converges very slowly. As an alternative
method, the Riccati equation may be solved in closed form. As usual

this involves a substitution of the form v = £ = XL ip equation (10),
u ,

p
which yields

(1 + cs*)2u" = d X s*u

3

where c¢ = 1.230% and d = 9.420%4 are substituted for convenience.
Letting ’

u = (i + cs*)w(n)

where |

dl/BB*

1l + cs*

leads to the differentisl equation i - NMw = O, This is the well-
known Airy equation and a linear combination of its solutions together
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with boundary conditions on l/p, that is, at s¥ = 0 &nd % = 1.57744,
provides the result |

1.230k

1
P 1+ 1.230ks*

2/3 ] 2/3
.- E /31, /5(e) - 0.19636%/ 12/3(§£|

(1 + 1.230k4s%)? E1/3Il/3(g) - 0.196351/31_1/3(§£|

vhere

£ = 1.6118s* 3/2
1 + 1.230Lg*

and Iv(§) is a Bessel function with imaginary argument in the notation
of Watson (reference 15). The quantity & Dbecomes imaginary for super-
sonic values of speed (s* < 0), and if ¢ 1is defined by

¥ = (1:6118s 32 the relation for 1/p in the supersonic range is
1 + 1.2304s*

-

1.2304
1+ 1.230ks*

1.
p

~ ~ 2/3 2]
2.1176 [g To/5() - 01968 3, (t7)

- ,
(e 2e0® |25 @) - oase sy 50)

where J,(%) is the Bessel function of the first kind. The func-

tiomps q@ and M may also be computgd in the same manner and they are
found to have the form
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-0.1667

q:

1/3

(1 +~l.23011-s*)[§ I, /3(8) - 0.196351/31_1/3( gZI

W2 -1 9. h20ks*p?
(1 + 1.23011-5*)5\

Thus again the state quantities have been found for the present
hypothetical gas in terms of s*. This pressure-density relation has
been compared graphicelly with the usual isentropic relaetion for
7 = L4 (see fig. 5). The curves are almost coincident in the range
p =0.42 to p =0.72. This corresponds to a Mach number range of 1.33
to 0.85, For values of s* near zero, the curves plotted for Mach num-
ber as a function of s* for the two pressure-density relations agree
quite closely (see fig. 6). For large values of 8%, however, the

approximation curve departs from the usual isentropic curve p = p7/7,
since the slope of the hypothetical pressure~-velocity relation decreases
more rapidly then that for the iséntropic curve (see fig. 5). '
" HODOGRAPH SOLUTIONS YIELDING ACCELERATED-
DECELERATED CHANNEL FLOW
Solutions for the Tricomi equation (7) which produce an unsymmet-~
rlcal accelerated-decelerated channel have been given by Tomotika and

Tamade. (reference 3), Falkovich (reference 16), and Ehlers (refer-
ence 13), Consider a solution which has the form

Vo(s,0) = -(1%1—[(\192 + ,91_"55 - 9)1/3 ,-. (\192 + g g3 + 6)1/3:| (14)

Tomotika and Tamada noticed that this function remained s solution
when (6 ~ i)\) is substituted for 6. In fact, if the function

¥2(5,6) < Re - V(e, -m)R a3 (o - 1x):|1(3 _

- 3
l](e - 1024 g 83 + (0 - ni,l/ (15)

- - - - P TTITIT s AN ad s s e e e et irm o e Yt e e = e v m ——t e e -
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is considered, a stream function results vhich has a brench~point sin-
gularity of the one-half power at s = (—i— k2)1/3 =8, and 6 = 0. This

branch point in the subsonic stream may be said to "generate" a channel
flow with locally supersonic regions having a Mach number at the nar-
rowest cross section determined by A. Of the other properties of the
function it mey be observed that, when s >s, and 6 = O, then

Y = 0. It would appear that +v71(s,6) has a line of one-third-order
branch points along s = 0. However, this branch point may be elimi-
nated by writing the function in the form

| » ~1/3
Ee - i)\.)2+-l§"-s3- (6 - 1x)2:|,/

(16)
| 1/3 .
N(e- i).)2+-g-s3— (6 - 1>.£| /
1/3
;¥ = Re H(G-il)2+§s3~ (G-ixﬂ -
3
[ 1/3
H(e - iM2 4 g 83 - (6 - nEI
‘ (&)1/3
= Bl'-_——9' cos & S (17)
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where ) . : )
v ' ) ! N /61
. - 1
51=[(“‘f°5§'9)2+(“81n%+7\')2] 1

ul ;
@ = \J(g s3 -2 4 92)2 + 122

a sin g~+ A : > (18)

a Cos % -0

Q = tan-1

tan~L M ~229
§s3—)\.2'+ 02

e
I

-

Since ;1 does not vanish (the choice of sign for the one-half-order

branch point is such that this is insured) it can be seen that the sin-’
gularities along & = O are removeble, The observation may be made
that ' ’

)

Wl(sye) +,wl(s’;9) = ¥(s,0) ' N :t19)

is a symmetrical function of 6, and it is this function which shall be
used as the stream function. The function ¥ has been plotted in Ffig-
ure 7 for A = 0.050912. This corresponds to s = 0.18 at the center
of the channel or a maximum Mach.number on the center streamline of 0.86.

For sufficiently large negative values of s (supersonic flow), g%
becomes zero af a point above the 6 = 0 axis as well as at 06 = 0.
This indicates the flow In the supersonic region will have streamlines

along which the velocity gradient chgnges sign more than once. This
can be shown from the following analysis. A series expansion of ﬁe

for constant s sabout 6 = O 'has the form

% = (Y%0)o0 0 * o(e
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From the hodogrsph, it is apparent that for s > 0.18 +the derivative
¥g is positive for 6 > 0. Along a streamline for which ¥p does

not vanish for a value of 6 > 0, the value of Eea ihen will be
positive in the neighborhood of the line 6 = O since ¥y 2 0 for
6 2 0. The limiting streamline of those along which the velocity gra-

dient does not change sign more than once is the streamline which passes
through the point on the s-axis for which ﬁee vanishes. This was

found to be ¥ = 0.762 for s = -0.132. For s < -0.132 and hence
¥ > 0.762 the value of ¥g for O > O in the neighborhood of the

line 6 = 0 is negative; for s> -0.132 and ¥ < 0.762, {4 is

positive. (See fig. 8(a).) The resulting effects on the constant-
velocity curves in the physical plane are shown in figure 8(v). It is
apparent from the figure that g% = 0 does not occur along the charac-
teristics passing through s = 0 and 6 = 0. This remark is mede at
this point since in the limiting case as A —> O this characteristic
does become the locus of the changes in sign of velocity gradient. This
is discussed in more detail in the section Limiting Case When Sonic
Velocity Is Just Reached on Center of Streamline.

The breakdown of isentropic, potential flows is usually associated
with the appearance of limit lines. Some remarks have already been made
about criterions for breakdown, but here it will be sufficient to remark
that Tollmein (reference 17) and Tsien (reference 18) have shown that
inviscid potential flows cannot be continued across limit lines. ILimit
lines occur when the Jacobian of the transformation from the hodograph
to the physical plane

. 2
J (E}%r) = %(s%z + ‘FSE) (20)

becomes zero. This may only occur for 8 < O since 8, ¥g, and ﬁs

are real and the Jacoblan is always positive for s > 0. Geometrically,
a necessary and sufficient condition that 1limit lines occur is that the
streamlines and the characteristics be tangent in the hodograph plane,
provided the derivatives ¥g and Vg remain finite. As a matter of

fact in this case the 1limit lines are the locus of the points of tangency.

The hodograph of the function ¥ was tested graphicelly for limit
lines by seeking points of tangency of the streemlines using a "portable"
characteristic curve, drawn on tracing paper and moved across the super-
sonic field. From figure 7 it is apparent that no limit lines occur for
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that portion of the 5,0, field which has been computed. Using this
test, it is not certain that limit lines do not appear somewhere else
in the supersonic portion of the flow, but since the choice of bounding
streemline has so far been left open this is not an important problem.

CALCULATION OF PHYSICAL COORDINATES

To obtain the coordinstes of the flow in the physical plane the
condition of irrotationality and continuity may be put into the
following form:

dp =udx + v dy
%d¢=(-vdx+udy)i

These equations may then_be written as

dz=——(dqa+—d¢> ’- : (21)

Expressing ¢ and ¥ as functions of s and 6, and then replacing
the partiasl derivatives of ¢ with those of V¥ by equation (L), the
following differential expression for the complex position coordinate
is obtained:

s % 216 (—wlz‘lfs N % 1];6) ao + (sa)l%ye + %xys) as (22)

With this formula it is possible to show that if V¥ is an even .
function of 06 +the flow pattern in the physical plane is symmetric.
For this purpose, it is first of all necessary to prove that the line
6 = 0 in the hodograph plane maps Iinto a straight line in the physical
plane. Setting 6 = 0 and d6 = O in equation (22) leads to

dz = l( 29y + = urs) ds (23)
Q ® o0

e i — e e e o A o e e A A e < s s o e T —— ~
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The stream function V¥ in equation (19) is an even function of 63 hence
=0 for 6 =0. Then

.3 -1
% ‘I;J 6=0 "5 ﬂe:o : (24)

This is purely imaginary; and 6 = O then is seen to map into the
y-axis. If the integration for the streamlines is carried out along
each streamline from the point 6 = O, the obvious differential relations

¥ = 0 =¥, ds + Vg 48

¥
ds = - —Q-de

Vs
lead to the simple formula, where <-= Constant,

8 2

sy 2
2= | L eie(xys 4.8 )de (25)
o q Vg

Since (see preceding section) the Jacobian of the transformation from
the s,0- to the x,y-plane is never zero, and since 1t may be represented
as

2
] 5,0/  pg?\ "
Equation (25) becomes
e

ié

e

zZ = - e J ae
¥s

0 Y=Constant
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or

6
x=|- folo} Q;s 6 4J
0 8 ¥=Constant
e
y = pq s;n 6 J ae
3]
0 V=Constant

Now for ¥ in equation (19), the relation p(68)q(8) = p(-6)a(-6) along
any single streamline, since ¥g and ¥ are even in 6, implies that the
same value of 8 occurs for 6 and -9. Thus for x .the integrand is
& product of four even functions of 6: J, pq, Ty, and _cos 8. There-
fore, x d1tself is odd. In a similar manner, y 1is seén to be an even
function of 6. Since x 1s an odd function of 8 for a given value

of 8 and y 1is an even function of 6, then the channel is symmetric
about the line 6 = 0.

The mapping from the hodograph plane back to the physical plane
mey be.accomplished by integrating equations (21) or (22) along either
constant ¢ or constant s lines. Since either one of these inte-
grations must be carried out by numerical or graphical methods, the
choice depends on the method involving the least amount of labor.’

If the integration is performed along a streamline, then from equa-
tion (21) the physical coordinates are found by integrating

dz = % e1® ap

If ¢ were known as a function of s and 6 along each streamline
this would yield a very simple method for computing the flow. However,
the differential d¢9 may be replaced by the differential of ¢' with
an additional term involving V¥ and ony. Multiplying the second of
equations (5) by ds' and the third by 46 and adding the two relstions

lead to
© gt = -2 g+ ' ¥ ae
oy ds
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Thus the physical coordinates are found by integrating

dz = —% elf do' + % elby ap ~ (26)

along V¥ = Constant.

Now the function @' cén be computed from equations (6) when V'
is known. Differentiating V¥j' with respect to 8 gives

‘ -2/3
V,.' =Re lB(e - 102+ g3 (8 - 1>;J : 282 —I -
3 9
34(6 - 102 . g s3J

WwH

: s
*6—1M2+£s3+(9-iw / 252
7 34(9 San2 s kg3

9

This expression may be simplified by multiplying the first term inside
the braces by unity in the form

B ‘ T12/3
ﬁ - ik)2\+§s3+ (6 - 1iA)

-] 2/3
w_im2+§ﬁ+(e_n)

Jee 1]V

and by multiplying the second term by & similar factor with the posi-
tive sign before (6 - ilA) changed to minus. This leads to
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.
2
o\2/3 I:\J(e-ik)2+gs3+(6-i}\.) /3
' = Re £ 2 -
e -m 3 :
q(e - 102 & 3 83
-
2/3)
N(e - 102+ g g3 - (o - 1){'
2 L
3 \l(e - 1A)2 + g 83
Since V¥,.' = @g', the potential ¢' becomes
2 : 2
A | R TR M

(28)

2/3
ua-n)2+gs3-(e-1x{| + £(s)

The arbitrary function of s results from the integration with respect
to 6. That f(s) = 0 will be readily epparent for the functions '

and @' must obey the relation

q’s, = _S‘b’e
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Thus, differentiating equation (28) with respect to s yields

Ps' = l(2)2/3 Re %B(e - 1A%+ g 83 4

3\L
-1/3
(6 - uﬂ 2s° +
3\#9 - 02 4 g s3
-1/3
2 _ 2 & 3 _ _ 3 22
3&(9 )< + 5 s (e 17\.1

3\‘(9 ET L -19*- &3

Employing the same procedure as on VYg' leads to

[}(e -2 ke3 (6 - 1|3

+

q(e - 102 + % g3

[J(;— ix)2+%s3+ (6 - :’LA.EIJT/:3

\l(e - iA)2 s g &3

The expression on the right side can be readily recognized as -syg' as
required. The potential @' corresponding to V' given by equation (17)
is then '

. _1ls® 2/3 , 29
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If for constant s the function V¥' is an even function of 6,
then ¢' 1is an odd function. This is apparent from equation (6) above ,
since differentiation of an odd function of 6 with respect to 8 '
results in an even function. Thus, the conjugate potential &' corre-
sponding to ¥ is . :

¢' =09'(s,8) - 9'(s,-0)

1{s®  "19)\2/3. 5 20 2 Q
-3-?-1- (—l-l_-) By E:OS—B—— cos -§(:rt-§)

gﬁ% + (%)2/3612] sin (g- - %Q-) (30)

Here use has been made of the fact that B; is an even function of 6.
In order to perform the actual integration, the streamline and con-

stant @' 1lines must be plotted in the hodograph plane. Then for each
streamline the quentities (wyf/q) cos 6 and (w1/q) 8in 6 are plotted

against ¢' and also against 6, The integrations then are performed
with the aid of a planimeter.

A symmetric channel flow has been computed for 8, = 0.18
(A = 0.0509117), which corresponds to a Mach number of 0.86 at the
center of the throat section (see figs. 8(a) and 8(b)).

VELOCITY DISTRIBUTION ON CENTER STREAMLINE ¥ = O

The streamline ¢ = O must be treated separately. The position

coordinates are computed by integrating equation (22), which for this
case reduces simply to

e am m mm e e e L T e ——— e i+ e e i+
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since ¥y =0 and d6 = 0. The derivative with respect to 6 is found
by differentiating the stream function in the form of equation (15).

This leads to .

__ Re B(e - 102 +.’{ts3 _ (o - i"ill/B

v =
16 %
\,(e - 12 4 -19*- s3

+

H(e - 102+ g g3 + (e - 1>v£|l/3
(31)

\l(e - M2+ g 83

or

+

H(G\- fm.)2 +-g 83 - (8 - 1iA) 1/3

v
16
1 \](e -2+ ks3

B

) 1/3

\l(e»- 12)2 + 191- 33[\](9 - 402 g 83 - (6 - 1ir

Finally, ’

Vi = - 1@- By cos (% - g) + 5 cos (-g- + g):' (33)



http://www.abbottaerospace.com/technical-library

NACA TN 2547 ' o7

The quantities a, ®, By, and Q are defined in equation (18). If
9 12)1/3

6 goes to zero through positive values with s > (E » then o

o =2x and

m

12 o s\WE o
¥16(0) = 3 (Dla,o(9 ) cos (-3- - 3-)

vhere & = tan"l g -8, If goes to zero through

negative values of 6 for s > (—9- ) > then ® =0 and

I

/ /60 o
5 cOo8 =
-y ) e §

The derivative of the stream function for the symmetrical flow then
becomes

V1g(-0) =

_ 9 o
¥g = g’«l’(e) + -a-e“l'(-e)

= ¥p(8) - ¥g(-6)

which for 6 = 0 reduces to

¥y = 3(:-%(h 3)1/6|Eos (% - %) + co8 %]

g, - @)4/3 wl_qi 172 (% ) _g_)

- (34)
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With this expression substituted for Tg, the physical coordinates
are found by integrating

SRl T TR

2/3 _
Unfortunately, o5 =0 at s = (% x) and the quantity on the right-

hand side becomes infinite so that numetrlcal integration in this form is
impossible. This can be remedied by noting that %S = - 521—7‘— With

: _ st
this substitution for ag, equation (35) yields

F M cos (E - %) (36)

The integration can be readily performed by plotting the right-hand
side against & and using a planimeter, The velocity distribution
along ¥ = O as well as along the other streamlines is plotted in fig-
ure 9 for A = 0.050912,

CURVES OF CONSTANT VELOCITY

The curves gq = Constant 1in the physical plane are found by inte-
grating the relastion

(37)

Y
dz _ 18 ¥ i
q Pq

é)
g=Constant

To study the nature of the curve in the neighborhood of the vertical
axis of symmetry x =0 (6 =0 and s < 0.18) it is convenient to use
a power-series expansion about 6 = O, The coefficients of such a series
are readily obtained by differentiating successively the expression on
the right with respect to 6 and then setting 6 = 0. The expansion
for 2z becomes
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2
z—zo=(93) 9+iti—z 92+—1‘,—d—37‘- 93+...
0 Jp=0  2:\@62 Jopg = 3°\303 Jo—o -
2

o } if1 ‘ 2

={- — 7T ) 6 + —(?—-ﬁ ) 6 +

( a Sle=o  2\pd "9 g0

6%(-‘”12’1'599 + 0y - % %e) 63 + of16") (38)
6=0

since Yo and V,g are zero at 6 = 0. The parametric representation
of g = Constant in the neighborhood of 6 = O then has the form

x =26 + 863 + 0(6?)
y = C6° + oe®

The slope of the line g = Constant at the axis of symmetry is

dx dx 2
30 A+O(9)

and %xx =0 at 6 = 0. Now the curveture is given by

:_xa_yé . (%)1-3/2
HOIRECE
[2_;. + o(e{”}lﬂu o(ezil |

=
Il

e e e e Lt i m e i e e =
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vwhich for 6 = 0 reduces to

2 Wog
K = —E = ——-—-—2-
: A 01 5% Jp

The sign of the curvature at the point 6 = O depends upon the sign
of C which in turn depends on the sign of Yg4. Now, the second

derivative Ugg becomes zero for s = -0.132 and 6 = 0. For !
s >-0.132, the quantity ¥gg 1s greater than zero and the curvature |
of the 8 = Constant 1lines is convex to the center streamline of 1
the channel (see fig. 8(b)). For s < -0.132, the quantity Ugg is ‘
less than zero for 8 = 0 and the curvature of the constant s line

is concave to the center streamline of the channel. , The curves

8 = Constant for 0.18 >s > -0.132 show g minimum along x = O, 1
while the curves s = Constant for s < -0.132 exhibit & maximm at |
x = 0, and two minimums symmetrically placed about the y-axis. Along !
the streamlines which cut these latter curves, the fluid is accelerated !
t0 a maximm velocity and then is decelerated slightly to a minimm

velocity at the throat. The fluid is accelerated to the maximm velocity

before being decelerated finglly to subsonic velocities again. This

behavior is apparent from the velocity distribution along the streamlines

¥ = 0.832 and 0.920 in figure 9.

The curves s = Constant for s >0.18 which-intersect the x-axis
at 90° are concave to the incoming flow in the neighborhood of the
straight streamline at the entrance side of the vertical axis of sym-
metry and convex to the incoming flow on the exit side., Further from
the center streamline and toward the wall, however, the curvature changes
and the constant-velocity lines become convex to the incoming flow on
the entrance side and concave to the incoming flow on the downstream
side of the vertical axis of symmetry (see fig. 8(b)).

Since the stream function has a branch point at s = 0.18 and
6 = 0, the above analysis cannot be applied to the curve of constant
velocity s = 0.18. To investigate the nature of this curve in the
neighborhood of the center streamline, it is necessary to obtaln the
expansion of equation (37) for small values of 6. The derivative *19

is found from equation (33). Using the fact that Q(-8) = x - (6) ;
and o(-8) = 2x - o(6) leads to
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)"
P

Ee=_£ﬁlcos'(g_%_%)+

Soga 3v cos (% + §<+ 3) (39)

6

vhere @, a, and © are defined in equations (18). In a similar way
by using equation (27) for ¥y '(8) +the following equations are

: 8
obtained: _ '

¥s = ﬁ&le (6) + "’15'(‘9):] . (}Tl'% |
§ e en (329 -5

Letting s = 0.18 1in equations (39) and (40) leads to some simplifica-
tion since for this case g 83 = a2, Accordingly, for values of 8

positive and near zero,

a = 61/2(92 + hkz)l/h m-(219)1/2 + 0(95/2) A
. a,ée A N2 (3/2)
Q = tan — 'Aﬁg*(x) N6 g (¥1)
_\ + 6 - 0
8 = :

W
}—.‘
1]
[/’\'
- 9[\)
o+
D
N
+
\C?/
o
+
N
gf\)
M+
D
\Y]
+
&

=3 s 2R ) o)
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The approximate values of the above quantities lead finally to

-1/2
¥g —‘%_Z]-—%—E+326--i-+ 0(63/2) + .. .:l
= 0.729029-1/2E + 2.7280 + o(e3/2) + .. ] (42)

G)..l/6l|.l/3 9-1/2 2a -1/6 7641/3 1
t - - 23) o @012)“1/ 2 6) e K

~0.30936"Y/2 _ 5.8776%/2 . 0(93/ 2) (43)

With these expansions and equation (37), the slope of the curve s = 0,18
in the neighborhood of € = 0 1is given by

2 - 1.948 - 39.536 + 0(e?)

The numerical value of the slope at 6 = 0 1is finally

= 1.948

£l&

Now the curvature is proportional to the second derivative which

Sk
o

for the present case is given by

-d_(-dl) 3 . g2, o(e)
a0 \ax) ax |

The curvature of the s = 0.18 1ine is seen to be zZero where it cuts
the center sireamline.
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LIMITING CASE WHEN SONIC VELOCITY IS JUST REACHED

ON CENTER OF STREAMLINE

Setting A = 0 in the stream function in equation (15) leads
directly to the stream. function considered for the flow through a ILaval
nozzle in reference 13, From this solution it is possible, however, to
construct a channel having locally supersonic regions by the appropriate
choice of branches, Tomotike and Tamada (reference 3) constructed a
channel having M =1 at the center streamline using & solution in
the V,p-plane. Their solution for this limiting case can be shown to
be the same as equation (14) with A = O when expressed in the hodo-
graph verisbles. Now equation (6) when expressed in @' and V' as
the independent variables becomes

(1)

D
-
n
\
4]
0

If s and ' vwere replaced by -s and -¢' the equation takes the
form given by Tomotika and Tameds (reference 3) for K = 1, Their

2.
solutions for equation (l4) are then
3= -z- 2 i
L (45)
-g—: %'E - 2q)' +%(¢')2]

where 2z must satisfy
(z - 2p)2(z + ) = a3

and p = (w')g - @'. When a =0 it is quite simple to eliminate =z
and @' from the equations above and to obtain ' as a function

o e e e e i a7 o = e ey e —

et e e i e gt e — -
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of 8 and 8. Setting the factor z - 2y equal to zero and elimi-
nating ¢' and 2z with the aid of equation (U5) leads to

,(*')3 + f%'w;s.+ é% 6 =0

The resulting function ¥ is

(- 2l T
i(e + ‘,92 * -91£ 53)1/3 (46)

Similarly, the relation 2z + p = 0 yields

SEREL S
RIS i N

whose solution leads to the stream function

1/3 /3 1/3
3 - L _,‘2 13 L x(o g2 4 B 3)
2(2) ' ml(e ) +9s)l wl(e 2] +9s (k1)

Equations (46) and (47) express the two branches of the stream function
which go to make up the accelerated-decelerated flow through a nozzle,
Equation (46) may be obtained from equation (47) by inserting unity in
the form of e2ml  inside of the parentheses on the right-hand side of
equation (47) and teking the real part. For the flow computed by
Tomotika and Tamads, figure 10 shows the regions of the hodograph plane
in which the two branches represemted by equations (U46) and (47) were
used.

To obtain a flow which is symmetric about the 1line 6 = 0 as well
as about the straight streamline the stream function given by
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¥'(6) = S[¥(6) + v(-e)] - (18)

shall be considered. In this formula ¥(8) 1is given by equation (47)
and V¥(-8) by equation (46) if 6> 0 and 62 > g’- (-8)3. 1In the region

(-8)3/2; ¥(8) and V¥(-8) are both

given by equation (47). The choice of the factor 2/3 was made so
that, in the region of the upper quarter plane 6> 0 and 8> 0 and

3/2

between the characteristic 6 = '_':%

the section in the left quarter plane where 6 > % (-s)™" 7, the stream

function is simply given by

3 .
¥ = “’il[( - \|62, + g s3>l/3 + (6 + \'62 + -g» 83)1/] (49)

The physical plane for this portion of the hodograph has already been
computed by Ehlers (reference 13).

The relation for the stream function in the region between the
characteristics 6 = -_i_-%(—s)3/2 is

= 3_wllg_(§)1/3(_s)1/2Eos §_(?_f)_)_ + cos .5_(;_9)_] (50)

where

1 G
2 (_s)3/2
3(S)

8 = cos”

-

5(0) = - 8(-0)

et et e mrer e e ———— o —— e e p————— T e e ki 7 et e et ke . e e S e = | e
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Hence, with the aid of a simple trigonometric identity the stream
function

7/3,1/6 '
= g_{_i_{_ (-s)l/2 cos (ﬂ 5) (51)

-t -2

is obtained. The streamlines in the hodograsph plane for the entire
flow given by equation (48) are shown in figure 11(a).

To compute the coordinates for the curves of constant speed near
the y-axis the relation

2 = % eie(-wleﬁé + %»ﬁb) do
6=0

was employed. By a MacLaurin expansion, for small values of 68, the
x coordinate can be computed from

1
*¥=7q

2
(. o B + ) ED—:L) U0 + 0(93)

28 ds
8=0

where ¥, is the value of the stream function when € = 0. The ¥y
coordinate is computed from

z-zo=f%eie(dq)+i%§)

For small values of 6, this is approximated by

-

Y- ¥ =%(~§_ %) + 0(69)

where ¢ =0 at 6 = 0. The flow in the physical plane 18 shown in
figure 11(b).
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The following paragraphs will give a discussion of the flow pattern.
The derivatives ¥y and ¥y of the stream function in equation (51)

become infinite at the line of branch points 6 +2 (-s)3 3/2 = 0. These

curves are the characteristics in the hodograph plane which are cusped
at the origin of coordinates. As these characteristics are approached
along the branch of the stream function given by equation (49) g

and ﬁ remain finite; thus there is a Jump in the first derivatives
at the characteristics 8 i%-(—s)3/2 = 0. Furthermore along the
¥ = 0 streamline, ¥ and ¥y have the following values:

_(2/3)3
w) 5
¥s=0
The quantity ﬁe is seen to be singular at the sonic point.

The effect of the above singularities on the character of the flow
will now be investigated. From the equation transforming the solution
from the hodograph to the physical plane, namely,

2
_ o 6 Ts
(dz)T=Constant T q ot (ye * 5?9)

and the relation

= m12 ds* = - —— dg

the velocity gradient along a streamline can be expressed in the

following form:
(dQ) L. Yo )
dl /g=x wlhp\,l,sz + g2

‘1’9

wl D
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where J 1is the Jacobian of the transformation from the hodograph
plane to the physical plane. As the Mach line corresponding to the

characteristic 6 = % (-s)3/2 is approached from the sonic point of

the streamline, the velocity gradient approaches a finite value since
Yg end J are both finite. As the same Mach line is approached from

the direction of the 6 = 0 1line, the quantities J —> w and

We —> o in such a way that '(%% 5 is finite but differs in value
=k
from (%%)ﬁ when approached from the ‘other direction. The line
=k

J = » then corresponds to a discontinuity in the velocity gradient
along the streamline. For the center streamline ¢ = O, the velocity
gradient becomes

2 . .
ag_ & (52)

Now for ¥ =0, Jg« % as s —> 0. BSince s§y has opposite signs

on the two sides of the slit corresponding to ¥ = O in the hodograph
plane, and approaches a finite nonzero value as s —3 O, there is a
Jump in the velocity gradient given by

(g _ (2q%)2
=0 (1 h532)2p*(§)1/ ]

where g% and p* eare the critical velocity and density, respectively.

To study the curvature of the streamlines, the relation

2 2
az .o ie( Sf@)
(de)?=Constant a ° Ys ¥s

is considered. In a manner similar to the computations of the velocity
gradient along the streamline, the following result is obtained for the

curvature:
(&) - - 1¥s (53)
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This expression is discontinuous at the line J = =, since %ﬁ- approaches

. different values as the characteristic (J = «) 1is approached from the
f two directions along the streamline. Thus, the Mach line (J =«) is a
curve at which the curvature of the streamlines as well as the velocity

X gradient is discontinuous. ,

SOME OTHER SOLUTIONS OF THE TRICOMI EQUATION

Tricomi (reference 11) has shown that a single-parameter family of
solutions of the differential equation

¥lgg + 8Y'gg = O (54)

is given by

wl

(o

wuw%@m+§;°;§ | (55)

where o = dg 83 + 92. Now it is pospiblé to derive from this formula

~ some solutions in closed form. In place of the hypergeometric function
gbove, consider the following related functions (see p. 286, Whitaker
and Watson (reference 19)): '

| b oo 2o Y3 L 2k 20
| V¥'1,n Un( — 9) n + 3,n + 3 + 3 50 (56)
and
1 = tf- —29 VP g n,n+ L _on+ 2 28
1.l.f2’n ( o+ 9) (n’ ° 3’ +'3’ o+ 6 (57)
In ¢ let n+2=m; and in " let -n+ X =m Then the
1,n 3 ? 2,n 3 ) :

solutions become
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. M
m~-1/3
'q;l = om—2/3(_ __2_6.) / F(m - ..].'.; m; 2]]1; 20 )
1,m g+ 0 3 g+ 06
r (58)
' m-1/3
S m+1/3__?0_) _ 1 oo om: 20)
_1lf2’m o~ (0+9 F( .3,m,2m,0+6J
Thus it is apparent that
2m-1
‘lf'l’m =0 ‘V'Q’mr (59)

for a given value of m.

In order to see how these solutions may be summed, consider the
hypergeometric function written in series form; namely,

*~rfo+m-Lr(n+ n)zn
F(m - %,m; 2m; z) = r(mI)'I('?n)— 1) }: ( r'(om f)n)nl

n=0

==}

=@ZI‘(ﬂ+m—%)zn(m+n-l)(m+n-2) e .. (n+1)

I'(m) L I‘(m - %)(Zm +n- 1)t

T'(2m) 4 = I‘(n +m - %) SOtm-1
r(m) a1 rm-1) (em+n-1:

~C(em) 2 _J1 “"m'i B g.onl
F(m) qzo1 |z nf
n=0
zm_

v

J
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The integrand can be recognized now as simply the binomial expansion—of

!

(1 - z)l/3—m

Thus the. expression for ¥v', and ¥', becomes

. _ N(em) w-2/3 (_ 2¢ )m 1/3 y
,m I'(m) g+ 6
(— —_
-
a |1 - 1/3-m, . \2m-1
ﬁdzm'l = (1 - 2) (dz) - . (60)
Jo Jo o, o5
] L om-1 . I )
_ _-om#l.
¢'2,m ¢ ~¢1,m' (61)

The integrations involved in the ebove formula can be very easily per-
formed. Putting m = 1 in equation (60) yields

1

2/3 z _
¥'i,1 T 01/3("‘6%5)/ 2 (1-2)2/3 az
’ 0 ~ 20

c+6

e+ 23 - (6 - 03

<
l
N

T I e e e e A ey e e e e © 4 e e o e\ e . e 2 e e o e, e e e e e 1
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ko
Putting m = 1 into equation (61) yields
: 1l 1/3
' = —1|(8 + © -
Vo175 ( )
Putting m = 2 into equation (60) yields

(6 - o)l/%]

NACA TN 2547

Now (68 + )3 ana (6 - 0)2/3 are separate solutions of the dif-
ferential equation. The functions w'2,1 can be constructed from

solutions of the form w‘l,l by differentiating with respect to 6.
Such a process of successive differentiation yields the following solu-

tions of the Tricomi equation:

V' = (o + 9)1/3

¢2=£1_+69_)1/_3.

e+ 03 3 (.03

AR Lo 43

¥ ﬂ(_c_+_9_)_7£__9_(c+e)/3 (o + 6)Y/3
~ 28 ) n g =

81 1 10/3
56 o7 (o + 8)

v (62)
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These five fundamental solutions, together with the set with -6
replacing 6 may be combined to form the solutions corresponding to
m =1 in equation (60) and m =1, 2, 3, and 4 in equation (61),

respectively., By equation (59), it is seen that o¥' o, 03¢'3, U5¢'4,
and c7w'5 are also solutions of the differential equation. This may
be verified by substituting them into the differential equation.

The functions *2’ W3, Wu, and Ws have the property thet the

point 8 =0 and 6 =0 1is mapped into the point at e« in the
physical plane. 1In fact the solutions all become indeterminate at that
point. Thus, these solutions may be used to construct flows having a
uniform sonic stream at infinity. If 6 is replaced by 6 - iA and

the real part is considered, then the point 6 =0 and % 83/2 = A meps

into infinity in the physical plene. Tomotika and Tamads used the
stream function

¥ = Re [%1(9 - 1)) - V(-6 + 1r) + ¥o(6 - 1A) + Vo(-6 + iki]

to construct the flow over a cusped body having locally supersonic
regions.

The solutions UE%Q(-G,S) - wg(e,si], 63[§3(-9;S) - W3(9:BE]:

05Eu(-9,s) - \Q(e,sil, and 07E!5(-9,s) - ~¢r5(6,sﬂ may be used to
construct channel flows having locally supersonic regions. Let

p=u(e-1x)2+§s3-(e-ixﬂ

Since

| o -
U(e-ix)2+§s3+(e-nﬂﬂ(?)sn

n
i)
the appropriate solutions may be written
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3\&/3 ), L 1/3
W o Loge J3u3 (’9‘) il B VI (9) °
o ) F W u1/3
L
[ ¥\7/3 y\4/3 )
o2 o Loge 1211 T/3 (9') I oo o(n) [u4/3 - (§> i
TR ke 7 i3
H M
L ,
/ (%)1/35
o2(2) |ul/3 - 173
Hl 3
1\10/3 y\7/3
Y N o3\ 10/3 (9) ° 135 o(n) 17/3 (9’) !
U +
wy 56 ,10/3 128 /3
w\*/3_n 5\1/3
9 ¥/3 _ (§) ° 3 1/3 _ (§) °
5 02(1)[: “4/3 o2(A) | ul/3

vhere o(A) = 4(9 - iM2 + g s3. Expressing the real parts in terms of
the megnitudes and arguments of the complex guantities yields

L p\MB3 1\L/3
W(l) _1)3 Bll" - .(i)_i cos -1;—9— Q.IES]_ - -(-9-—)—5} cos (§+ 9) (63)

514 B1 2
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1\7/3 7 y\4/3 )
1l'(2)=i gﬂl7—(9) cos —2car.[31L (§) - cos [— + &]-
@ |2 317 3 471 Blh 3 2
(¢)"
al By - 9 i cos (;—2 + U)) (64)
and
h)1°/3 10
‘lf(3) -1 §l B 10 (§ cos 100
w 1561 B, 10 3
(“27/337 ,
1350:.[317— §‘7 cos (7Q+§>+
B1 ‘
@)
2052[311*- 2 cos lm+cu>-
By
15\1/3
3 9 ° Q,
a” |y - By cos (§' + ?) (65)
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If 6 goes to zero through positive or negative values for
s > (% X)2/3 then ® equals 2x or zero, respectively. Hence

Bl = (3)1/651/2 and the stream functions vanish identically. For

1
s < (% h)2/3, however, w=x at 6 =0 and By = (Jg 52 - A2 + k) /3

and the stream functions reduce to non-trivial functions of s. Thus,
the stream functions in equations (63), (64), and (60) will yield
channel flows with locally supersonic regions. It should be pointed
out that the solutions given by equation (60) for all integral values
of m >1 seem to be reducible to the form

. -1 o%
V' = o221 SEE (o + 9)1/§]

The solutions for higher values of m +than those given in equation (62)
have a similar form and may be combined to give channels having locally
supersonic regions. It is then apparent that it is possible to approxi-
mate quite closely the flow through a given nozzle by taking a sum of
these solutions, providing the Jacoblan of the transformation to the
physical plane does not vanish.

The stream functions given in equations (63), (64), and (65) with
A = 0 cannot be continued into the supersonic region, since, at 6 =0
and s =0, Vg and Vg are both zero and herce the Jacobian vanishes

at this point. These solutions, however, may be combined with the
solution in equation (14).

Brown University
Providence, R. I., March 13, 1950
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TABIE I.- TABUIATION OF s, 1/q, q, AND 1/p

8 1/q q 1/p
0.34 1.45156 0.68891 1.27356
.26 1.35002 . ThOT3 1.33361
.18 1.26118 . 79291 1.39801
.16 1.2L065 .80603 1.41545
L1k 1.22071 .81920 1.43333
.12 1.20135 .83240 1.05175
.10 1.18252 .84565 1.47078
.08 1.16420 .85896 1. 49050
.06 1.14636 .87233 " 1.51096
.0k 1.12897 .88576 1.53223
.02 1.11200 .89928 1.55437
.00 1.0954L .91288 - 1L.57Thhk
-.02 1.07927 .92655 1.60151
-.04 1.06345 .9ko3L 1. 62666
-.06 1.04797 .95423 1.65293
-.08 1.03282 .96822 1.68042
-.10 1.01796 .98236 1.70918
-.12 1.00339 .99662 1.73929
-.14 .98908 1.01104 1.77084
-.16 .97502 1.02562 1.80387
-.18 .96120 1.04037 1.83848
-.22 .93420 1.0704k 1.91318
-.27 .90152 - 1.10924 2,01693
-.32 .86986 1.14961 2.13391

—

L9
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TABLE II.- TABULATION OF s, s*, AND a)
s g¥ Wy
0.3k 0.20075 1.16534
.25 .14508 1.23307
.18 .09521 1.30080
.16 .08355 1.31774
.15 .07782 1.32620
Lk .07217 1.33467
.12 .06109 1.35160
.10 .05028 1.3685k
.08 .03973 1.38547
.06 .0294L 1. 40240
.ok .01939 1.41933
.02 .00958 1. 43627
.00 .0000 1.45320
-.02 -.00936 1.%7013
-.0h -.01851 1. 48707 -
-.06 -.02745 1.50400
-.08 -.03619 1.52093
-.10 -.ohh7h 1.53786
-.12 -.05311 1.55480
-1k -.06129 1.57173
-.16 -.06930 1.58866
-.18 -.0771h4 1.60560
-.22 -.09233 1.63946
-.27 - -.11046 " 1.68179
- -.12077 1.72l12

.32

NACA TN 2547
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Figure 2.- Character of flow through a nozzle having locally supersonic
regions. Hodograph plane.

Ll
\\( \
1
e o

Pt

Figufe 3.~ Character of flow through a nozzle having locally supersonic
regions, Physical plane,
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Figure T.- Hodograph of symmetrical flow through a nozzle for
8y = 0.18(1 = 0.0509117). Dashed lines indicate characteristics.
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(a) Streamlines and constant-velocity lines.

Figure 8.- Constant-velocity lines in physical plane for
5, = 0.18(x = 0.0509117).
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Figure 8.- Concluded.
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Figure 11.- Symmetrical flow through a nozzle for A = 0O,
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