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NATTONAL ADVISORI COMMITIEE FOR AERDNAUTICS

TECHNICAL NOTE 2552

CONSIDERATIONS ON THE EFFECT OF WIND-TUNNEL WALLS ON
OSCILLATING AIR FORCES FOR TWO-DIMENSIONAL
SUBSONIC COMPRESSIBLE FLOW

By Harry L. Runyan and Charles E. Watkins
SUMMARY

This paper treats the effect of wind-tunnel walls on the oscillating
two-dimensional air forces in a compressible medium. The walls are simu-
lated by the usual method of placing images at appropriate distances
above and below the wing. An important result shown is that, ¥or certain
conditions of wing frequency, tunnel height, and Mach number, the tunnel
and wing may form a resonant system so that ‘the forces on the wing are
greatly changed from the condition of no tunnel walls. It is pointed
out that similar conditions exist for three—dimensional flow in circular
and rectangular tunnels and apparently, within certain Mach number ranges,
in tunnels of nonuniform cross section or even in open tunnels or Jets.

INTRODUCTION

The understanding of flutter and other nonsteady phenomena requires
a knowledge of the associated unsteady flow. In the underlying theories
of unsteady flow, such assumptions as small displacements, linearizations,
and an inviscid fluid are made in order to obtain workable and usable
results. When it 1s necessary to investigate the effect of these assump-
tions on analytical results by measurements of the forces and moments on
an oscillating wing in a wind tunnel or to treat cases that do not con-
form to theory, the gquestion of the effect of the: tunnel walls naturally
arises. In the case of steady flow the problem of the effect of tunnel
walls is more or less classic and has been treated by many investigators.
In general, these investigators have been able to obtain relatively simple
factors which can be used to modify measurements of the air forces on a
wing in a tunnel to correspond to free-air conditions. The extension
of the results to compressible flow presents no difficulties since the
results for incompressible flow can be corrected according to Prandtl—
Glauert correction factors. - '
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In the case of unsteady flow, Reilssner, reference 1, and W. P. Jones,
reference 2, have published papers showing the effect of wind-tunnel walls
for the incompressible case. In both papers, the influence of the tunnel
walls is, found to be comparatively small for most cases, although indica~-
tions are given that, for some ranges of a reduced-~frequency parameter,
the effect may be quite large. .In the unsteady case, unlike the steady
case, the transition from results for incompressible flow to those for
compressible flow cannot be accomplished by simple transformations. This
difficulty is a result of the fact that, in an incompressible fluid, the
velocity of propagation of a disturbance is infinite and no time lag
occurs between the initiation of a disturbance and its effect at another
position in the field, but, in a compressible fluid, a definite time is
required for a signal to reach a distant field point so that both a phase
lag and a change in magnitude result. Under certain conditions this
phase lag can result in a resonant condition which would involve large
corrections.

The purpose of this paper is to consider the effect of wind-tunnel
walls on the forces on an oscillating airfoil of infinite span with con-
siderations of the compressibility of the fluid. The usual method of
images is employed in order to satisfy the condition of no normal velocity
at the tunnel walls, First, the effect of tunnel walls on the induced
vertical velocity, hereinafter referred to as downwash, of an oscillating
doublet 1is determined and this result is used to formulate the integral
equation for the downwash of an oscillating airfoil in a tunnel., This
paper is not intended to give numerical values or any detailed calcula-
tions of final tunnel-wall correction factors but mainly to show the
existing need for such calculations and to present equations for calcu=
lating corrections for the two-dimensional case,

SYMBOLS
A constant
b semichord
c velocity of sound
H tunnel height

HO(Z), H1(2) Hankel functions
M Mach number

ip local pressure difference
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t time
=C0§
e
v velocity
Wy Wg, Wy downwash or.vertical induced velocity
Es X, Vs Ty Cartesian coordinates
p=y1-
¥ Eulerts constant
w angular freqQuency
A wave length B
¥ acceleration potential
P velocity potential }
p fluid density

ANATYSTS

Effect of Tunnel Walls on the Downwash of a Single Doublet

The differential squation that governs flow due to small nonsteady
perturbations imposed on a steady, uniform flow field is the wave equa-
tion. Referred to rectangular coordinates, fixed relative to the undls—
turbed stream at 1nfinity, this equation is

oy %y, Py _am Fy 1 % ' -
(1 - M ) —) - o —r - ——t = () (1)

In this equation the independent variable ¥ may be regarded as either
a perturbation velocity potential or as an accelsration potential., In
treating the boundary conditions of the second section of this analysis

it is convenient to regard ¥ as an acceleration potential. Thus, in

order to be consistent, ¥ is hereinafter regarded as an acceleration
potential., Accordingly ¥ dis directly proportional to a perturbation
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pressure field and is therefore related to a perturbation velocity
potential ¢ as follows: :

op

op
\l/=-'—-+v-—- 2
ot ax (2)
. 9
In order to calculate -the downwash v¢==5§ associated with v, 1t is
necessary to solve equation (2) for ¢ in terms of V. -

When V and ¢ are sinusoidal functions of time, such that

eimt‘Tf(x:Y)

Wx,¥,t)

3)
o1 (x, ) ( )

- CP(X,y,'b)

equation (2) becomes independent of time and thus reduces to an equation
with one dependent variable, namely

- = 33
V= dep V= (L)

This equation can be integrated with respect to x to give

—-F-x ».4 j_-f_Dg
9= 2 . f V(g,y)ev d§ . (5)

where the lower 1limit of integration is chosen for later convenience so
that @ vanishes far ahead of the point of disturbance. The downwash
may be readily calculated with.the use of this equation. In the absence
of -tunnel walls the retarded potential Vg (that is, the potential corre~

sponding to outgoing waves) of a harmonlcally pulsating pressure doublet
located, for simplicity, at (0,0) that satisfies equation (1) is
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1oo(t —QJX p Y

-ABe +——2> dz
'FZ + BZYZ + ﬁZZ .

Yo

1‘—11:T.ei0J ¢ %2)% Ho(z)<;§§m>

' Mx
. oy [T+ ——
¢ V%2 + p2y2 cf

where Ho(z) and Hy (2) are Hankel functions as defined in reference 3,
A 1s an arbitrary constant denoting doublet strength, w is circular

frequency, and B = \/l - M2, The Hankel function Hl(z) in equation (6)

becomes infinite (as L >as its argument approaches zero. Other-

vxz + Bzyz
wise Hy (2) is continuous and approaches zero as its argument approaches
:l_nf:l_nity. Thus the only discontinu:.ty in Yy 1is at the location of the
doublet, that is, at (x=0,y=0).

In the presence of plane tunnel walls located parallel to the x-axis
at H/2 units'above and H/2 units below the doublet position, the _
potential V¥ of a pressure doublet may be represented by the potential
of an infinite system of appropriately chosen reflecting doublets, namely
(see fig. 1)

v = Arflelm<b+ CB) i (-l)nﬁo(z)[‘;z \/x2 + B2(y - nH)€| (1)

I1==co

In this equation the term corresponding to n =0 dis the potential gy,

equation (6), discussed in the preceding paragraph. It may be noted that
only this term of the infinite summation in equation (7) g:Lves rise to a

discontinuity in V¥ at any point within the tunnel (- Egyg-z- 9 =00 <x<°°>.
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The infinity of terms corresponding to n # 0 are necessary to cause

the downwash w to vanish at all points of the tunnel walls, y = ig.

The downwash along the midsection of the tunnel y = 0 1is given by

i().)(t-% * 00 i—w—g. 2
Ani . n yg2 o (2)] » ;2 2 2
W= === g 1im (=1)"eVBe <= ~=\t<c + B4(y - nH)4|dt
v y—>0 r;o ay2 "o cpzv
. _ o S (8)
where
o) g
Ami x Vg2 3% . (2)/ JiZ + B2 .
Wy == e 1lim e — Hy — /2 + B2y2)\dE (9)
v y—>0 ay? cp?

represents the downwash associated with the pressure doublet in the
absence of tunnel walls and : . -

iwi{t -

: g
i X 2 3
= 1lim -1)eVB° 2 g (2) | @ 27 20 2 g
222 [ 2 ot £ ol

(10)

[

represents the additional downwash due to the presence of tunnel walls.
Thus the relative value of wp as compared with wp + w1 1s the main
item of interest here.

The integrals appearing in equations (9) and (10) can be reduced to
simpler form for evaluation but since the steps required to reduce one
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of the integrals are the same as required to reduce the other, only
the integral appearing in equation (9) will be treated in detail. The
reduced form of the other integral can then be obtained by simple com=
parison. The Hankel function in equation (9) satisfies the following
identity: )

i (2)<_@_ 2 + 32,2\ = 2 22 (2)(..@_g2+22>_
20 cpZ‘/g B2y +° o cBEV B2y

5 0 77 (1)

Substituting this relation into equation (9) gives

A mé_z‘% i 'i_%g' 2
W = - Ami e 1im 32 VB B2 HO(Z) L+ 32y2 dg +

- 00

> S T\

— F
2 2
;ﬁ? o'P Ho(2)<c——;°2 fe2 + Bzyz>d§ (12)

In equation (12) the first integral can be integrated twice by parts to
give for wp

.

;MD(?.._ dax

- _Ami s - m Vﬁz (2) M 2 242
%o Lva'ylf,noe I/{2“32 ( = F )

i o1 %‘”(—W) fKVﬁz (2)< o2+ 5%t

(13)
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By writing the integral in equation (13) as the sum of two integrals,

namely
0
[ = / + fx (1k)
-0 00 0 .

and making a change of variable
el N T as
the expression for Wy may be further reduced to
iwx
(-
Ane vp,z

Wy = — ~1lim

V2 y—>0 ¢x2 + ;32

oty

o ' v VY
o7 H0(2)<—c-;—2‘/x2 + Bz;z) + Z_;LFE 1Og<1 +y1-M
C

(ST -

WX
v 2

2
iBz P eiuHO(2>& ul .+ (%)]du (16)

0]

In the limit y = O the expression in braces in equation (16) reduces

to the kernel of Possio's integral equation relating pressure and down-
wash for the oscillating airfoil in compressible flow. (This result
checks the results" for this expression given, for example, in reference L.)
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The value of the integrals in equation (10) may be similarily reduced to give

e 26D w
¥ = LE lim (-1)" VB H1(2) E;’_Jﬁ + p2(y - nH)El -

' y—>0 n= 'Lx?-t- p2(y - nH)2

’

L ~2|y-nti| / HZ)
evgz HO(Q) E_G_II2 + 32(.‘?. - nH) _:':E 10g(].:_+-—}_:__ +
cﬁ2 M

ox

iﬁzf oll %(Z)Hz PR (y DH)JG.‘IJ.

n=].

2 ax

' _ Mo / 2 ’ 2 (

: ! g-"iﬂ e V 103@—————4? ; * M )+ 132 K e:l.uHo(2)[ 2 4 (%){,du
0

(17)

26 NL YoM
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In general, this infinite~series representation of wj, equation (17),

converges to a finite value., However, for certain critlcal values of the
frequency parameter wH/V, it is found that the value of w1 Dbecomes
infinite., This fact can be readily made evident by use of relations
given in reference 5 where it is shown that an infinite series of Hankel
functions of the type appearing in equation (17) can be replaced by an
equivalent series of exponential functions as follows:

Z.'o (-l)nH.o(z)E%sz + (BnH):]2

n=1

PAREIL NG Pi;_;{ 2 4 (B£H>2

n=1

pQH (T;f) (V>

/@) -&
- 2 emor?(2) (&)
B> | - ;

M m=T VQZm . 1)2<%§)2 _ <%?)2

e @) 4

\fm 0B - @)

It may be seen that; if this relation is substituted into equation (17),
the value of w; becomes infinite for all values of x when the fpef

quency parameter «H/V has any of the values given by

(18)

_=(2m-1)_’1§ (m=1,2,3,...) (19)

"HO(Z)(;;ZH ’ +
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These critical values of the frequency parameter correspond to a condi-
tion of pure resonance in the tumnel which in the present case implies

that a harmonic disturbance of any finite am@lltude may lead to a down—
wash of infinite amplitude.

0f course these infinite values of Wy would never be realized
under practicable conditions because factors such as finite tunnel length,
absorption through walls, fluid viscosity, and so forth that would give
rise to damping would make pure resonance unobtainable; however, with
damping present, resonant frequencies yielding values of «H/V in the
neighborhood of those given in equation (19) would exist and it is not
likely that quantitative agreement or even possibly qualitative agreement
between calculated and measured downwash (or forces) can be realized when
the value of H/V is in the neighborhood of these critical values.

It is interesting to note that the effect of boundary conditions
such as section geometry, tumnel-wall flexibility, and so forth is to
change the value of the critical frequency but not to do away with the
possibility of resonance. Also, by treatments similar to those employed
herein, it can be shown that under idealized condlitions resonance can
occur in three-dimsnsional flow in both round and rectangular tunnels or
apparently, within certain Mach number ranges, in tunnels of nonuniform
cross section (expanding or contracting section) or even in open tunnels
or Jets.

The fundamental or smallest critical values of wH/V, corresponding
to m=1 in equation (19), are shown plotted as functions of Mach num-
ber M in figure 2. This figure indicates that there is no finite
critical value of «H/V for the conditions M =0, V# 0, and c =,
which correspond to a flow of incompressible fluid in the tunnel. This
result agrees with those found in references 1 and 2. -

The frequency parameter

& = (2m - 1)mB (m=1,2,3,...) (20)

which may be derived from equation (19) is shown plotted, for m = 1,
as a function of Mach number in figure 3. Equations (205 and figure 3
show that finite values of the critical frequency exist for the condi-
tions M =0, V=0, and c # «, These conditions correspond toc a com=
pressible fluid at zero velocity in the tunnel, For these conditions
equations (20) and the corresponding wave lengths .

20
3\ = ame ) (

=1, 2 e o o 21
o om - 1 m s 25 3, ) ( )
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agree, respectively, with results found in the literature for the char-
acteristic frequencies and wave lengths associated with transverse
acoustic vibrations in rectangular chambers when the location of the
source of disturbance is excluded as a nodal point. See, for example,
reference 6.

It may be of interest to note that equation (20) can be derived
from the principle of standing waves as follows: The condition for
resonance for the type of disturbance considered implies that the
standing transverse waves have a maximum velocity at the midsection of
the tunnel and zero velocity at the. boundaries. A half-gine wave of
wave length A = 2H or any odd divisor of this length, namely,

A= o % 7 satisfies this condition. If c¢ dis the velocity of sound

in the medium and V the velocity of the medium, the velocity of pro-
pagation of a disturbance in a fixed plane perpendicular to the air flow

is Ve - V2. Since the frequency is given by the speed of propagatlon
divided by the wave length there is obtained

_ (em = 1)ye2 - v Lo
2H 2n
or
%? = m3(2m - 1)

Integral Equation for an Airfoll of Infinite Aspect
Ratio Oscillating in a Wind Tunnel

In order to present equations from which tunnel-wall corrections
for two-dimensional flow can be calculated, use is made of the foregoing
analysis to derive the integral equation, relating downwash distributions
and 1ift distributions, for the effect of tunnel walls on the 11ft dis-
tribution associated with a given downwash distribution.

The resultant pressure or local 1ift Ap associated with the accele-
ration potential of a single doublet located at (xo,O) with strength

depending on streamwlse positlon x5 may be expressed simply as {compare
with equation (6)):
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=
o - - 8
Ap = ~2p yli}mo ¥[xos (x = x0),7,%] g
. 3
m(t+-}—h-—2> (2) R
= -9om lim A(xg)e f¥ 3 [ - x0)? ] | (22)
pri 056, (x0) 5 Hy GJBEE Wx %)< + py?

where A(xy) denotes local doublet stremgth or lift density. The downwash due to a distribution
of such doublets between xg ==-b and x5 =b is '

-i—c-'-)(x-xo) ~Xo o -
w(x,t) = "2“;"1 el 1im | A(xzg)e v dx, o¥B% fy-z Ho(2)<'% Ve + 3%2):15 (23)
B

y—>0

For a given value of ths 1ift density A(xo) , this equation determines the downwash, For a

given or prescribed expression of w(x,t), the distribution of 1ift density must be determined.
Thus, in this case;, equation (23) is a form of Possio's integral equation relating downwash and
pressure for an airfoil oscillating in compressible flow. In passing it may be well to point
out that Possio's equation has not yet been solved in closed form but has been eve;luated by
different methods of approximation by several authors. Reference l gives a résumé of these
methods of approximation. -

For an airfoil inside a two-dimensional tunnel the relation between downwash and local Lift
becomes (compare with equation (8)) .

€T
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j“ 2 (-1)% Vﬁz > HO(Z)I:;E e + by - nﬂ)ﬂdg (2L)

For a given value of 1ift density A(xo), this equation determines the effect of tummel walls on
the corresponding downwash, For a given downwash distribution, the more pertinent effect of -
tunnel walls on the distribution of 1ift density is obtained by comparing the solution of equa-
tion (23) with the solution of equation (24). In either case the summation in the second integral
in braces in equation (24) is the same summation that was found in the preceding section to have
critical values of the frequency parameter oH/V that cause the sumation to become infinite,
Consequently, evaluations of equation (24) for values of the frequency parameter in the neighbor-
hood of these critical values would lead to the same resonant effects found in the treatment of

a2 sgingle doublet. Otherwise, for values of the frequency parameter not too near critical values,
it is proposed that a fairly close approximation to solutions of equations (23) and (24) for
effects of tunnel walls on 1ift density (or 1ift) will generally yield results from which tunnel-
wall correction factors for two-dimensional flow can be obtained. Expressions from which correc-
tion factors for three~dimensional flow can be obtained may be similarly derived when the down-
wash of a three-dimensional pressure doublet is employed instead of the downwash of a
two—dimensional pressure doublet.

It appears desirable to solve equations (23) and (2}) by collocation or some other approxi-
mte method to obtain tunnel-wall corrections for some particular cases of prescribed downwash
and to determine experimentally the range, if any, of frequency parameter in which quantitative
results can be obtained for these cases, :

T

gcée NI VOVN
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CONCLUDING REMARKS

The important result shown is that, in a tunnel of infinite length
containing a flowing fluid, a resonant condition involving a transverse
oscillation of the fluid across the tunnel is possible and measured air
forces at or near this condition of resonance might be greatly modified
from those measured in free air. This resonant condition is a (simple)
function of Mach number, tunnel height, and wing frequency and brlngs to
attention a new type of tunnel-wall interference.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., September 2L, 1951
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Figure 1.~ Sketch showinhg reflecting system of doublets simulating
two-dimensional tunnel walls.
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Figure 3.- Fundamental critical values of frequency parameter a.)H/c
plotted as a function of Mach number M.
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