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SUMMARY

Flow at high supersonic speeds about a body of revolution is
investigated analyticelly. With the assumption that the flow at the
vertex is conical, it is found that algebraic solutions can be obtained
vhich yield the Mach numbers and pressures at the surface over a con-
siderable range of free-stream Mach numbers and apex angles. In the
special case of cones, these solutions define the entire flow field with
good accuracy, and may therefore provide a useful adjunct to the well-
knovn M.I.T. tebles.

The Investigation of flow downstream of the vertex reveals that
when the value of the hypersonic similarity parameter for the flow
(1.e., the ratio of the free-stream Mach number to the slenderness ratio
of the body) is large compared to 1, the Mach number along a streamline
(dovmstream of the nose shock) varies with flow inclination angle in
approximately the same manner as for two-dimensional (Prandtl-Meyer)
flow. In the special case of streamlines near the surface, it is sug-
gested that this parameter may aspproach 1. This result and the solutions
obtained for flow at the vertex are combined to yield what might be
called a conrlcal-shock-expansion method for calculating the Mach number
and pressure distributions at the surface of a body. These calculatlons
are shown to be particularly simple in the case of slender bodies.

Surface Mach number and pressure distributions caleulated with the
simplified methods of this paper for a number of ogives are found to be
in good agreement with those obtained with the method of characteristics
at values of the hypersonic similarity parameter greater than 1. In the
case of the conlcal-shock-expansion calculations, the agreement is within
the order of accuracy of the characteristics solutions when the hyper-
sonic similarity parsmeter has a value of only 2. Because of the rela-
tive simplicity of these calculations, the methods for determining the
flow at the surface of a body may prove useful for engineering purposes.
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INTRODUCTION

Determination of supersonic flow fields about nonlifting bodles of
revolution by means of the method of characteristics (see, e.g., refer-
ence 1) is generally accepted as an accurate but tedious and time-
consuming operation. Because of the latter features of this method,
recourse is often made to simpler methods which, although less accurate,
can be applied with relative simplicity and rapidity.

Perheps the most widely used simplified theory of axially symmetric
supersonic flow is the linear theory, which was first employed by KérmAn
and Moore (reference 2) to study supersonic flow about a body of revolu-
tion. This theory has a limited range of applicability, however, due to
the assumption in its development of potential flow with Infinitesimal
disturbances. In particular, it is only applicsble with good accuracy
to bodies of practical slenderness ratios operating at low supersonic
alrspeeds.

More recently, Van Dyke (reference 3) has developed a second-order
supersonic flow theory which yields results which are generally more
accurate than those obtained with the linear or first-order theory,
although the calculations are, of course, more lengthy. The range of
applicability of Van Dyke's second-order solution is specifically
limited, however, to cases for which the product of the free-stream
Mach number and maximm slope of the body is less than 1; hence, 1t is
not generally suitable for calculating the flow about bodies of usual
proportions at high supersonic, or hypersonic, airspeeds.

Flow at hypersonic airspeeds in the limit as the free-stream Mach
number approaches infinity and the ratio of specific heats of the gas
downstream of a shock wave approaches 1 has been studied by Busemann
(reference 4). It was found that under these circumstances a very simple
expression is obtained for the pressures acting on a nonlifting body of
revolution. This expression provides in general, however, only qualita-
tively accurate pressure distributions at high but finite free-stream
Mach numbers where the ratio of specific heats is greater than 1 and is
usually closer to the ideal diatomic gas value of 1.k,

Perhaps the first step in the direction toward providing simplified
methods for deterwining axially symmetric flows in the high supersonic
speed range was made by Tsien (reference 5). Tsien demonstrated that a
similarity law (which is analogous to the well-known lew applicable at
low supersonic speeds) exists for slender pointed bodies in this range.
Thus, with the aid of this law, the flow about a family of shapes all
having the same thickness distribution can be easily determined, provided
the ratlo of the free-stream Mach number to the slenderness ratio is the
same for all shapes, and provided the flow about one of these shapes 1is
known. This result materially reduces the net labor associated with

A
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calculating flows about a number of related bodiles of revolution opera-
ting at high supersonic alrspeeds; however, the problem remains of
calculating the flow about a representative body for each value of the
similarity parameter. At present, this problem can only be solved with
good accuracy by means of the method of characteristics.

There appears, then, to be & need for a simplified theory which
provides, with englneering accuracy, the Mach number and pressure distri-
butions about pointed nonlifting bodies of revolution operating at high
supersonic alrspeeds. The development of such a theory is underteken
in this report, and it 1s found that by treating the flow in two parts,
namely, the flow at the vertex and the flow downstream of the vertex, a
theory of the desired simplicity and accuracy can, in fact, be obtained.
In the special case of flow sbout cones, the theory demonstrates sur-
priging accuracy over a consldersble range of supersonic airspeeds.

SYMBOLS

¢y Tirst family characteristic line

cz second family characteristic line

d maximm diameter of a body of revolution
E entropy

K hypersonic similarity parameter <}k€€>

1 characteristic body length (measured from vertex to most forward
point of maximum diameter)

M - Mach number (ratio of local velocity to local velocity of sound)
n distance measured normal to ray passing through vertex of cone

P static pressure
i

q dynamic pressure

P pressure coefficlent <?%E?{>

R ges constant
T radial distance from vertex of the cone

S distance slong a streamline
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u,v velocity components parallel and normal, respectively, to ray
passing through vertex of cone

v resultant velocity |/ u2 + v2>

maximum velocity obtainable by expanding to zero temperature

<>

x,y rectangular coordinates

B Mach angle ~<;rc sin.%i)

7 ratio of specific heat at constant pressure to specific heat at
constant volume

3] angle of flow inclination with respect to the body axis
p  mass density

w angle between axis of cone and ray passing through vertex of cone

Bubscripts

o free-stream conditions
c conditions on the surface of a cone
N conditions on the surface at the vertex of a body

8 conditions immediately behind the shock wave at the vertex of a
body

ANATLYSTS OF FLOW ABOUT A NONLIFTING BODY OF REVOLUTION

This investigation is concerned with a simplified method of calcu-
lating axially symmetric flow about a body of revolution traveling at
high supersonic airspeeds. It is assumed throughout the analysis that
the disturbed flow is everywhere supersonic, and thus, of course, that
the body has a sharp nose or vertex. With these restrictions on the
free-stream Mach number and body shape, it is evident that a typical
flow field will be characterized by the bow shock wave lying close to
the surface of the body. For the purpose of analysis, it is convenient
to study the flow field in two parts, namely, the flow at the vertex
and the flow downstream of the vertex. The results of these two phases
of the investigation will then be applied to the determination of the
Mach number and pressure distributions over the body surface.
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Flow at the Vertex of a Body

It follows from the assumptions basic to this analysis that the
nose shock is attached, and consequently that the initial conditions of
the flow at the vertex will be the same as for a cone tangent to the
body at the vertex and operating in the same free stream. In the classi-
cal paper of Taylor and Maccoll (reference 6) the basic differential
equations were developed for steady, axially symmetric supersonic flow
gbout cones.l The essential assumption in their analysis was that fluid
properties were constant along radial lines passing through the vertex;
hence the flow was irrotational. This assumption will be employed here

to redevelop these differential equations in a form more suitable for
this analysis.

A schemgatic disgram of axially symmetric supersonic flow about a
cone 1s shown in figure 1. Considering first the flow downstream of the
shock wave, the equations of motion and continuity are written (after
reference 6) in the forms

L rLl g2 oy2) Lde 1
Vst (VB -v8) 52==0 (1)
and

é%(pvsinw)+2p-usinw=o (2)

respectively. The condition of irrotationality is given by the
expression '

= du - )
v dw (3)
Now it is evident from figure 1 that

u

V cos (0-3) (%)

and

v

-V sin (w-B) (5)

Therefore, equations (1) and (2) may be combined to obtain the relation

1As pointed out in reference 6, Busemann had previously suggested a
graphical solution of the problem of supersonic flow past a cone,
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21 ({}2 - V) I:V cos (wd) (1 + %)-sin (w-d)

av dav =
<V cotw+ dm)]-*-ved_w sin (w-3) =

Similarly, the irrotationality equation may be written

(6)

%Y»::-‘ba.n(w-s)dﬁ (7

°

Combining equations (6) and (7), there results, then, the equation of
motion

1;[(%) —l:] [cot (w-8) (1 + %% ~cot w + tan

(M)%] - tan (v8) ¢ (8)

which will be employed in the following development.

Equations (7) and (8) are amenable to numerical integration follow-
ing methods similar to those employed earlier in reference 6. In order
to obtain algebraic solutions to flows at the vertex, however, it 1s
necessary to simplify these equations. To this end, since high Mach
number flows are of principal interest, an assumption which has proved
useful in studying other aspects of these flows (see, e.g., reference ¥d)
1s employed, namely, the magnitude of the resultant velocity vector is
eSSentially constant, the change in velocity being primarily one of
change in direction. With the aid of this assumption it is possible to
first determine a relation between & and w for a given V using
equation (8), and then to determine more accurately the nature of the
dependence of V on 8 and ® using equation (7). This procedure
will be employed for the following two cases: (1) slender cones for
which B, the angle of flow inclination, i1s small compared to 1 radian
throughout the flow field, and (2) cones for which w-5, the difference
between the ray angle and the iInclination angle, 1s small compared to
1 radian throughout the conical part of the flow field.?

Analysis of cones for which 5<X1 (slender cones).- With the
restriction imposed upon & in this study, equation (8) may be reduced
to the form

2In general, w-5 will be small for blunt cones; however, at Mach num-
bers very large compared to 1, w-d will be small for relatively
slender cones as well.
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5 cotw+ -g%)[l—Mzsinzw (15 cot w)2] =0 ' (9)

where M 1is consldered constant. This relation is still nonlinear in
both & and w, and is not readily amensble to exact algebralc solution.
An agpproximate solution may be obtained, however, in the following man~

ner. Near the surface of the cone, equation (9) reduces to the linear
equation3

a5 _
5 cot w*'dw =0

ky
which has the solution 5 = = (10)

Now ® cot w decreases rapidly with increasing w away from the cone
surface; hence it is suggested that without appreciable loss of accuracy,
the solution for & (near the surface) given by this equation can be
substituted into the coefficient of d5/dw in equation (9). Performing
this operation, equation (9) becomes

5 cot w+ %—% [1 - M5%in®w (1-k,; csc w cot wf]1=0 (11)

vhich is linear in & and can be integrated to yleld (to the order of
accuracy of this analysis)

1
2M%(sin%w,- sin®w) ] 2,/11aMPs1in%0,

1+ (/{#I-Masinawc
2M3(81n%w,~ sin®w)
1+

A ivPsin?
L 1 - /1+iM%sinZw, |

1+

5 = (12)

which satisfies the boundary condition at the surface of the cone
(L.ei;, 8 =8¢ at w =uw,).

Since M was assumed constant throughout the conical part of the
flow field, it can conveniently be taken as the Mach number just down-
stream of the shock. In this case, flow conditions at the shock
(1.e., Mg, wg, and Bg) are obtained by the similtaneous solution of
equation (12) and the oblique shock-wave equations

8It is clear that cot w could be replaced with lﬁn in this equationj
however, the trigonometric operator is retained for consistency with
the rest of the analysis in which such operators must, in general, be

retained (w is restricted to be small only near the surface of the
cone).
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o_ (1) Mo*sin®ug- b(Mo2s1n2us-1) (YMoPsinBus+ 1)
[27 MoPsinZug~ (7-1)] [(7-1) MyZsinZwg + 2]

(13)

and

t 2.2 _ ]
85 = tan | -8 (Mo sin"wg -1) (1)
5= Mo®-(Mo®sinZg -1)
Having determined the flow conditions at the shock, the variation of &
with ® throughout the entire flow field about a cone is known from

equation (12).

It now remains to more accurately determine the magnitude of the
velocity throughout the conical part of the flow field. For this pur-
pose, equation (7) must be employed in combination with an expression
relating ® and 5. Equation (12) provides such a relationship; how-
ever, it is unnecessarily complicated for determining the small changes
in V. A much simpler expression of acceptable accuracy is obtained by
neglecting & cot w in the coefficient of 4 /dw appearing in equa-
tion (9),% thus yielding )

as _ -~ cotw
dw ~ 1-M3sin%w (15)

or

8 = kyvesc2w-—M2 (16)

In this equation, k., and M2 are determined by the requirements that

o

¢ at w=we

and

o
it

g at w=wg

where the latter quantities are known from the previous analysis. Sub-
stitution of equation (16) into equation (7) provides the following
relation for V; namely,

4As will be shown later, in the cases where this simplifying assumption
introduces significant error in the variation of V with w (viz.,
when M2 sin®w becomes of the order of 1) the results of the subse-
gquent analysis of cones for which w-3<< 1 may be applied with good
accuracy.
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av _ ~k 45 +.[1-+ ko® J 5a5 (7
Vo /B2 213 ;

52k, 2(1-M2)

which can be integrated to yield

1V = -k,in [8+V/62—k22(1-M2)] + 82+ 222 n [52k,2(13)] + kg (28)

where kg is determined by the requirement that V = Vg when & = 84.
Replacing the constants in this expression with their values given by
the imposed boundary conditions, there is then obtained the relation

8c2 - 552

r
(()7 o020 | (50 Neot® s (02 corty | Eot ot
Vs L (8.2 - 842) cotPug
.5 2
. | B, 2-0,
Bg Aotzwc-cot? wg + /8c2-552)cot.2ws " 24/ cotPuc-cotZug

|
Sdotewc-cotews + ‘/(82-652)cot2mc +(8,2 —62)cot2ws_j

(19)

Knowing the velocity, the Mach number may, of course, be determined from

the relation 2
v
2 <]

_1_%%2[<V'ls>2-l] (20)

and the pressure coefficient anywhere in the flow field may be obtained
with the aid of the expression

2 Ps P
p=—2_ (2 £ _; : (21)
7M02 <Po Pg )



http://www.abbottaerospace.com/technical-library

10 ' NACA TN 2579

Where
Ps - 27 Mo® sin®wg -(7-1)
P0 r+1 (22)
and
o fan ——-Ma\
D, (23)
5 1+ Z'z—M /

The Mach number and pressure distributions (as well as the orientation

of the conical shock) throughout the flow field about a slender cone are
now known. The flow £ield about a cone for which w-d 1s small compared
to 1 will be considered next.

Analysis of cones for which ®w-5<<1.- In this case, equation (8)
may be reduced to the form

1 - (w-d) cot w+ L& [l - M¥(w-3)%] = 0 (2k)

where M 1s again considered constant. This nonlinear'relation will Dbe
solved in a manner analagous to that employed in the solution of equa-
tion (9). Thus, near the surface of the cone, equation (24) reduces toS

ds
i = -1
or
5 + w = 20 (25)

Combining equations (24) and (25) yields

2 (w - we) cotw -1 aw (26) .
1 - 2 (w-wc)2

dd =

which can be integrated to yileld (substituting in the boundary condition
at the cone surface)

SIt should be noted that -1 is the exact value of d5/dw at the surface,
s0 long as the shock is attached. Consequently, in this analysis and
the slender cone analysis both the magnitude and rate of change of &
with w are satisfied at the surface.
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( 2 tan W, sec 2w, tan waM(1+2M tan we)
‘ 2
w aMZtanZue -1 aMZ(1-2M tan we)
tan We
tan We+M(2M tan w,-1) 27)

[1-2M(w-w,)] 4M2(1+2M tan we)

Again M 1is chosen as the Mach number just downstream of the shock,
thus enabling M (or Mg), ws, and 85 to be determined by solving equa-
tions (13), (14), and (27) simultaneously. Knowing these quantities,
the relation between 5 and © throughout the remainder of the Tlow
field may be obtalned with equation (27).

In order to determine the small variations in V throughout the
conical flow fileld, it 1s sufficiently accurate (slnce w- B3<<1) to
assume a linear variation of & with w, namely,

8 = kyw + kg (28)
vhere k, and kg are fixed by the requirements -that

O = 8o at W= We

and -

5=Ss&tw=wS

Combining equations (28) and (7) there is then obtained the relation®

Foon [oon (332 ) @9

SThe retention of the tangent operator in this relation is, to the
accuracy of this analysis, optional.

— o ——— e e e = =
——— -

e e+ = b . ey o e e i <
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which is easily integrated to yield

8c-bs

v cos8 (ms-as) ms-as ( O)

Vs | oos| LBe) (U5g)] 3
80-68 |

from which the Mach number and pressure coefficient anywhere in the flow
field can be obtained by employing equations (20) through (23).

There is & well-defined restriction on the range of applicability
of the results of this analysis. In particular, when Mg(Wg~wc)>1/2,
an imaginary value of &g is obtained from equation (27). This result
permits the establishment of a boundery in the (Mb,&c) plane, given by
Mg (wg-te)=1/2, separating the area in which equation (27) applies from
the area in which it obviously does not apply. This boundary is shown
in figure 2,7 and it is clear that there is & minimum value of &¢ for
any Mo, below which the cone solutions Just presented do not apply. In
the area below this boundary, the slender cone solutions must be employed.

Flow Downstream of the Vertex of a Body

Simplified expressions have been obtained for calculating the flows
about cones operating at high supersonic airspeeds, and as was pointed
out previously, these expressions can be
employed to determine the fluid properties  }7 :
at the vertices of pointed bodies of revo- .//Cl
lution other than cones. The investiga-
tion of the flow downstream of the vertices
of such bodies is now undertaken. For
this purpose 1t is convenient to first
obtain an exact expression describing the
fluid motion along a typical streamline in T “\"\\.c
axlally symmetric flow. To this end, con- ‘ 2
sider sketch (a) showing the first and _ (a) =X
second family characteristic lines passing
Through & point on such & streamline. The compatibility equations defin-~
Ing the variation of fluid properties along these characteristic or Mach

7The boundary curve was obtained by using the results of reference 8. If
the equations just developed were used, & boundary curve slightly telow
the one shown would have been obtained. Consequently, the indicated
area of applicability of equation (27) is slightly conservative.

e = e r———— =~ mm et
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lines may be written (see, e.g., reference 1)

-cos2p 9B B sinpsind 1 <dE> s
= + + —{( ~— ] 8in®p
Z_él. + Sinaﬁ Bcl Bcl Na 7R dn

along C,, and

-cos2 B BB_~88+sinBsin8_£.__dE

= — )} s8inSpg
-1 . sinep deg ey ¥ 7R c1n>
2 -

along Cp. Combining these equations, and noting that

@_& BB Bcl + _aﬁ 302
3 de; 08 e, OS

and

& ac1+ 86 aC2
Bcl as 802 BS

B _
os

where

d¢y _ Oep _ 1
E_Sl ds 2 cos B

)
there 1s obtained the relation

cos3 B dB:cosﬁd5-<as+SinBSin6dS
22;1’+sin2[3 dc1 ¥

13

(31)

(32)

(33)

It is evident that the troublesome quantity in this equation is Bﬁ/acl,
the rate of change of flow inclination along a first family Mach line.

An insight into the behavior of this quantity in the flow field about a
body of revolution operating at high supersonic airspeeds may be obtained,
however, when the value of the similarity parameter K (the ratio of the
free-stream Mach number to the slenderness ratio) for the body is large
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compared to 1.8 To illustrate, consider first the flow between the
shock wave and the surface In the reglon of the vertex of the body.
Since the flow is conical in the 1limit as the vertex 1s approached, it
seems reasonable to assume thet the flow remains predominantly conical
in type (see, e.Z., the streamline pattern shown in sketch (b) for some
distance downstream of the vertex.

shock

conical-type flow
in region of vertex
_—>

With this assumption® we have approximately, in the region under con-
sideration (see analysis of come for which w-3<K1),

as
-t 3
vhere
dw = sinwdn
Yy

and n 1s measured normal to
the ray making the angle w
with the x axis as shown in
sketch (¢). However, dn may

be related to de; Dy the l’jEr/

followlng expression

(c)

dn = de; sin (B + 8-w)

8%hen K 1is less than 1 the second-order theory may ordinarily be
employed to analyze the flow field about a body.

9Tt is tacitly assumed throughout this and subsequent analyses that 7%
of the fluid 1s greater than 1. At the extreme hypersonic speeds
where, for example, 7 of the air flow downstream of the bow shock
approaches 1, the streamline pattern must, as pointed out by Busemann
in reference h have the shape of the body in the infinitesimally thin
region between the shock and the surface. In this limiting case,
Busemann's analysils will apply.
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hence, combining these equations yilelds (in the notation of equation (33))

» - -
o - sin (B ; 5 ~uwsinw (34)

To the accuracy of this analysis, however (see equation (25)),

w=280"8

Introducing this relation into the above expression for BB/Bcl, and
recalling that 2(85;-8) = w-d5<<l, there is then obtained

3 _ —[sin B sin & - 2(5c-8) sin (5-p) - 4(8.-8)% cos B cos 5]
dc; y

(35)

Consistent with the assumption that K 1s large compared to 1, this
equation may be further simplified, since the last two terms on the
right in the numerator are negligibly small compared to the first term.
In this case equation (35) reduces to the form )

d _ -sin B sin B
acl N2 . (36)

With the aid of this expression, equation (33) readily reduces to the
more tractable form .

2
o5 h - (37)
Gl ‘

relating the change in Mach number with flow inclination along a stream-
line in the region of the vertex. Equation (37) is recognized, of
course, as the differential equation for Prandtl-Meyer flow.

o A AR o — ————— e a5 A i —— i ————— B = —n
- Sy S S
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'

Consider now the flow downstream of the region of the vertex (Jjust
considered) where the slopes of the streamlines are relatively smal11° and
the ordinates are relatively large. Flow in this reglon is, in general,
certainly not predominantly of the conical type, and hence the previous
analysis cannot be expected to apply; however, for the values of K
under consideration, certain observations can be made regarding the rela-
tive order of magnitude of the terms in equation (33). For example, it
is noted that as K is increased for a glven body (which is tantamount

to increasing M,), the term sin B sin 8 35 gecreases while the term
¥ ,
cos BdS increases. As K +takes on large values compared to 1, the

former term must become, in fact, small compared to the latter term. It
is thus indicated that for flow of the type under consideration egua-.
tion (33) may be simplified to the two-dimensional form

.03
- cos® B df = cos Bdd =~ j¥1 ds
Z-é;[‘-+ sin2® 8 ) dcy

Similarly, the compatability equations reduce to their two~dimensional
forms, which implies, of course, that the flow field itself is approxi-
mately two-dimensional. This being the case, however, it may be shown
(from the results presented in reference 9) that o5 c; is generally small
compared to 05/dcy and hence that (35/dc,)dS 1is likewise small com-
pared to cos Bdd. Thus essentially two-dimensional (Prandtl-Meyer)
flow is found to prevail downstream of the region of the vertex. This
result, although remarkebly simple, is not entirely surprising since it
would be anticipated that three-dimensional effects would be reduced as
the local Mach numbers become large and hence the local Mach angles
become small. In any case, we have the result that when K is large
compared to 1, the Mach number and flow-Iinclination angle along a
streamline in the flow field about a body of revolution are related by
the familiar isentropic expansion relation (obtained by integrating

equation (37)).

7y 4+ 1
_ - =11 _ -1 1 7+l - _ _
5B SA sin MA sin MB + 7:'-]? t&n 1/(7 l) (:MBE l)
/ 7Y + 1
~tan™/ (7-1) (Ma2 -1) (38)

107n this discussion it is assumed that 95/0S<0 on the body surface.
In cases where 05/05>0 on the surface, it is not evident that the
argument will apply. It is suggested, however, that in these cases
the previous arguments concerning flow in the region of the vertex
will apply over a larger region downstream of the vertex.
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where A and B are different polnts on the same streamline.

If the streamline flow pattern were known throughout the flow field,
then the Mach number distribution could be readily obtained with equa-~
tion (38). Perhaps the most useful application of this and previous
results of the analysis 1s, however, to the determination of Mach number
and pressure distributions at the surface of a body. Attentlion is there-
fore turned to this calculation.

Flow at the Surface of a Body

The procedure for determining flow conditions at the surface is
entirely analogous to that employed in the spplication of the so-called
shock-expansion method to airfoils, and hence might be called a conical~
shock-expansion method. For example, the Mach number on the surface at
the vertex is obtained with equations (13), (14), and (20) in combi-
nation with equations (12) and (19), or (27) and (30) depending on
whether & <<1, or the values of M, and &, are such that w-5 <<1,
respectively.ll The variation of Mach number downstream of the vertex
is then obtained with equation (38). Knowing the Mach number distri-
bution, the pressuxe distribution (in coefficient form) on the surface
is readily obtained with equations (21) through (23).

Simplified Expressions for Slender Bodies

In the case of slender bodies the above described calculations
become so sinmple as to warrant special attention. This additional sim-
plification arises from the fact that now, not only is w5 small
throughout the flow field, but also both w and & are small through-
out the fleld. Thus, too, M 1s everywhere large compared to 1, and it
results, as shown in appendix A, that explicit solutions can be obtained
for the Mach number and pressure at any point on the surface of a body.
These solutions mey be summariged (from appendix A) as follows. The
local Mach number at any point is given by the relation

M = i \ (39)

1- L} (Mg By) (1~ %)

111t is clear, of course, that the results of reference 8 may also be
ugsed for this purpose. It is preferable, 1n fact, to use these
results when interpolation is not necessary.
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where
o i v 1 () )

M2 [l + Z—;i (MOSN)‘{'

247 (MOSN)é] b2t nop)”|

Mg® = (40)

(s
N 1+ = (Mody) J

The pressure coefficient at any point on the surface may be obtailned
from the expression

P = -n%é { [ 1+ 7(M05N)2]<M§><72%>- } (h1)

It is interesting to note that these expressions predict the ratios of
local to free-stream Mach numbers, and local to free-stream static pres-
sures to be the same at corresponding points on related bodies, provided
the flow fields about these bodies are related by the same value of the
hypersonic similarity parameter. These predictions are identical to
those of the hypersonic similarity law (reference T) and consequently
they provide & necessary check on the validity of the assumptions under-
lying the development of the simplified methods of this paper. It
remains now to evaluate the accuracy of these methods by comparing their
predictions with those of more exact theories.

Comparison of Approximate and Exact Calculations of Flow
About a Body of Revolution and Discussion of Results

The flow fields about a number of nonlifting cones operating at
supersonlc airspeeds haeve been computed numerically by Kopal (refer-
ence 8) following a procedure similar to that first employed by Taylor
and Maccoll. The results of these calculations provide an accurate check
on the approximate solutions developed in this paper for cones.

« v
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In figures 3 through 6 are shown the variations of & with w for
cones having semiapex angles of 5%, 10°, 20° and 40°. The predictions
of the slender-cone solutions are observed to be 1n good agreement with
the results of reference 8 for both the 5° and 10° cones (figs. 3 and k)
even at Mach numbers as low as 1.5, and in from fair to good agreement
for the 20° cone. The agreement improves with increasing Mach number,
ag would be expected. At the higher Mach numbers, where the cone solu-
tion for which w-8<<1 applies, 8 1is accurately predicted as a func-
tion of w for all four cones, the range of applicability (in terms of
Mach number) being the largest, of course, for the LOC cone. It is
interesting to note that fair agreement is obtained for the latter cone
down to a free-stream Mach number as low as 2, which is only slightly
above the Mach number for shock detachment.

The varlations of velocity with ray angle throughout the flow fields
about the above described cones are shown in figures T through 10. The
agreement between the cone solutions of this paper and the results of
reference 8 for these variations parallels that found for the flow incli-
nation angle as a function of the ray angle. In general the velocity
variations are small, decreasing percentagewise with increasing Mach
number, as was assumed in the analysis. It is encouraging to note, too,
that either or both of the two approximate solutions generally provide
an accurate prediction of the variation of 8 and V with ® +through-
out the flow field (e.g., figs. 4 and 8). It appears that a rule of
thumb for choosing the preferable solution is to employ the cone solu-
tion for which w-8<<1 whenever it is applicable (fig. 2).

The pressure coefficients on the surfaces of the four cones have
been calculated using the two approximaste solutions, and the results of
these calculations, along with the predictions of second-order theory
(taken from reference 3) and the results obtained from reference 8 are
presented in figure 11, It is obgerved that the two approximate solu-
tions overlap to predict pressure coefficients for the 5°, 10°, and 20°
cones that are In good agreement with those of reference 8 at Mach num-

bers from approximately 1.5 to infinity. Comparable accuracy is dbtained‘

from the cone solutions for which w-8<<1l <for the 40° cone at Mach
numbers above gbout 3. In general, of course, the agreement improves
with increasing Mach number. The second-order theory yields more accu=-
rate results than the slender cone theory for the 5° and 10° comes at
the lower Mach numbers, although the reverse seems to be the case for
the 200 cone. WNeilther second-order nor slender-cone theory is sppli-
cable to the 40° cone. -

From the preceding comparison of the conical flow calculations of
reference 8 with the predictions of the simplified solutions of this
paper, 1t 1s Indicated that the latter solutions may be employed to
predict the properties in the flow field about a cone with from good to
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excellent accuracy, depending on whether the Mach number of the free
stream corresponds to intermediate or high supersonic airspeeds. Ib is
therefore suggested that these solutions may, for example, be particu-.
larly useful at high supersonic speeds for accurately.determining the
conical flow fields about cones at Mach numbers not treated in the M.I.T.
tables (reference 8).

It remains now to determine the accuracy with which the solutions
for f£low about cones in combination with the isentropic expansion equa-
tions predict the flow at the surface of bodies of revolution other than
cones. The Mach number and pressure distributions at the surface of a
family of ogives operating at a free-stream Mach number of 6 were calcu-
lated using the simplified methods of this paper in the manner described
in the analysis. These distributions are presented in figures 12 and
13 for values of K varying from 1/2 to 2. Also shown are the results
presented ir reference 10,12 obtained with the method of characteristics
including effects of rotation. In general 1t is observed that with
increasing K, the conical~shock-expansion theory of this paper ylelds
Mach numbers and pressures that are in better agreement with the predic-
tions of characteristics theory. Indeed at K as low as 2, the pre-
dictions of the two theories agree within the accuracy of the character-
istics solution on the ogivel nose.l8 The several assumptions made in
the development of the conical-shock-expansion method are thus Justified
in part. It is somewhat surprising, however, that the method works as
well as it does at values of K near 1. It is suggested that this
result may be peculiar to streamlines near the surface of a body, for it
may easily be shown (with an argument analogous to that presented in the
analysis) that in the region of the vertex where three-dimensional
effects are perhaps most pronounced, flow in stream tubes adjacent to
the surface nevertheless shows agreement with the two-dilmensional
(Prandtl-Meyer) relation between stream inclination and Mach number or
pressure for values of K approaching 1.

The slender body solution also displays Increasing accuracy with
increasing K, although it consistently predicts toc high Mach numbers
and too high pressures on the surface near the vertex. This result is

12The Mach number distributions presented here were calculated from the
pressure distributions given in reference 10.

13The frequently suggested method of determining surface pressures on a
body of revolution by assuming the pressure at e point will be the
same as on a cone tangent to the body at that point was also tried
and, in general, the pressures were too high. The error was less at
larger K, however, although it was greater than for the conical-~
shock-expansion theory. As would be expected, the Mach number distri-
butions were generally in considerable error.



http://www.abbottaerospace.com/technical-library

NACA TN 2579 21

primerily a consequence of the spproximate nature of the conical flow
solution employed in the development of the theory. In any case even
at a K of 1, the slender body theory displays sufficient accuracy for
many engineering purposes. Indeed, upon inspection of the pressure dis-
tributions, it is evident that, although doubtless fortuitously, the
slender body theory will yield more accurate drag coefficients than the
conical~-shock-expansion theory at the lower values of K. )

Comparisons similar to those just discussed were made for the other
oglves congidered in reference 10, and in general the same results were
obtained; namely, for K>1, the simplified theories of thls paper were
in good agreement with the predictions of the characteristics solutions,
the difference between the predictions of the latter theory and the
conical -shock-expansion theory being of the order of accuracy of the
characteristics solutions at K as low as 2.

CONCLUDING REMARKS

With the assumption that the flow at the vertex of a body is coni-
cal, 1t was found that simple approximate solutions can be obtained
which yield the Mach number and pressure at the surface over a consider-
able range of free-stream Mach numbers and apex angles. In the special
case of cones, these solutions define the entire flow field with good
accuracy, and may therefore provide a useful adjunct to the well-known
M.I.T. tables for flow about cones.

The investigation of flow downstream of the vertex revealed that
when the hypersonic similarity parameter X (the ratio of free-stream
Mach number to slenderness ratio) is large compared to 1, the Mach num-
ber varies with flow inclination angle along a streamline in approxl-
mately the same manner as for two-dimensional (Prandtl-Meyer) flow. In
the special case of streamlines near the surface, it was suggested that
this parameter may approach 1. This and preceding results obtained for
flow at the vertex were combined to yield what might be termed a conical -
shock ~expansion method for calculating the Mach number and pressure
distributions at the surface of a body. In the special case of slender

bodles, exceedingly simple explicit expressions were obtained for these
quantities.

Surface Mach number and pressure distributions were caleculated with
the simplified methods of this paper for a Tamily of ogives traveling at
a Mach number of 6. These distributions were in good agreement with
those obtained with the method of characteristics at values of K
greater than 1., In the case of the conical-shock~expansion calcula-
tions, the agreement was within the order of accuracy of the character-
1stics solutions at K as low as 2.

— . — e o e A m r e —


http://www.abbottaerospace.com/technical-library

22 ' NACA TN 2579

Because of the relative simplicity of the proposed methods of deter-
mining the flow at the surface of a body operating at high supersonic
airspeeds (K >1), these methods should prove useful for engineering pur-
poses. It is also suggested that the same general approach may be
applicable (again for K >1) in developing methods for calculating flow
at the surface of pointed bodies of revolution at small angles of attack.

Ames Aeronautical Laboratory
National Advisory Commlttee for Aeronautics
Moffett Field, Calif., Sept. 1k, 1951
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AFPENDIX A
FLOW AT THE SURFACE OF A SLENDER BODY OPERATING

AT HIGH SUPERSONIC ATRSPEEDS

If a slender body (i.e., a body on the surface of which the slopes
are everywhere small compared to 1) is operating at free-stream Mach
numbers very large compared to 1 (again, of course, K>>l), the local
Mach numbers will likewlse be large compared to l. It follows, then,
that the inclination of the nose shock wave will be small and, conse-
quently, that ® will always be small. In this case the relation

between & and w at the vertex is extremely simple;** namely, (see
equation (10))

. 8 = —— : (a1)

Combining this expression with equation (7), the relation
1
v 68 8N2 5(52-682)
P i -X e (42)
Vs 3

defining the velocities in the flow fleld 1s easlly obtained. Hence,
the Mach number on the surface at the vertex, My, may (to the order of
accuracy of this analysis) be related to Mg by combining equation (20)
with this expression to yield

M = Mg? {1 + Z——- (MSSN) [1 + Zn<5N> < Ay 1} (A3)

Now the oblique shock-wave equations for flow of the type under
consideration reduce to

14 The equations developed in the following analysis could be obtained
from the final expressions previously developed by reducing them
to conform to the assumptions of this slender-body theory. It seems

simpler, however, to proceed, as indicated, from the basic-flow
equations.
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W2 o (7+1) Mo (Mows )®
5 Loy (Mows) - (7-1)1 [(7-1) (Mowg)3+ 2]
and
28 - 2L (507~ ZL
P, 74l 7+1
where

/f(7+1)M088]2 + 16
(7+1) Mode y

Mowg = MoBs (Z-'E]:-) {l +

Combining equations (Al) and (A6) there then results

Mowg =/1 + Zg—l (ModY)®

and

<5_s_ 2 ) (M,8y)2
o 1+ Bhoesy)?

Equation (A4) can now be written (considering equation (AT))

Moa[l + Z;i (MoaN)E:l
2
e = [1 vy (MOSN)eJ [1 s 22 (MOSN)E]

Equations (43), (A8), and (A9) provide the Mach number

NACA TN 2579

(Ak)

(A3)

(a6)

(AT)

(48)

(49)

on the sur-

face at the vertex. Knowing My, a simplified expression for the Mach
mumber anywhere on the surface of the body may be obtained from equa-
tion (37). Since the local Mach number is assumed very large, this

equation mgy be reduced to the form

2 ap=a

7-1
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vhich, in turn, can be written, upon integration, to yleld the local
Mach number

"= 7-1 (9] (AlO)
L= B e (1- )
Now the pressure coefficient 1s glven by the expression
2 (Ps P )
Pz | mm— =1 All
7M02 PO PB . . ( )

The pressure rise across the shock may be obtained by combining equa~
tlons (A5) and (A7) to yleld

’ 2
28 =1+ 7 (MPy)
Po

Similarly, the ratio of the pressure at the surface to the pressure at
the shock can be expressed (to the order of accuracy of this apalysis)

in the form
27
D _ Ms> =
P{(‘M‘ 7

With the aid of these expressions, equation (All) can now be written

P = mia { [l + 7 (%BN)Z:K%E).?%% -1] } o (a)

yilelding the pressure coefficient at any point on the surface of the
body.
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