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ESTIMATE OF SLIP EFFECT ON COMPRESSIELE
LAMTNAR-BOUNDARY-LAYER SKIN FRICTION

By Harold Mirels

SUMMARY

Rayleigh's problem for a compressible viscous ges, subject to slip
at the wall, 18 considered. Expressions for slip velocity and skin
friction are derived with the gas temperature at the wall and the product
of viscosity times density assumed constant, or nearly so. The solution
is related to that for the flow past a flat plate by a transformation '
which, in the continuum regime, results 1n exact agreement with the
expression for laminar skin friction obtained by Chapman and Rubesin. The
expressions for local skin friction are considered to define the extent of
the continuum regime and to estimate the effect of slip in the border
regime between continuum and slip flow. An estimated upper limit for the
over-all drag of a flat plate in the slip flow regime is also obtained.

For the entire range from free-molecule flow to continuum flow, the
parameter governing skin friction (expressed in the form /7 Mﬁbf*) was

found to be -/Re¥/+/y M¥* (where Ce*, v, Re¥, and M¥* are the local

skin-friction coefficient, the ratio of specific heats, Reynolds number,
and Mach number, respectively, all based on gas properties at the wall).
Continuum theory for local skin friction was found to agree with the
expressions for skin friction developed herein to within 1 percent for
~/Re¥/~/7 M* greater than 5.2 and to within 5 percent for -/Re¥/-/y M¥
greater than 2.4. ‘

INTRODUCTTION

Fluid mechanics can be classified, as indiceted in reference 1, into
continuum, slip, intermediate, and free-molecule flow regimes. In the
continuum regime the meah free path of the fluid molecules is negligible
compared with body dimensions, and the conventional equations of motion
apply. Vhen the mean free path is small, but not negligible, compared
with body dimensions or boundary-layer thickness, the fluid in contact
with the body surface has a nonzero tangential velocity relative to the
surface; this flow regime i1s consequently termed a slip flow. A free-
molecule flow is one wherein the mean free path is very large compared
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with body dimensions so that the chances for collision of molecules
among themselves are much smaller than the chances for collision of
molecules with the body surface. Intermediate between the free-molecule
and slip flow regimes, collisions between molecules and collisions of
the molecules with the wall have the same order of probability.

The basic parameter defining these regimes is the ratio of the
molecular mean free path 1 1o the smallest sigmificant physical
dimension characterizing the flow. In the case of a flat plate, the
smallest significant physical dimension msy be taken, for sufficiently
large Reynolds numbers, as the boundary-layer thickness &. The ratio
1/5 is shown in reference 1 to be of order M/W/Re, where M 1s the
free-stream Mach mumber and Re 1s the Reynolds number based on distance
along the plate. When, for simplicity, M q/Re is considered as the
basic parameter (regardless of Reynolds number), the flow regimes mey
be estimated as

100 < 31415_3 Continuum flow

1< Dé-R—_e < 100 S1ip flow

0.1 < M <1 Intermediate flow
Re
M < 0.1 Free-molecule flow

(The definitions of the intermediate and free-molecule flow regimes
differ, for small Reynolds numbers, from those proposed by Tsien in
reference 1, since plate length, rather than 8, was considered in
reference 1 to be the significant physical dimension in these-two regimes.)

In the continuum regime the conventional momentum and energy equa-
tions apply. However, in the slip flow regime additional terms must be
incorporated into the equations. Although these terms increase the
order of the differential equations, it has been shown by Schamberg,
in a California Institute of Technology thesis, that they do not increase °
the number of boundary conditions required, nor do they radically change
the flow from that encountered in the continuum regime. Thus, in the
border region between continuum and slip flow, it might be expected that
these additional terms are negligible and that a first approximation
for the effect of slip may be obtained by solving the conventional
equatione of motion subject to slip boundary conditions. Neglection
of these terms would, at the least, be the first step in an literation
procedure for solving the complete eguations of motion for slip flow.
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In the present report, Rayleigh's problem; for a compressible gas
is considered utilizing the conventional equations of motion with slip
boundary conditions. The no- slip case has been discussed in references 2
and 3. Rayleigh's problem is of interest because it is a relatively
simple boundary-layer-type flow and mey be conslidered as & model indi-
cating the essential features of the slip effect. An estimate of skin
friction on a semi-infinite flat plate, under slip flow conditions, is -
then obtained by relating time in the Rayleigh problem to distance
downstream of the plate leading edge. The transformation from time to
distance as the independent variable can be so chosen as to yield an
expression for skin friction which 1s in exact agreement, in the con-
tinuum regime, with a known solution (reference 4) of the flat-plate
boundary-layer equations. The matching of Rayleigh's problem with the
flow past a plate is similar, in principle, to the use of "modified"
Oseen equations of motion for the flow past the plate, as discussed
in reference 5.

. In reference 6, the solution of Rayleigh's problem, with slip,

for the case of an incompressible fluid is obtained by Schaaf. The
effect of compressibility, which is treated herein, is important, since
the parameter w/ﬁg/M indicates that slip may be introduced by high
flight Mach numbers as well as low Reynolds numbers. Moreover, in
relating Rayleigh's problem to the flow past a plate, Schaaf did not
attempt to matech the solution with the flat-plate solution in the
continuum regime.2 This matching, which is imposed herein, is essential,
since the use of the conventional equations of motion with slip boundary
conditions is considered Jjustifiable chiefly as an asymptotic extrapola-
tion from the continuum regime into the border regime between continuum
and slip flow.

ANATYSIS

The slip flow boundary condition is discussed, after which an
approximate- solution to Rayleigh's problem is obtained. Finally, the
solution to Rayleigh's problem is related to compressible slip flow
paet a plate.

S1ip Flaw Boundary Condition

Consider flow along a wall where x 1is distance albng the Wali,
y is distance normal to the wall, and the fluid velocities u and Vv
are parallel and normsl to the wall, respectively According to Mexwell's

lRaylelgh's problem consists in determining the flow field when an
infinite plate, immersed in a viscous fluid, is instantaneously set into
motion and maintains a constant velocity'thereafter

zAfter completion of this report, it was noted that In reference 7,
the solution to Rayleigh's problem for incompressible flow is properly
matched to the Blasius solution in the continuum regime.
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theory of slip (reference 8), the velocity at the wall in the slip flow
regime may be expressed in the form

w, = 2c (2 - f) (z %)W (1)

where 1 is the mean free path, ¢ 1is a number between 0.491 and 0.499,
and f is the fraction of the tangential momentum lost, on impact, by
the molecules impinging on the wall. For diffuse reflection (that is,
the molecules rebounding from the wall have no preferred direction), T
equals 1. Experimentally, £ has been found to vary between 0.79 and
1.00 with the majority of the values close to 1.00. Thus, with the
assumptions that £ =1 and c¢ = 1/2, equation (1) becomes

Uy, = ( Sg-)w ‘ (2)

It is apparent that slip occurs only when 1 is not negligible. The
mean free path at the wall may be written (reference 1)

oy Yw
1 =A[+— 3
o (5)

where the additional symbols are defined in appendix A.

Rayleigh's Problem for Compressible Viscous Gas

Rayleigh's problem consists in finding the flow field induced when
an infinite flat plate, immersed in a viscous medium, is instantaneously
set into motion in its own plane and is maintained at comnstant velocity
thereafter. An equivalent problem is to consider the plate fixed and
have the gas impulsively set into motion at constant velocity parallel
to the plate. The case of a gas impulsively set into motion is more
directly analagous to the flow past a semi-infinite flat plate and will
be the one used.

Equations of motion. - As in reference 3, all x-derlvatives are
zero and the equations of motion are

Momentum: p

Da
Dt
B-3ei5(-3) ¢

2362


http://www.abbottaerospace.com/technical-library

2922

NACA TN 2609 S

Continuity: ' 3 + - (pv) = 0 | ‘ (8)

Energy: pdc, — - = = J'jl k oT + Su ; + 2 ov ? (7)
PP T T %\ ) T \&) T3\

State: P = pRT \ (8)

where the operator D/Dt 1is

D_O0,_20
= == — 9
%3 'Sy (9)
Equation (6) implies the existence of a function ¥ such that
e % v N 10
oL o, (10)

where the subscript O designates conditions far from the wall. Trans-
formation of the independent variables from (t,y) to (t,¥) is
accomplished, as in references 2 and 3, by the following relations:

&, -G -56. )

IS} o [ o
=] = —\| 12
(ay)t Po (W)t (12)
D = (Ei) (15)
Dt ot v ‘
With these transformations, the equations of motion become

du 3 g\ ou
Momentum: oy, L 14
t - Oy [%“o)a‘l] (e

ov_ .1 4, 3if on\ov |
K Po O¥ R a*[(po“o> 3‘3 ‘ 4]
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Continuity: ‘a'aE (%) - El- % =0 ‘ (18)
0.

w1t T, 3 o, , (o) [[2), s o
TS T e 0% ol ) O T PoMo x T3\ (17)
The ratio c,/0 1is assumed constant in equation (17). To return to

the (t,y) coordinate system it is necessary to integrate, for con-
stant 1,

¥
y = pofglpI (18)
0 ,

Skin friction for constant pp/pguy and T,. - A simplification

can be introduced into equations (14), (15}, and (17) by considering
pu/pouo constant. This condition implies that pressure variations are

negligible (which is consistent with the Prandtl boundary-layer assump-
tions) and that " p is proportional to T, which is not strictly correct
except for speciel cases. (A more. accurate expression for pu/pouo is,

from the Sutherland equetion,

on _ (g)l/ JERLN (19)

where the pressure is assumed constant and S is a constant for a
given gas and equals approximately 216° R for air.) However, by con-
sidering the case of constant T, and assuming pu/pouo to be constant

throughout the flow field and equal to pwuw/pouo (so a8 to be correct

in the vicinity of the wall, which is ‘the region of interest) values

of compressible boundary-layer skin friction are obtained in reference 4
which agree with the more accurate numerical integrations of reference 9
within 5 percent for flight conditions up to Mach number 5 and within

1 or 2 percent for supersonic wind tunnel conditions up to even higher
Mach numbers. The same simplifying assumptions will be made in the
present analysis; namely, ’

o Pty - (20)
oMo PoHo -
=c

and the gas temperature at the wall T, 1is constant.
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The substitution of equation (20) into equation (14) yields

‘ -?—;: = Cv, %‘21- ' (21)

This equation is independent of the energy equation, and a closed-form
solution for skin friction can be obtained for zero slip or for nonzero
slip at the wall.

(a) Zero slip at wall

For the case of zero slip at the wall, the boundary conditions are

u=U for t=0, % >0
u=0 t20, ¥=0 (22)
u % t20, y>w

-

Equations (21) and (22) are formally equivalent to the problem of
finding the temperature in a semi-infinite solid, originally at constant
temperature U, when a constant surface temperature of zero is impressed
at time t = 0. The solution (reference 10) is

L. ers(y/2~/Gogt) _ —  (23)

vhere erf( ) is the error-function (tabulated, for example, in refer-
ence 11) and is defined by

erf(x) = f exp(-r?)dr . (24)

The shear- stress at any point in the flow field is then

ceuf- s s% = exp(-v7/s0vt) (25)

At the wall,

Ty = U ~/iypy/nt . (26)


http://www.abbottaerospace.com/technical-library

8 NACA TN 2609

(b) Nonzero slip at wall

When there is slip at the wall, equation (21) has the boundary
conditions (utilizing equation (2))

u=70U for t=0, y> O
10y 2u
us=|{—= tZ0 =0 27
(Po aw)w » ¥ (27)
-u->U Yoo

Equations (21) and (27), as pointed out in reference 6, are equivalent
to the problem of finding the temperature distribution in a semi-infinite
solid at temperature U which, at t = 0, starts transferring heat to
an adjacent medium at zero temperature. The solution is (reference 10)

%: erf(n) + erfe(n + t) exp E(Zn + Cil (28)
where
erfe( ) =1 - ere( )
1= v/2 W

t = o "/C"Othpw

The veloeity of slip is

T = erro(t) exp(?) (29)
The shea? stress is
o= 2P {erfC(n + ) exp E(Zn + Q‘}]} (30)
0,
At the wall, '
T = —H;LU [erfC(Q) exp({iz_zl (31)

These equations will be discussed after the analogy with the flow past
a flat plate has been established.

2362


http://www.abbottaerospace.com/technical-library

PM

2922

NACA TN 2606 9

Skin Frietion on Flat Plate

It is well known that, for the case of no slip, the variation of
boundary-layer thickness, displacement thickness, shear stress, and so
forth with time in Rayleigh's problem is similar to the variation of
these parameters with distance along a flat plate. (See, for example,
reference 12.) If in the solution to Reyleigh's problem (without slip)
the transformation t = Kx/U, where K 1s a dimensionless constant,
is introduced, it is possible, by proper choice of KX, to match some of
these parameters so that they are identical to the results obtained for
a flat plate (without slip). Since skin friction is the major concern
herein, K can be chosen so that the skin friction indicated by equa-
tion (26) will exactly match the flat-plate continuum solution obtained
in reference 4, which may be written

gr'w = 0.332(0°/3) /\IEW;—"' (32)

Substituting t = Kx/U into equation (26) yields

o= @ PR (59)

Comparison of equations (32) and (33) indicates that

1
K = (03522 2.888 | (34)

The appropriate transformation is then

t = 2.888 x/U "~ (35)

This transformation matches, for the no-slip case, the skin friction
associated with Rayleigh's problem to the expression obtained in
reference 4. If substituted into equation (31), the transformation
should glve & reasonsble estimate for skin friction on a flat plate
in slip flow, particularly for small slip velocities.

An alternative spproach, which yields the same results but which
avoids a reference to Rayleigh's problem, is to write the boundary-
layer equations for slip flow past a plate and introduce a "modified"
Oseen type linearization, as discussed in reference 5.

S1ip velocity and local skin-friction. coefficients. - Substituting
equations (3) and (35) into the expression for~ {  gives

e e ——— e e e ot e e e —
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-\fR_e 1 356 _ [P0 ~/Re _ 1.356 ~/Re*
£ = —\/_ *\/ﬂ_ T M (36)

where the superscript ¥ indicates that the parameter is based on state
properties evaluated at the wall; that is,

Re% = PPX e U ql.*=£ﬁ£1E (37)
. oy 2 -

Substituting these parameters into equations (29) and (31) gives the
following expressions for slip velocity and wall shear:

N . . 2
. EU‘I = erfe (—1:3;6 3%;) exp (————1526 3%1:) (38)

2
_ @ |8 p. 1356 1.356 +/Re¥*
w f(v— ) (2= = e

The local skin-friction coefficient may be expressed as

2
VF W =:@EW= \E erte (u@;@)exp(us_eﬁ) (40)

S VT

Tt is seen that -/Re¥/+/y M* is the basic parameter defining skin
friction.

The numericael evaluation of equations (38) to (40) is difficult
for very small or very large values of the paraemeter. In these cases,
it is convenient to express the error function and the exponential in
series form. For small values of { (reference 10),

erf(_r,)=—2—(g-' ST S 4 +)

/= 31! 5.2 7-3!

2 3
e@(ﬁz)=l+§2+£g-2;)—+-(-§?—+

For larger values of {, the error function can be expressed by the
asymptotic series

_ o, _exp(=t®) (L 1 1.3 1-3-5 )
erf(f) = 1 - (1 e (zgz)z (2§2)3+

2362
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The local skin-friction coefficient can then be written: for

~/Re¥ /< /7 Mt < 0.4, ’
/T MHC* = ,\E[l - 1.530 (:u@) + 1.839 (ﬂ)z )

Vr ¥ ~r ¥
1.87-5 (ﬁ)s + 1.691 (—j_%)qz - (41)

for -/Re¥/+/r M¥* > 2.5, ‘

| /T M¥CE* = 0.664 :\% [1 - 0.272 (—_‘/J;C%)—z + 0.222 (j_:@)-_é -

10.301 (ﬁ)—e + ] )

Equation (42) is of primary interest because it indicates the variation
of skin friction in the border regilon between continuum and slip flow.
Equations (38) and (40) were evaluated using the expansions indicated
in equations (41) and (42) and are plotted in figures 1 and 2 for

T = 1.40.

In the limiting case of free-molecule flow, -/Re¥/-/¥ M*% 0, equa-
tions (38) and (41) become

uFW=1 ’ , (43)
viwerazq

Equation (44) yields twice the result indicated by kinetic theory
(reference 13). It should be recalled that continuum equations of
motion have been used and that equation (2), which was derived on the
basis that the molecular mean free path is small (but not negligible)
compared with the boundary-lsyer thickness, is clearly inapplicable in
the free-molecular flow and intermediate flow regimes. Equation (2),
which relates shear stress to the local slip velocity, is too large by

e e e ———— - e
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a factor of 2 in the free-molecule regime, as can be seen by comparing
references 8 and 13. For this reason, equation (44) has the proper form
but yields twice the correct result.

In the limiting case of continuum flow, +/Re®/fy M* = =, equa-
tion (42) becomes

/T M¥Cp* = 0.664 ﬁﬁ (45)

vwhich, because of the matching procedure, is In exact agreement with
reference 4. Equation (45) agrees with equation (40) to within 1 percent

for -/Re®/+/y M¥ > 5.2 and within 5 percent for +Re¥/~/y M¥* > 2.4.
Equation (42) thus indicates that the effect of slip first appears from

a term proportional to the square of the parameter —/? M*/Re*.

2362

Equation (40) is plotted in figure 2 for ¥ = 1.40. The four flow
regimes, based on the criterila mentioned in the Introduction, are also
shown. For a semi-infinite flat plate in a rarefied gas stream, it is
seen that the flow starts as a "free-molecule" type flow and ultimately .
develops into a "continuum" type flow; the indicated estimate for the
extent of the continuum regime is conservative in regard to local skin
friction. Equation (40) indicates that continuum theory for local skin
friction is applicable for -/Re¥/M® > 5. The plot of equation (40)
is dashed for q/Rex/M* < 2 since it is of questionable validity beyond
the border regime between continuum and slip filow. Since equation (40)
asymptotes to twice the correct value for free-molecule flow, it appears
that this equation underestimates the reduction (in skin friction)
associated with slip. In fact, it may be argued, from a kinetic theory
viewpoint, that the local skin friction must be a monotonic decreasing
function of ~/Re¥®/M*, starting with the free-molecule flow value.
According to kinetic theory, local skin friction is proportional to
the axial momentum (parallel to the well) of the molecules striking a
unit area of the wall per unit time (see, for example, reference 8).

As the fluid moves downstream, the molecules in the vicinity of the
wall have less and less axial momentum due to previous collisions with
the wall and thus bring successively less and ‘less momentum to the wall
at the downstream stations. Berring an instability in the flow (such as
the transition to turbulent flow in the continuum regime), the local
skin friction must then decrease monotonically with Re®/M*. On the
basis of this reasoning, equation (40) is definitely invalid for
~/Re®/M* less than approximately 0.7. An interpolation function can
be devised which will decrease monotonically from the free-molecule v
value and feir into equation (40} in the vicinity of the continuum-slip
flow border regime. For example, if equation (40) is multiplied by

(3B
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the resulting expression for local skin friction will decrease monoton-
ically with W/Re¥/1/— M¥ and will have the proper end points. However,
insufficient information is available, concerning skin friction in the
intermediate regime, to justify a particular choice for the interpolation
function.

Integrated drag. - The drag coefficient for the plate is written

(o o

Cp =

Cpdx (47)
o
Since equation (40)- overestimates the skin friction in the free-molecule
and intermediate flow regimes its use in equation (47) will result in an
overestimate of the flat-plate drag coefficient. Such a procedure will
provide some useful information, however, and will therefore be presented.

Following this integration, an estimate of the upper limit for the flat-
plate drag coefficient will be indicated.

If equation (40) is substituted into equation (47) the resulting
expression for drag coefficient may be written

SR o g exp(t;?
'\/?M*CD*—' “?[.\/E 1 + erfe (QL) XP(QL):l (48)

where

by = 1.356 ~/Re¥ [/ M*
In expanded form: for -/Ref®/4/y M¥* < 0.4,

k- )\2
~/r Mep® = {—[1-1020 VETL | g.gz0( XESL)

~r M* AT M* o)
49

e\ 4

0.750 VR, o.564 [ XL _ ...
~r T M*
~/Re;*/+/fr M* > 2.5,
| -1
~/T Mgt = 1.328 Y M) oese [ VEELY

— o e (50)
50

-2 -4

_E_L - 0.0739 VReTy, P

0.272
N\ e A m*
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Equation (48) is plotted as a dashed curve in figure.3.

It was previously argued that the local skin friction must decrease
monotonically from the free-molecule flow value. Therefore, equation (40)
tends to overestimate the local skin friction upstream of its region of
validity. If it is assumed that the free-molecule flow value
T Mrce* = 1{22ﬁ applies for -/Re¥/+/y M¥< 0.55 and that equation (40)
applies for Re*/ v M¥> 0.55, then this distribution of skin friction
should, at all points, equal or exceed the correct local values. (the
that at q/Re*/—J? Mt = 0.55 equation (40) yields the free-molecule flow
value for skin friction.) Then integrating this distribution of skin
friction should yield an upper 1limit for the over-all drag of a flat

plate. Integration yields (for -/Reé¥p/~/r M* > 0.55) -

2t ‘ -/Re* 2
/T M¥op* = .\/-_3 Ei-g[?_i - 1 + erfe(tr) éxp(CLz}] ~ 0.0623 -_‘/ﬂ& (51)

Equation (51) is plotted in figure 3 and is considered to define an upper
1imit for flat-plate drag coefficient. Equations (48) and (51) agree
within 1 percenmt for -/Re;¥/-/y M¥ > 5, indicating that for these values

of the parameter the free-molecule and intermediate flow regimes are
confined to a relatively small region close to the leading edge, and a
more correct estimate of the local skin friction in these regimes may
be unnecessary when estimating over-all drag. Continuum theory agrees
with both equations.(48) and (51) to within 1 percent for

~R&,/+/r M* > 65 and to within 5 percent for ~/Ref/~/r M¥ > 13.

Surface temperature. - In the previous developments the gas tempera-
ture at the wall has been assumed constant. However, for zero heat
transfer, the gas temperature at the surface of a plate in slip flow
varies from the free-stresm value at the leading edge to the continuum
value for recovery temperature at downstream points. In order to
evaluate skin friction from the previous equations, it is necessary to
base equation (20) on an appropriate average value of T, as was done
in reference 4. An approximate method for estimatinglthe variation of
T, along a plate with zero heat transfer is indicated in appendix B.

SUGGESTIONS FOR ADDITIONAIL STUDY

The method of solution used herein is attractive because of its
relative simplicity. However, several aspects of the development
require additional study. Use of continuum equations, for example,
means that terms of order (M%/+/Re¥)2 are neglected in the equations
of motion (reference 1). But, equation (42) indicates that the cor-
rection.to continmm theory, in the border region between continuum

2362
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and slip flow, is of the order (M¥/-/Re¥)2. Thus the correction is of
the same order as the terms neglected in the differential equation.

The use of continuum equations with slip boundary conditions, for
estimating skin-friction coefficients in the slip flow regime, is
Justifiable if the effect of slip is introduced primarily through the
boundary conditions rather than through the differential equations.

The region of validity of this approach can be established by solving
Rayleigh's problem using equatlions of motion which include the higher
order terms neglected herein and comparing the solution with the
results obtained by the present analysis. Moreover, the transforma-
tion from Rayleigh's problem to a flat plate, although exact in

regard to skin friction in the continuum regime, may be only
approximate for the slip flow regime. An evaluation of this

effect can be obtained by solving directly for skin friction on a flat
plate, using continuum equations with slip boundsry conditions, and
comparing the solution with the results of the present report. Finally,
more accurate solutions for local skin friction in the intermediate
regime would be of interest.

CONCLUDING REMARKS

A solution to Rayleigh's problem for a compressible fluid, with
8lip boundary conditions, has been obtained and related to the flow
past a semi-infinite flat plate. The results have been interpreted
to define the border region between continuum and slip flow and to
estimate the effect of slip.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, September 13, 1951
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APPENDTX A
SYMBOLS
speed of sound
Pt/ Potg
flat-plate drag coefficient, d:rag/—i—'- pUZT,
local skin fricfion coefficient,T’/% pU2

specific heat at constant pressure

éf exp(-r2) dr
0

1 - erf(x)

mechanical equivalent of heat

NACA TN 2609

2362

constant relating Réyleigh's solution to flow past plate -

thermal conductivity
length of plate
molecular mean free path

o
Mach number of free stream
static pressure
dynamie pressure, % pU2
gas constant
Reynolds number, pOUx/uO
constant in Sutherland formulsa
gas temperature
time

velocity in free stream

velocity parallel to x-axis
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v velocity parallel to y-axis

Xy

X, coordinate systemé

T ratio of specific heats
boundary-layer thickness

¢ = pg/Cvgt/lp,

o= ¥/2 1[Gt

i _ viscosity

v kKinematic viscosity, u/p

p density

g Prandtl number, pc /k

T ’Bhe;r stress

Subscripts:

w wall value

L based on length of plate

0 free-stream value

Superscript:

* ‘ state properties of gas evaluated at wall

_—— e .- - e e e - A e e T e v e e pre + e
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APPENDIX B
EVALUATION OF T, FOR ZERO HEAT TRANSFER

In the continuum regime, the wall temperature is given by (refer—
ences 4 and 14)°

Ly o s o1 2(g)l/2 (B1)
To 2

where o0 = 0.72 <for alr. A reasonable approximation for wall tempera-
ture, in the case of slip, might be

% =1+ L2 w2 (o) 1/2 [1 - (%)2] (B2)

This expression is correct in the limiting cases u, =T and u, =0
and the dependency of Ty/Ty on the square of quU would seem correct
from energy considerations. In the border region between continuum and
slip flow, u, /U 1is small (fig. 1); (uw/U) is then negligible in
equation (B2) and equation (Bl) applies. ‘

The procedure for estimating the variation of T, along an insulated
plate would then be as follows: The wall temperature is first assumed
constant at the value indiceted by equation (Bl) The corresponding
variation of wu,/U along the plate can then be found from figure 1.

These values for uw/U can then be substituted into equation (BZ) to
yield the estimate of the local T.
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Slip veloeity, u,/U

' NACA TN 2609

Dimensionless dlstance along plate, -\/ﬁe*/M*
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Dimensionless distance along plate, -~ /Re¥/M*
Figure 1. -~ Varlation of slip velocity along flat plate. v, 1.40.
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Looal sldn friotion paraweter, NiCpe*
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Flat-plate drag coefficlent, M*Cp*

.0

B Equation (44)
—— | \
{ T 2inst urve)SFN = =
U‘?PGJ‘- t ourve) N N
L N
/ Sy N
I IFroe-wolscule flow (raferenas 13) ‘\\ ‘.\
. W _'\/3__. N
‘\vm Sp T \E\\
. \\
N
N
NN
N
\\\
A\
\\\V iCantinuue theory (referenca 4}
T N3 ~/*Cp* = 1.528- /FH "/~ /Re?
\\
\\
k.
[Free—molacule, Intermediate, \\ Contimum
Low 4 flow S1lip flow N - rlO_T
\ T
1 L 1 LI )
.02 Re, .08 .08.1 .2 4 4 .8 1.0 2 & & 8 10 20 49 40 60 X0 200 400 800 800 1000
Dirensiculess length of plate, ~/Reps/ue
Figure 3. - Drag oocefficient of flat plata. 7, 1.40.
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