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SUMMARY

The reciprocal equations relating the 1ift and moment acting on an
glrfoil due to harmonic oscillations in compressible flow to the indicial
1ift and moment functions for a pitching airfoil are determined. Two
indicial functions are required to describe completely the 1lift or
moment on the airfoil; one function is used for describing the effects
due to the angular position of the airfoll whereas the second function
is used for describing the effects due to pitching velocity.

Calculations for the indicial 1ift and moment functions are made
for a pitching airfoil at a Mach number of 0.7 for which sufficient
oscillatory coefficlients were available. The growth of 1ift to the
gteady-state value is-less rapid for compressible flow than for incom-
pressible flow for both indicial functions of the pitching airfoil.
Although the circulatory 1ift due to pitching velocity on an airfoil
rotating about its three-quarter-chord point is nonexistent at a Mach

‘number of 0, for a Mach number of 0.7 a time-dependent 1ift exists

because of pitching velocity and approaches zero in approximately
2 chords.

INTRODUCTION

In the study of transient flows, two types of alrfoil motions have
special significance - a harmonically oscillating airfoil and an air-
foil experiencing a sudden change in angle of attack. The reciprocal
relations betwyeen the indicial 1ift and the 1ift associated with a
harmonically oscillating airfoil for both sinking and pitching motion
are glven in reference 1 for incompressible flow. In reference 2 the
reciprocal relations were extended to apply to an airfoil suddenly
acquiring a vertical velocity in a subsonic compressible flow, and the

.. e e e e e e = e - -


http://www.abbottaerospace.com/technical-library

2 NACA TN 2613

indicial 1ift and moment functions were evaluated for a Mach number.

of 0.7. The present paper is an extension of reference 2 in that the
indicial 1ift and moment functions for a pitching airfoil are determined.
The reciprocal equations for the case of a pitching airfoil are indi-
cated, and the indicial lift and moment functions are computed for a
Mach number of O0.7.

In a recent paper by Lomax, Heaslet, and Sluder (reference 3), a
different method for determining the indicial 1ift and moment functions
is given. Although parts of the indicial functions can be determined
readily, the solution for the complete indicial functions is lengthy
and tedious, and, consequently, numerical results are given only for a
Mach number of 0.8 in reference 3. Part of the solution presented herein
for a Mach number of 0.7, however, was determined by the method in refer-
ence 3 and was compared with the solution determined in this paper.

SYMBOLS
8 distance traveled, half-chords
w . angular frequency
v . forward Yelocity of airfoil
c chord
X,2 Cartesian coordinates
k reduced-frequency parameter (wc/2V)
L(s) 1ift per unit length of span, positive in downward
: direction
Lq(s) 1lift per unit length of span due to pitching velocity,

positive in downward direction

M(s) moment per unit length of span ébout quarter-chord
point, positive when moment tends to depress
tralling edge

Mq(s) moment per unit length of span due to pitching velocity
about the quarter-chord point, positive when moment
tends to depress trailing edge

p . density
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ky (8)

my (s)
Ky (s)
my (s)

: Fo(k) + 1G.(k)

M(k) + iN(k)

ch(k) + ich(k)

Mq(k) + Nq(k)

normal component of perturbation velocity

amplitﬁde of vertical displacement of airfoil, half-
chords

angle of pitch, positive when trailing edge is lower
than leading edge :

rate of change of pitch of airfoll with respect to
distance traveled in half-chords, positive when
trailing edge is falling with reference to leading

edge (0c/2v)

indiciagl 1ift function for an airfoll experiencing a
sudden change in vertical wvelocity ’

indicial moment function for an airfoil experiencing
a sudden change in vertical velocity where moment
is taken about quarter-chord position

indicial 1ift function for an airfoll experiencing a
sudden change in pitching velocity about its
leading edge

indicial moment function for an alrfoil experiencing
a sudden change in pitching welocity about its
leading edge

coefficient of complex compressible oscillatory lift
derivative

coefficient of complex compressible oscillatory

moment derivative where moment is taken about
quarter-chord point

coefficient of complex compressible oscillatory 1ift
derivative due to pitching velocity only

coefficient of complex compressible oscillatory moment

derivative due to pitching velocity only

£(k) = Fo(k) - Fo(e)

n(k) = M(k) - M()

£4(¥)

mqy (k)

Fog(k) = Fe (=)

Mq(k) - Mq(=)
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in-phase and out-of-phase 1ift coefficients,

1’
respectively, associated with translation of airfoil

2

My ,My in-phase and out-of-phase moment coefficients,
respectively, about quarter-chord point associated
¢ with translation of airfoil

23,2y in-phase and out-of-phase 1ift coefficients,
respectively, associated with pitching motion of
airfoil gbout its leading edge

M3,Mu in-phase and out-of-phase moment coefficients,
respectively, about quarter-chord point associated
with pitching motion of airfolil about its leading
edge

METHOD OF ANATLYSIS

Consider the perturbation velocities on a two-dimensional wing
(see the following sketch) for the case of combined vertical motion and
pitching motion. For convenience the reference axis is taken as the
leading edge and z and 6 are used to describe, respectively, the
vertical and angular positions of the airfoil.

) >
. \K z
—> £ ‘ ,

v
z

The perturbation velocity (w measured positive upward, z positive
downward) may be expressed as

w(x,t) = ~(V6 + z + x8)

If the airfoil is considered to have vertical motion only, then
the perturbation velocity will be uniform across the chord and will be
of intensity z. If the case of an airfoil pitching about its leading
edge is considered, however, the perturbation velocity will be composed
of two parts: a uniform part of intensity - V6 and a linearly varying
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part of intensity x6. When the 1ift on an airfoil having arbitrary
motions is determined, therefore, these observations mean that only two
types of perturbation velocities have to be considered: a uniform dis-
tribution which applies either to vertical motion or to angular position
'alone and & linearly varying distribution which applies to angular
velocity of the airfoil. .

When unit step motions of the airfoil are considered, it should be
apparent that one indicial function is sufficient to define the 1lift
on an airfoll suddenly acquiring a vertical veloclity, since only the
uniform perturbation velocity is involved. For the case of a pitching
airfoil, however, two indicial functions are required: one corresponding
to the uniform perturbation velocity associated with angular position
and the other corresponding to the linear variation which is associated
with angular velocity.

The 1ift on an airfoil suddenly acquiring a vertical velocit& is
generally given in terms of -an indicial 1ift function k1(s) by means
of the equation

L(s) = -npcVe %% k1 (s) ’ (1a)

where

dh c 7 v

T WY

This equation may be made to apply to an airfoil suddenly acquiring an
angular position, because of the similarity that exists between the per-
turbation velocities for the case of vertical motion and for the case of
angular position alone. The 1lifts for these two cases therefore will
be equal 1f the intensities of perturbation veloclty are equal, that is,
if 2 = V6., With this condition and equation (la), the 1ift on an air-
foll following a sudden change in angular position is

L(s) = -npcVo0k; (s) (1b)

For the pitching case then, the only indicial 1ift function that remains
to be determined is the function assoclated with pitching velocity of
the airfoil. The equation for 1ift following a sudden change in angular
velocity 9 vhere this angular velocity is, for convenience, taken
gbout the leading edge, may be written similar to equation (1a) or

(1b)

Lqg(s) = -aﬂocvzqqu(s)
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vhere q = é% 8 and qu(s) is the indicial 1ift function associated

with a sudden acquisition of an angular velocity about the leading edge.

The indicial 1ift and momert functions due to pitching velocity
can be determined with the aild of the appropriate reciprocal equations
and flutter coefficients in a manner similar to that shown for the
sinking airfoil in reference 2. The available values for the 1lift and
moment on the oscillating airfoil for pitching motion at subsonic Mach
numbers, however, have been obtained numerically only for the total 1ift
and moment; that is, the components due to angular position and pitching
velocity have not been separated. Fortunately, the component due to
angular position may be subtracted out of the totel oscillatory -coeffi-
clents because of the similarity that exists between the 1ift on a
g8inking airfoil and the component of 1lift associated with angular posi-
tion of a pitching airfoil. The available data for an airfoil oscil-
lating harmonically in vertical motion therefore are used in the reduc-
tion of the data for an alrfoil oscillating in pitch to give the 1lift
and moment associated with oscillatory pitching velocity alone. These
data can then be used to determine the indicial functions assoclated
with pitching velocity.

Reciprocai Equations

The reciprocal relations given by equations (8a) and (8b) in refer-
ence 2 between the compressible 1lift on an airfoil due {to harmonic
oscillations and the indicial 1ift on an airfoil experiencing a change
in angle of attack due to a sudden acquisition of vertical velocity are
as follows: ' .

K (s) =§fo°° P;C_(k—)%i_‘ii"i a& (s> 0) (22)

and

(s >0) (2b)

o @ G.(k)cos ks
k; (8) = F.(0) + ;L/; —— g &

vhere F.(k) and Gc(k) are related, respectively, to the in-phase and
out-of -phase 1ift components on an oscillating airfoil and are defined
by the following equation: .

L(s) = -npcv2el®®(_ikn) |F (%) + iGc(kil (3)

-
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For the case of a pitching airfoil the component of 1lift associated
with angular position and its corresponding indicial 1ift function are
given by equations (2) and (3), where the term

-ikh = 6 (&)

a relationship which follows from the fact that the perturbation veloci-
ties for vertical motion are equal to the velocities due to angular
position alone when =z = V6.

In the interpretation of the expression for 1ift given by equa-
tion (3), it should be noted that the expression for the motion of the
airfoil is in complex form. If, for example, the actual angular posi-
tion of the airfoil is denoted by

I.P.0eiE8

then the 1ift is

I.P.l-ﬁpcVQGeiks[Fc(k) + iGc(k)]

-
’

or:

1l/2
~npcVe [FC(k)Q + Gc(k)a:l / sin[ks + tan~t gc(i)]
(K)

Thus, the 1ift and the angular displacement have the same frequency and
both thelr magnitude and phase are functions of k.

The reciprocal equations for the component of 1ift due to pitching
velocity may be expressed in terms of .a harmonically oscillating airfoil
eand the indicial 1ift function duve to a sudden change in pitching
velocity qu(s) as follows:

?_wacq(k) sin ks
X

SHORS N3 F @k (s >0)  (5a)

and

gwacq(k) cos ks
T

qu(s) = ch(o) A = dk (s >0) (5b)
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where ch(k) and ch(k) are related, respectively, to the in-phase

and out-of-phase 1ift components on an oscillating airfoil due to
pitching velocity about the leading edge and are defined by the equation

Lq(s) = _ﬂDCVEeikS(zike)[ch(k) + ich(kﬂ (6)
In equations (5a) and (5b) the functions ch(k) and ch(k)/k must
be continuous and finite in the interval from k =0 to k = w.

The availsble data for evaluating the Fe(k), Ge(k), ch(k),
and ch(k) functions have been given in various forms, beginning with

the work of Possio. One form in which all of the available data can be
put is as follows:

Translatory motion:

L(s) = mpcvelks g(zl + iZ2) (7a)

I

M(s)

npcey e ke g(Ml + ﬂmg (7o)

Pitching motion (including contribution due to pitching velocity):

~mpevee™® 0(z5 + 7)) (8e)

L(s)

M(s) = -npc Vo oMy + 1)) (8b)

where the moment is taken about the quarter-chord point and the axis of
rotation for the harmonically pitching airfoil 1is located at the leading
edge.

In order to make use of the reciprocal equations (5a) and (5b) %o
determine the indicisl 1ift function due to pitching velocity qu(s),

the component of the flutter coefficients due to pitching velocity must
first be separated from the flutter coefficients given by equations (8a)
and (8b) end then converted to the form given by equation (6). If the
expression for h determined by equation (4) is substituted into
equation (7a) and if the resulting expression is subtracted from equa-
tion (8a), the following expression for the 1ift can be obtained for the

component due to pitching velocity on a harmonically oscillating airfoil:
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Zo * Z
Lq(s) = LapcVielks 9[23 - é-% + i(ZLL + %)] - (9)

Comparison of equations (6) and (9) leads to the following expressions
for the functions ch(k) and ch(k) in terms of the oscillatory

coefficlents 2y, 2o, Z3, and Zy:

§ 1 2N '
ch(k) = seley + =% (102)
and
) yA :
Geg(K) = -.éli(z3' - 2—@ (10b)

Substitution of equations (10) into equations (5) then allows for the
determination of the indicial function qu(s) for pitching velocity.

The procedure shown for determining:the indicial 1ift function due
to pitching velocity from the oscillatory coefficients may be applied
to determine the indicial moment function due to pitching velocity mlq(s)

defined as follows:

\M( g) = Enpczveqmlq(s) (11)

where q 1s the magnitude of the pitching velocity. The reciprocal
equations can be written for the moment in terms of the oscillatory
coefficients and the indicial moment function mlq(s) as follows:

| my (s) =§fo°° Hq (k) ;in B (s>0) (122)
and
mlq(s) = Mq(0) f%/;qu(k) ;OB ks dk (g > 0) (12b)

where Mq(k) and Nqﬁk) are, respectively, the in-phase and out-of-

phase moment coefficients on an oscillating alrfoil due to the angular
pitching velocity gbout the leading edge and are defined by the equation

. e A e et v e e e e
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My(s) = pceveelks (21kg) an(k) + mq(k)] (13)

In equations (12a) and (12b) the functions Mq(k) and Nq(k)/k must
be continuous and finite in the interval from .k =0 to k = w.

In & manner similar to that shown for the 1ift case, expressions
for Mq(k) and Nq(k) may be obtained in terms of the oscillatory

coefficients M;, My, M3, and M) ‘as follows:

M
My (k) ="£§<ﬁh + §%> (1ka)
and

Summary of Availaeble Flutter Coefficients and Related
Data for a Mach Number of O.7

The two-dimensional compressible flutter coefficients for the real
and imaginary parts of the 1lift and moment for sinking and pitching
motion are given in table I for a Mach number of 0.7. The results given
in teble I were taken from three sources (references 4 to 6) and have
been converted to the form given by equations (7) and (8) for the 1lift
and moment.  The range of reduced frequencies taken from each source is
indicated in table I.

Expressions for the end points F.(0) and F.(«) can be deter-

mined independently of the flutter coefficilents. The value of F,(0)
which represents the steady-state 1ift is determined by the Prandtl-

Glauert factor ———}——5 (where M refers to the Mach number of the
V1 - M

free stream). The value of Fq(») which was shown in reference 2 to

correspond to the value of kl(s) at 8 =0 can be determined by the

following equation given in reference 2 for any Mach number: '

Fc(m) = 'ﬁ—& (15)
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The corresponding expression for the moment M(x) is noted in refer-
ence 2 as

" M(®) = (16)

X
T omM
For the case of a pitching airfoil the expression for the end points

for the ch(k) and Mq(k) functions may be obtained in a manner similar

to that shown for the case of sinking airfoil. For an airfoil exper-

iencing a sudden change in pitching velocity about its leading edge, .
the steady-state value of the Xkj (8) function (which can be shown to
correspond to ch(o)) can be determined from incompressible flow

together with a correction given by the Prandtl-Glauert factor. From the
work of either Theodorsen or Wagner (reference 8 or 9) the incompres-

sible steady-state value can be determined, and, together with the
Prandtl-Glauert factor, the resulting expression for ch(o) for

subsonic flow is as follows:

1
Fo (0) =X (w) =3 —— (17)
“a ta VLo
Similarly, for the moment the expression for Mq(o) is
M, (0) (@) = -7p == (18)
= I =} = —_—
4 1q 16 Vi- M2

The values for ch(oo) and Mg(w) may be obtained from the starting
values of the qu(s) and mlq(s) functions, respectively. The same

method of analysis for obtaining the starting velues of the kj(s)

and ml(s) functions given in reference 9 for a sinking airfoil can be
applied to the case of a pitching airfoil to obtain the starting values
for the qu(s) and mlq(s) functions if a substitution of the boundery

" conditions due to pitching velocity is made in lieu of sinking velocity
as indicated by equation (1). If the perturbation velocity component
due to a sudden change in pitching velocity is substituted for the
perturbation velocity due to sinking motion in the analysis given in
reference 9 for determining %;(s) and mj(s) at s = 0, the following
expressions are obtained for the starting values of the qu(s) and

mlq(s) functions

k1 (0) = (19)
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m (0) =-55 7 (20)

The values of qu(O) and mlq(O), however, correspond, respectively,
to the values of the flutter coefficients ch(k) and. Mq(k) at

infinite frequency. The pioof for this correspondence is identical to
the one shown for the sinking alrfoll given in appendix A of refer-
ence 2. Thus equations (19) and (20) denote, respectively, the values
of F. () and Mq(w)

q

(21)

&~

ch(oo) =

and

(22)

&l

M=) =- 35

RESULTS AND DISCUSSION
Tumerical Solution of the Reciprocal Equations

for a Mach Number of 0.7

As noted in reference 2, the indicial 1ift and moment functions
determined by the reciprocal equations containing the in-phase 1lift or
moment functions (Fc(k) or M(k)) provided a more reliable and simpler
solution than the functions determined by the reciprocal equations con-
taining the out-of-phase components (Ge(k) and N(k)). Consequently,
the indicial 1ift and moment functions for the pitching-velocity case
were determined numerically by using equations (5a) and (12a) in a man-
ner similar to that shown for the case of the sinking airfoil.

In figure 1 a plot is shown of the complex oscillatory 1ift func-
tions due to pitching velocity at a Mach number of 0.7 which were
evaluated from the flutter coefficients by use of equations (10a) and
(10b). 1If

\

fq(k) = ch(k) - 'ch(w) - (23)
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is substituted into equation (5a), the following form which can be
evaluated graphically more readily is obtained:

' | ©f (k) sin k |
& (8) = Fe (=) +§£ gt ks ® o (2%)

~

A plot of the function fg(k) is shown in figure 2. The integrand in
equation (24) was graphically evaluated for several values of the parame-
ter s. .In figure 3, plots of the indicial 1ift function kj (s) are
shown for Mach numbers of 0.7 and O. 'The indicial lift function k;(s)
due to angular position alone (corresponding to the case of a sinking
airfoil) is plotted in figure 4 as determined from reference 2 for a
Mach number of 0.7. Also shown in this figure are the beginning posi-
tion of the curve for a Mach number of 0.7 as determined by the equa-
tions given in reference 3, the curve for a Mach number of 0.8 given
in reference 3, and the curve for a Mach number of 0. Comparison of
the kj(s), and qu(s) functions at Mach numbers of O and 0.7 indi-

cates that the growth of 1ift to the steady state for a pitching airfoil
is less rapid in subsonic compressible flow than for incompressible flow.

The indicial moment function mlq(s) due to a sudden change in

pitching velocity may be obtained in a manner similar to that shown
for determining the indicial 1ift function qu(s). In figure 5, plots
are shown of the complex moment function due to pitching velocity for a
Mach number of 0.7 determined from the flutter coefficients My, Mo,
M3, and M) by equations (1%). The asymptotic value for Mq(k) is
determined by equation (22). Because of the nature of the curves at
the higher reduced frequencies, the curves are represented by dashed
lines to indicate a degree of unreliability. Reference 2, however,

indicates that errors in the curves at the higher reduced frequencies
would have little effect on the indicial function.

In a manner similar to that shown for the 1ift case, the Mq(k)
function was transformed by the following equation

in order to facilitate the numerical determination of the indicial
moment function mlq(s). A plot of mq(k) is shown in figure 6. The
function mlq(s) was evaluated graphically by substitution of equa-

tion (25) into equation (12a) for several values of the parameters and
is plotted in figure 7 together with the solution for a Mach number
of 0. In figure 8 a plot of the indicial moment funetion due to
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angle-of-attack change (no pitching velocity) mj(s) is shown for Mach
nunbers of 0.7 and 0.8 determined, respectively, from references 2
and 3 together with the solution for a Mach number of O.

References 8 and 9 show that the indicial 1ift due to pitching
velocity on an airfoil pitching about its three-quarter-chord position
is impulsive at s = O and is zero thereafter for incompressible flow.-
For compressible flow the indicial 1ift, however, is initially finite
and is time-dependent thereafter, as is shown subseguently. When the
results presented in figures 3, 4, 7, and 8 are used, the indicial 1ift
and moment functions due to pitching velocity for an airfoil pitching -
gbout any axis can be obtained readily by the following general trans-
formations: .

(qu)x(s) = Ky (s) - Z x(s) (26a)
and
(mlq)x(s) = mlq(s) - % my (s) (26b)

where x denotes the location of the axis of rotation measured posi-
tively to the right from the leading edge of the airfoil (see sketch in
section entitled "Method of Analysis"). For the case of an airfoil
pitching about its three-quarter-chord location, equations (26a) and
(26b) become

(qu)%f(a = X1 (8) - 3 Ki(s) (272)
and
(mlq)3c(s) = mlq(S) —-ﬁ m; (s) (27o)
B

The functions (kl ) (s) eand [mg (s) were determined for a
q 3c q,§£

I

Mach number of 0.7 from equations (27a) and (27b) and from the results

plotted in figures 3, 4, 7, and 8. Plots of the functions (qu)3 (s)
: c
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and leq)3 (s) are shown in figures 9 and 10, respectively, together
c

b
with the indicial functions for the case for a Mach number of O.
Also included in these figures are the solutions for a Mach number
of 0.8 and part of .the solution for a Mach number of 0.7, both deter-

mined from reference 3. A comparison of the (k1q>3 (s) function for
. : . c

subsonic compressible and incompressible flow indicates that, although
this function is impulsive at s = 0 and zero for s >0 <for incom-
pressible flow, the function is finite.at s = 0 and decays to zero
very rapldly in the compressible case. If for compressible flow the
circulation is assumed to be zero for s >0 (as is the case for this
component at M = 0), the time-dependent function which is present in
compressible flow may be attributed to the time-dependent apparent-mass
effects. Also, the part of the qu(s) function shown in figure 4

for s greater than approximastely 4 may be associated only with the
1ift due to circulation.: Comparison of this part of the curve with the
curve for a Mach number of O in the region s >4 indicates that the
growth of 1ift to the steady state is relatively less rapid for com-
pressible flow than for incompressible flow.

Approximation of Indicisl Lift and Moment Functions
by Analytic Expressions

Since the exponential function has a simple operational equivalent
and it has been found convenient to approximate the kj(s) function at
a Mach number of O (see reference 10), a limited series of such func-
tions were chosen to approximate the indicial 1ift and moment functions
for sinking and pitching motion at a Mach number of 0.7. The functions
Wwere found to fit these curves quite well and are:

k (s) = 1.4(1 - 0.364e70-09365 _ § 1gs5,70-35T8 o.h19e"0'9025) (28)

(qu) (8) = -0.083e 08008 _ o 5g3,-1-5658 2.Lhs

3c
L

+ 0.149e (29)

ml(s) _ -O.2’+25e-0'971m N 0.08%-0.668s _ 0.069e_0°)+385 (30)

ey o e s s e + i o = AT e R e Ty o o A = = P
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-0.1865s

} 1.233e—lﬂlhls . O.3337e-h'0h%

(mlq)3c(s) = -0.0875 (1 + 0.11kle
e
(31)

These analytic approximations given by equations (28), (29), (30),
and (31) are plotted in figures 4, 9, 8, and 10, respectively. Com-
parison of the approximation with the actual curves in these figures
indicates the order of good agreement reached.

The corresponding approximate expressions for the harmonically
oscillating airfoil can be found from the reciprocal form of equa-
tions (2) and (5) where the harmonically oscillating functions are
expressed in terms of their corresponding indicial function. For the
case of the sinking airfoil, the reciprocal form of equation (2) is

Fo(k) + 4G (k) = ik fo/ 1:1(s)<=-,'iks ds (32)

If ik is considered as the operator in the Laplace transformation,
then equation (32) is simply ik times the Laplace transformation
of kj(s). Therefore Fc(k) and Ge(k) are, respectively, the real
and imaginary parts of ik times the Laplace tramsform of k (s)
Substitution of equation (28) into equation (32) leads to the following
expressions for F.(k) and G.(k):

! — ~
F (k) = 1.k 0.364k> 0. 405k> 0.419K°

. A1 - - +
i (0:0536)2 + ¥¥ (0.357)° + ¥* (0.902)2 + x°

I

> (33)

(0.364)(0.0536)k _ (0. 105) (0. 357)k , (0.119) (0.902)]

(0.0536)° + k° (0.357)2 + 1= (0.902)2 + kQJ

|
'_l
=

G (k) =

In a manner similar to that shown for the 1ift case, the following
approximate expressions for M(k) and N(k) can be obtained:
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-0.24o5K° 0.084x2 0.069k° b
M(k) = 2 2" 2 3" 2 2
(0.97TW < + x (0.668)< + ¥ (0.438)° + x
| L (34)
_ (-0.2125) (0.97)k | (0.08%)(0.668)k (0.069)(0.438)k
N(k) = 2 2 * 5 o5 5 o
(0.9TH) " + x (0.668) + x (0.438)" + x J
The expressions for the (ch)ig(k). and (ch)ﬁ(k) 1ift functions
N
due to pitching velocity are
_ -0.083k° 0.293k° 0.149k° | R
(FC ) () = 2. 2" 5.2 RN
q ;hg (0.800)° + K (1.565)° + K (2.44)% + ¥
r (35)
(k) = (-0.083)(0.800)k  (0.293)(1.565)k , (0.149)(2.44)%k
(Gc ) k) = 2 .2 5 o5 2 .o
9/ 3¢ (0.800)< + ¥ (1.565)° + x (2.44)° + x
N
and the expressions for the (Mq)3 C(k) and ( Nq) 3 c(k) moment functions
i i
are
- , 2
, o ) 2
(Mq) (k) = -0.0875|1 + 0'11)”2“‘ 5 - ——ot o, 03Bk
QE‘E | (0.1865)7 + k¥ (1.141)° + k=  (L.0k)< + ¥
F(o 1141)(0.1865)k  (1.233)(1.141)k
N k) = -0.08 - : - . + -
( q)'3h_c( ) 75_(0.1865)2 + k2 (1.141)2 + &2 |
(0.3337) (u.ounj
(h.oh)2 + ¥2

(36)


http://www.abbottaerospace.com/technical-library

18 NACA TN 2613

CONCLUDING REMARKS

The indicial 1ift and moment functions due to a sudden chenge in
pitching velocity have been obtained from the available data on a
harmonically pitching airfoil at a Mach number of 0.7 by the use of
reciprocal relations. Comparison of the results obtained for the case
of a Mach number of 0.7 with incompressible flow indicates that the
growth of 1lift to the steady state appears to be less rapid for com-
pressible flow than for incompressible flow for a pitching airfoil.
Although the circulatory 1lift component due to pitching velocity for
an airfoil rotating gbout its three-quarter-chord point was zero for
incompressible flow, a time-dependent component of 1ift was found to
exist for compressible flow and decayed to a negligible value in
approximately 2 chords.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., October 30, 1951
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'LTFT AND MOMENT OSCILLATORY COEFFICIERNTS FOR SINKING AKRD

TABLE I

PITCHING MOTION AT A MACE NUMBER OF 0.7

Reference k Zl ZE Z3 le- Ml M2 M3 M)-l-
0 0 0 1.4003 ] © 0 0
.02 | .00711| .05177]1.2985| -.13891 -.00026 | .00003 | .00057h4 | .0L0002
04k | .02006| .0952Lk§ 1.2059 | -.1791k -.00097 | .00016 | .001452 | .019332
06| .03399| .132% |} 1.1304| -.18304 -.00208 | .00042 | .002319 | .028182
08| .ok722| .1651 | 1.0698 | -.17128 -.00355 | .00083 | .003090 | .036758
N .10 | .0589 21941 11,0216 | -.14992 | -.0053 00126 [ .003675 | .04511k
.20 L0945 .3186 8869 | -.003247 | -.0186 .0057h | 004301 | .086501
.30 | .0991 1332 .836L TR ~.0393 L01346 | 002632 | .12953
Lo | .o827 .5523 .8199 28495 -.0672 .02596 | .000512 | .17541
.50 | .0538 L6820 .8239 .h135 -.101k LO0Mu82 | L000k36 | .o2he
.60 | .0187 .8229 .8399 529k -.1kho2 07175 | .000573 [ .27h98
.70 | -.0154 L9751 .8669 .6355 -.1813 .1090 .010257 | .32692
5 8o | -.04k9 {1.1316 8934 L7191 -.2178 .1578 .021912 | .37005
1.00 [ -.087h | 1.4482 9391 .8607 -.2798 . 2665 059166 | 45875
1.50 | -.39295 | 2.311 8625 | 1.3512 - 1koo . 4896 -001739 | .58628
6 2.00 | -.6521 | 3.306 .B110 | 1.8258 -.5740 .T7185 |-.062784 | .73568
2.50 | -.6083 | k.2h1 8566 | 2.0913 -.45k7 | 1.218 .090049 | .93504

1
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Figure 1.- Oscilletory 1lift functions due to pltching velocity for airfoil

rotating about 1ts leading edge. M = 0.7.
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Figare 3.- Comparison of indicial 1ift functions due to a sudden change
1n pitching velocity for an airfoll rotating sbout ite leading edge
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Figure L4.- Comparison of indicial 1ift functions due to a sudden change
in angle of attack (without pitching motion) at M =0, M = 0.7, and

M =0.8.
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Flgure 7.~ Comparison of iﬁdicial moment functions due to a sudden change
in pitching velocity for an airfoll rotating sbout 1ts leadling edge 13

at M =0 and M =0.7. (Moment taken about quarter-chord point.)
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* Figure 9,- Comparison of indicial 1ift functioms due to a sudden change
in pitching veloclty for an airfoil rotating about its three-quarter-
chord point at M =0, M = 0.7, and M = 0.8. .
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