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THE SIMIT.ARITY LAW FOR NONSTEADY HYPERSONIC FLOWS
AND REQUIREMENTS -FOR THE DYNAMICAL SIMITARITY
OF RELATED BODIES IN FREE FLIGHT

By Frank M. Hamaker and Thomas j.'ang
SUMMARY

The similarity law for steady hypersonic flow about slender shapes
is extended to nonsteady flows. Similitude for nonsteady flows is found
to depend on the same conditions as for steady flows plus additional
conditions derived from the nonsteady motions of the bodles under con-
sideration. The aerodynsmic forces and moments are correlated for
related shapes by means of this law.

Requirements for dypamical similarity of related shapes in free
flight, including the correlation of their flight paths, are obtained
using the aerodynamic forces and moments as correlated by the hypersonic
gimilarity law. In addition to the conditiomns of hypersonic similarity,
dynamical similarlty depends upon conditions derived from the inertial
properties of the bodles and the immersing fluids. In order to have
dynamical similarity, however, rolling motions in combination with other
motions must be eliminated. \ _ -

INTRODUCTION

The law of similarity for steady hypersonic flows has been studied
in some detail, Tsien, in reference 1, derived the law for potential
flow about related slender bodies for the two-dimensional and axially
symmetrical cases. It was found that similarity of flow exists when
the bodles have the same thickness distributions and when the ratio of
the free-stream Mach number to the fineness ratio is the same in each
flow system. Hayes, in reference 2, showed that the law should remain
valid even when the flow includes shock waves and vorticity, and indi-
cated that 1t should epply to more general three-dimensional flows. In:
reference 3 the law was derived for flows about slender three-dimensional
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shapes in terms of parameters relating the Mach number to the fineness
ratio, the aspect ratio, and the angles-of-flight attitude of the
bodies., The correlation of force and moment parameters in terms of
the similarity parameters was also made for similar flow fields.

The consideration of the problems of free Plight suggests the
desirebllity of extending the hypersonic similarity law to cover the
case of nonsteady flows. Lin, Reissner, and Tsien, in reference L,
developed necessary conditions for similarity of flow about oscillsting
two-dimensional bodies in compressible fluilds, including flow at hyper-
sonic speeds. An analysis for slender three-dimensional shapes in
hypersonic flow is apparently not availaeble, and has therefore been
undertaken in the present report following methods similar to those
employed in reference 3.

The possibility of obtaining a hypersonic similarity law for cor-
relating the aerodynamic forces and moments on related shapes in free
flight suggests a more genmeral dynamical problem, that of correlating
their motions with the aid of this law. Hence, it has been undertaken
to determine the requirements on the inertial properties of related
bodies and the immersing fluids in order that such bodies may exhibit
similar free-flight paths, that is, dynamical similarity.

SYMBOLS
a speed of sound
b characteristic width or span of body
c characteristic length or chord of body
Ca side-force coefficient Side force
'“po
60 side-force para.meter

Cp drag coefficient < >
23

6D drag parameter
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rolling moment

Cy rolling-moment coefficlent

L 0.V 25D

5 P00
a‘z rolling-moment parameter

1ift
C 11ft coefficient [ ————
L 1 2g
5Pa'0

(?L 1ift paremeter
¢y pitching-moment coefficient (PITCNINE Homent

§pOVO Sc ,
a‘m pitching-moment parameter
Cn yawing-moment coefficient yat;:ing macment

§p0Vo Sb
'(‘Z‘n yawing-moment parameter
a length of flight path
cbtp,
D displaced-fluid-mass factor 5
hig dimensionle;ss perturbation potential function
g dimensionless body shape function
i,3,k unit vectors along coordinate axes x,¥,z, respectively
Ix-x
Iyy -moments of Inertia of body about the x,y,z axes,
respectively
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K¢ = Mogy Kp = Mog W

Ky = Moo, Kﬁﬁl'foﬂ

= b
om0 ()
c re
KQ.:MO(%): Kr=Mo<ﬁ_>
o o
_ <% 2p
K‘X—X = Ix y KY-Y = Lt U
2
X = £D Ky = D
Z -2 )
I, t]
l,m,n direction cosines
' surface
M Mach number

4
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5 hypersonic similarity parameters

E,

)

) - dynamic similarity parameters

of the unit normal vector to the body

My,My,M; moments on body about x,y,z axes, respectively

N unit normal vector to surface of body

P fluild static pressure

P,d,r rolling, pitching,

and yawing velocities, respectively

P radius of curvature of flight path

]}

vector from the origin of the coordinate system to any

point on the body

S cheracteristic reference area of body (S = bt)

t characteristic depth or thickness of body )

U,V,w components of body velocity along the =x,y,z axes,
respectively

v resultant velocity

Xy¥ 2 Cartesian coordinates fixed relative to the body
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X,Y,Z forces on body along x,y,z axes, respectively

a angle of attack
B angle of sideslip
y ratio of the specific heats of the immersing fluld
8 angle of roll
£,0,6 dimengionless coordinates carresponding to x,y,z,
respectively
2] time coordinsate
H ) mass of body
p density of the fluid
T dimensionless time coordinate ( 3’-}:&29
P perturbation potential function
® potential function
w " angular velocity of the body ;
Subscript

o free-gstream conditions

Superscript

- vector quantities

Except for symbols noted above, all variables used as subscripts
indicate partial differentiation with respect to the subscript variable.
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- DEVELOPMENT AND APPLICATION OF THE SIMILARITY LAW
FOR NONSTEADY HYPERSONIC FLOWS

The Basic Iaw

In general, the analysis for similari of nonsteady flows paral-
lels that for steady flows (see reference 3), the principle difference
being that the nonsteady flow analysis is slightly complicated by the
introduction of nonsteady flow terms in the potential and energy equa-
tions. Thus, as shown in appendix A, the procedure is to simplify the
equations of motion and boundary condition to conform with the restric-
tion to hypersonic flow about slender shapes, and then transform the
resulting expressions to dimensionless forms from which the requirements
for similarity of flow about related body shapes are determined. Since
this analysis is based on the assumption of potential flow, 1t is desir-
able to show that the results are not invalidated by the presence of
shock waves and vorticity in the flow. To show that this is true, the
arguments of Hayes in reference 2 are extended to include nonsteady
flows. (See appendix B.)

It is found that similitude depends on the same similarity parame-
ters as for steady motion, namely,

Ky = Moe (1)
Ky = Moo (2)
Ky = M@ , | (3)
Kg = MoB ()
Ky = & (5)

plus the following additional parameters arising from the nonsteady
motions of bodies:

o-w(R) (6)
K = 1 (% ()

== (F) oo
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The statement of the law 1s equivalent to that for steady flow, namely:
The disturbance flow fields about bodles having the same thickness dis-
tributions are similar, provided the bodies are undergoing motions such

that the same values of the corresponding similarity parameters are
obtained.

The new similarity parameters, Kb, Kq, and K,., can be interpreted
in a manner analogous to that for the steady-state parameters. To illus-
trate, 1t is recalled that the parameters for hypersonic similarity in
steady flow require that the local body slopes with respect to the flow
direction at corresponding polints on related bodies be inversely propor-
tional to theilr flight Mach numbers. This statement of requirements
applies equa¥ly well to nonsteady flows if it is understood. that the
local slopes include the apparent (or induced) ones as well., In rolling,
for example, points on the body surface perform helical motions and the
quantity pb/V, in equation (6) is simply proportional to the slope of
the helix with respect to the flow direetion. It 1s thus evident that
this slope must also be inversely proportional to the flight Mach mumber.
Similar arguments may be applled to the apparent slopes arising from the
pitching and yawing motions, the parenthesized quantities in equations
(7) and (8) being proportional to each of these slopes, respectively.

Application of the Law to the Correlation of Aerodynamic
Forces and Moments

The correlation of aerodynemic forces and moments on related bodies
in unsteady hypersonic flows can be developed by conslderation of the
gtatic pressure distribution over the bodies. The pressure relation
can be obtained from the energy equation (see appendix A, equation (42))
and is given in the following form: )

4

7-1 4 2 7-1
. AL

7"‘1 =3
1+ = (V=+2
2a2 ( %)

When this expression is simplified to conform with the assumptions of
the theory and put into dimensionless form, there is obtained the func-
tional relationship (for a constant v)

1,£‘= P'I—>' (&sn58 s Kt’, Kp, Kas Kps K5, Kps Kg» Ky) (9)
(o] (o] .
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As in the case of steady flow, the pressure ratios are the same a'b
corresponding points in similar nonsteady hypersonic flow fields.t

The correlation of the aerodynamic forces and moments is then
obtained with the aid of relation (9) by integration of the eppropriate

components of the pressure forces over the related shapes. This cor-
relation can be given in the following forms:

1. = %L(Xt, ¥bs Ka» Kps Ko, Eps Kq, Kr) |
Cp = Cp(Kgs %o Ka» Kps Kos Kpy Ko, Ky)
CC(K‘t: Kps Kus Kgo gy Kp, Ky» Kp)
= Cu(Kgs Kbs Ko Kps Koy Kps Koy Kr) >
Ea(Ke) Ky Kq» Kgs Koy Kps' Kgs Kn),

= Cu(Ks, ¥y Kgy Kps B Kps Koy Ko |

02

MoC1, =
M Cp =

!

&
Q

Q
U

(10)

&
e
"
A A &
|

The significance of the above equations is that the force and moment
parameters are the same for related shapes undergoing motions such that
each of the corresponding similarity parameters has the same value,

Caution must be exercised in the use of the correlation equations,
however, as there are certain body shapes for which some of these equa-
tions are invalid. For example;, yawing moment cannot be correlated for
thin wings alone because of the moments due to asymmetric drag being of
the same order of magnitude as the moments due to cross forces.2

DETERMINATTON OF THE REQUIREMENTS FOR DYNAMICAL
SIMILARITY OF RELATED BODIES AND DISCUSSION OF RESULTS

The requirements for dynamical similarity of related bodies in
free flight are now developed with the assumption that the forces and
moments on such bodies are correlated by the law of hypersonic similar-

" ity. If dynamical similarity is to be coexistent with hypersonic simi-

larity, then the dymamical equations of motion should be transformed to
the same dimensionless coordinaste system that was used in developing

1lanslogous statements can be made for the ratios of local tempera.'blrre,
density, and Mach number to the free-stream values.
2gee reference 3 for details concerning this restriction.
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the requirements for hypersonic similarity. In addition, the velocity
and force quantities should, of course, be expressed in terms of hyper-
sonic similarity parameters.

In this dynamical system only those forces are considered which
correspond to the "power off" condition in free flight., The coordinate
axes are taken to be the principal axes of the body so that the products
of inertia vanish, The dynamical equations of motion of the body are
given by the relations

-

ug - TV + QW

!

. i
TN EHd M

Vg - PW + ru (ll)

AWe—q_'Ll-I-PV

fe Ixx —ar ’(Iy—y -Izp) = Mx
1y Iy -oT (Tpez - Lxyx) = My (12)

Tg Iz-z -Pq (Ix-x - Iy-y) = My

The translational and rotational velocities may be expressed in terms

of hypersonic similarity parameters, the Mach number, and the speed of
sound of the free stream by the relatlons

= 8o Mo, v = -89 Kp, W = 8o Kq

u =

13)
. J:¢ X (
Dego g A=t h T E

Similarly, the aérodynamic forces and moments are given in terms of the
correlation parameters by the relations
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X=5_'g<aoemobtoo> \

Mo 2
T <?kfzﬂb bt pé)
= Cg 2

o 2 My bt
- (BTe)

H
|

(1)
e = G b (2 2o 2% bo)
2
~ 2
My=Cmc(a° Mobtpo>
2
~ 2 b
Mz=CnbMo<a° Mg t°°>

J

Substituting equations (13) and (1) into equations (11) and (12), and
treating only that length of flight path over which Mg can be considered
constant, the following set of equations 1s obtained:

" Kq Kq + Kr Kg = K, Cp (15)
dKB KP Ka, _ ~
dKy Kp X ~
T K~ —Ig-p' = Ky, Cy, (17)
1 ax; 1 1
P _ _ Kg XKr _ Kb =
Kx-x Xp &7 (Ky.y Kgug / Mo® M2 € (18)
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- =K
KZ—Z ar Kiex Ky-y Ky b Cn (20)
where3
D
Ku =1 (21)
Kxx =:§2D (22)
X-X
)
Ky-y = T, (23)
2
e (2k)
In which
b
D = .E_gﬂe_ (25)

The initial conditions to this set of equations are the initial wvalues
of the hypersonic similarity parameters.

If both hypersonic similarity and dynamical similarity are to be
achieved, it is required that equations (15) through (20) be independent
of the Mach number as a separate variable. The elimination of MgZ
from equation (18) is impossible in the general case, even approximately,
because all the terms involved may be of compargble order of megnitude.
Consequently, since equation (18) is the relation for rolling effects,
1t 1s indicated that f£light paths which include rolling cannot be cor-
related by this method for obtaining dynamical similarity.4 For motions
that do not involve roll, it is seen that dynamical similarity will
exist for related shapes if the hypersonic similarity parameters and the
dynamical similarity parameters given in equations (21) through (2k)
haye fixed values, These dynamical similarity parameters relate the

8The parameter Kg is a Pamiliar stability-analysis term known as the
relatiyve mass factor. :
or the case of pure rolling, the requirements for similarity of motion
can easily be derived using a slightly different set of parameters.
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masses of the bodies and the immersing fiuids, as well as the distri-
bution of the mass in the body.

A Pamiliar example of motions where rolling effects would be
missing is the case of motions confined to the plane of symmetry of
the body, the so-called longitudinal motions. To extend the application
of this law to the more general case where there are lateral motions as
well as longitudinal ones, but no roll, it is necessary to have a sult-
able symmetry of shape and to have the inertial properties satisfy the
relation )

Ky..y = KZ-Z (26)

Vhen these conditions are fulfilled, the flight paths of related
bodies can be correlated. As an i1llustrative example, the disturbed
motion of related missile shapes can be examined. The related flight
paths will have the same form whether there are stable or unstable
ogcillations. The lengths of corresponding portions of related flight
paths would be proportional to the corresponding lengths of the shapes.
This property can be used to relate the amount of damping in the related
disturbed flight paths. As shown in appendix C, the radii -of curvature
at corresponding points of the flight paths would be proportional to the
product of the body length and the flight Mach number. Some of these
points are illustrated in the example given in figure 1.

' CONCLUSIONS

1. The hypersonic similarity law has been found to apply as well
for nonsteady flows as for steady flows. The steady-state similarity
parameters as well as additional parameters involving the angular veloci-
ties must be satisfied. .

2. It was found that the motions of related bodies in free flight
could be correlsted using the hypersonic similarity parsmeters and addi-
tional parameters relating the inertial properties of the bodies and the
air densities.. ‘

3. The dynamical similarity of the free flight of related bodles
can be obtained for motions which include pltching and yawing but no
rolling. For pure rolling motions similarity can again be achileved.

Ames Aeronsutical Laboratory
National Advisory Committee for Aeronsutics
Moffett Field, Calif., Nov. 23, 1951.
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APPENDIX A
THE, EQUATIONS FOR HYPERSONIC SIMILITUDE
The analysis in this section parallels the analysis for steady
flow given in reference 3. Initially, however, angles of roll are not
consldered. Figure 2 shows the coordinate system and indlcates also
the free-stream direction and the angular velocities of the body.

The potential equation and the energy equation for nonsteady flow
are given in the following relations:

Poo + Pxx(0x2-a2) + dyy(dy2-a2) + 0zz(0z2-22) +

- 2(0xy 0x Oy + Oyz Oy Oz + Oxz Ox Oz) +

2(0x Oxg + Oy Pyp + Bz Pyzo) = O (A1)
2 2 2
1 a= Vo &g

Using body axes, the potential function ¢ has to the accuracy of this
analysis (retaining only terms up to second order) the following pertur-
bation form:

Voa2 —-VbBE

2 2
-‘VoB"i‘% -

_vo_

+ Oy

W
1

x
od
1

(43)

%9 = Pg

Eliminating the local sound velocity a  between equations (Al) and (A2),
substituting equation (A3), and neglecting all terms above the second
order, the resulting hypersonic equation is -
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(P
2og + Mo™Px + Byy [Ma?ﬁa + (7-1)52 Px-(7+1)52 B Py + (7-1)12.—‘3~ o9y +

2
7+l CPyZ y-1 Pz + (y-1) .qu.-1]+
2 802

ao2 2 ag o
Ogz | Mo2a2 + (7-1)22 B - (7—1)M° B Oy + (7+1)— a @ + X %y
b33 ag 2 ao?
7L P2 L, ";
5 a2zt (1) l} +

2 [Mo Pxy (—MoB + ;%) + Py <—M02as - M‘iq)z MO"ZP.Y q’s;q;ZZ +
cpZ
MO\CPXZ <‘MO a + E—-):I-l-
[e]

{ MoPxo Mqujxe q’yq)ye Moasze PzPz0 \ _
2( o e L GALPReAs > =0 (ak)

The boundary is given by the body-shape function in nondimensional

g(’é, I %) =0 (45)

The condition of no normal flow at the surface of the body 1s given by
the vector equation

form

=0 ~ (46)

<l

where

§= 1 +mj+nk (A7)

is the unit vector normal to the surface. The condition for slender
shapes is given by
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1<l - (48)
everywhere on the body.

The angular veloclties of the body will cause an apparent distor-
tion of the velocity vector at the surface of the body. Expressing the
angular velocity in the form

B=pIf+qi+rk (49)

the velocity at each point on the surface of the body is given by the
vector cross product

Gx 5= (az -ry) I+ (rx-ps) J+ (oy -ax) §  (a20)

The boundary condition (A6) then becomes

(V-ax8) -N=0

Vs

on the surface of the body which, after neglecting higher order terms,
becomes

Vogx - (VoB-@pirx - pz) gy + (Vout@y+ax - DY) gz = 0 (AL1)

The other boundary condition is
qu=q1y=q)z;0 at x = -~ . (Alg)

The affine transformation required to obtain the dimensionless
form of. the equations is given by the following set of relations:

§=§“: Tl=%, §='-ZE:T= QagMo (Al3)
£(gym, b, 7) = ~2KeT22,0) (A1)
aattoc ( &)

These are used to transform equations (Al), (All), and (A12) to the
following forms:
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=

. Kt2K A |
K2 (frrtfee) + II{%E Tin [K32+(7-1)Kt2f§ -(y+1)thE Ty +(7-1)KtKa;f§ +

741 Kt 7-1
= E}F fna + -72— Ktefga-l-(')'-l)Ktsz—l +

2

Kp

‘ o .
ng[Kaa-!-U-l)Ktafg -(7,-1)Kt B PnH( 7+ KKty + L2 I&‘E £nZ+ Zgi Kt £p 2+

2 K,

2 2 '
Ky K
(7-1)Kt%e, -lJ + QF% f§n<‘§b~ Iy —KB> + é n¢ (‘KaKB' KeKpfe +

KPRy KO KK
Ky le + E fnf§> + thgg(Ka;l-K‘tfg)] + 2 <Kt2f§'r- —tK;E f‘f]'r +

K—t4 ) )
E;?- Tnfyr + KtKaft,+ Ktzfgng =0 (415)
Ki® Kt ,\ & g -
gt -\ Kp- K—bfn + Kr§-KPI% §> TE + (Kcr+th§*l'Kq_E,--K;pTl)—S =0
' (416)
fe=fn=Fft=0 até= -w (A1T)

The transformed differential equation of motion, the transformed

boundary conditions > and the following parameters form the hypersonic
similerity law for nonsteady flows:

t

Kg=M 2> %=Mo<\}],;z>1

“on b xen ()
o

oo

~

(a18)

Ky =M a, Kr=Mo(r—c>
Vo
- KB=MOB J

NACA TN 2631
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Angles of roll were not included in this derivation as they
unnecessarily complicate the algebra. Had they been included, however,
the result would be the same as above with the additional requirement,
as found in reference 3, that for flows over related bodies to be simi-
lar the angles of roll must be the same. Hence the additional hypersonic
similarity parameter is

Ky =8 (A19)

It is of interest to note that the parametershfor the angular
velocities may be derived by differentiation of the steady-state simi-
larity parameters by the dimensionless time variable, thus:

Mo _ |

oT _

K

€;§‘=/Kf ? (420)
T Ko

B'r Kb J
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APPENDIX B
EXTENSION OF POTENTTAT. FLOW ANALYSIS TO
NONISENTROPIC FLOW
In reference 3 the similarity law was extended to nonlsentropic

steady flow by using the conclusions of Hayes in reference 4. The
esgential point of his analysis is as follows: If the transformation®

X = Vo b= Moao ¥ o (31)

is used on the equation for steady-state hypersonic flow in perturbation
form®>

Mo 741 07yl P
Mo®xx - [l'(7‘l) & Px T 2o2 2 aoz]q’YY -

2

Q ?, 9
2 (f.—? Py Pxy b 8:; Iz cPz Csz> (B2)

there is obtained the equation

Py Py o+l P2 -1 Pz2 ]
) — - o P
2o ag 2 ag aop® |

¥ 1% 1%
[l'“'”a.?e‘" 5 a7 2 a2 |2t

Py P
2<CPy%y+q)yq)z‘Pyz+ 7z Pyz ):O (B3)

ap2 ap2 802

°In all the equations of this section, the wind axes are made to coincide
with the body axes in order not to obscure the argument.
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This is the exact two-dimensional potential equation for nonsteady flow
provided V¥ is the time coordinate. In this transformed equation @
becomes a complete potential function instead of a perturbation one and
&y 1s the sound velocity for no flow. The boundary, which was a surface
in the x,y,z space, is now a time dependent curve in the y,z plane
corresponding to the outline of the cross sections of the body. The
point of view of the observer in this representation of hypersonic flow
is that of moving with the fluid over the boundary or surface of the
body. The result of the hypersonic approximation is that the only dis-
turbances seen are those propagated outwards from the body. Distur-
bances upstream and downstream of the observer are ignored because of the
small magnitude of the velocity of sound compared to the stream velocity.
Hayes shows that shock waves and nonisentropic conditions do not affect
this point of view, so long at the local Mach number is large compared

to 1. )

To apply these concepts to this report, the nonsteady part of the
flow over the slender body may be considered, in the transformed repre-
sentation, as simply an additional nonsteady increment on the already
nonsteady boundary. In fact, this can be demonstrated analytically by
applying equation (Bl) to the nonsteady flow equation:

2 2
Pop + Moo - |1 - (U o - 2 B2 IE oy B g

M, y-1 OF oy PR Pg

Y Mo P
2 8_.0_ CPy q)m-+£q)zq)xz+&a-‘g§q)yz> +

? @ .
2(% che-l-a—g.Eq)ye-l'a—;;Ecsz):O (B)-l-)

with an additionsl variable change of
Q=04+1V \ (B5)

obtaining, thereby, the same eduation (B3) with V¥ replaced by .
Hence Hayes'! conclusions concerning steady-state flow should apply
equally well to nonsteady flows.

J VU SR VTS NI USSP S L LM SIS 4L L, MBS R e
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APPENDIX C

CORRELATION OF THE FLIGHT PATH CURVATURE

Consider related bodies moving through properly related fluids in
paths of finlte radius of curvature. Equating the centrifugal force
to the side force, the following relation is obtained:

B - = Co = pVo S (c1)

After rearranging in terms of éimilarity parameters, equation (c1)
becomes ’

g%f.: EbKﬁ E%-: constant / (C2)

The parameter Mbc/R correlates the radii of curvature at corresponding
points of similar £1light paths.
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Flgure [.- Related wing-body combinations at hypersonic speeds.
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Figure 2.— Schematic dlagram of orlentation of body in flow.
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