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SUMMARY

A number of the most promising integral methods for solving spproxi-
mately the compressible-laminar-boundary-layer equations are investigated
in order to determine a computationally convenient and sufficiently
accurate method of calculating boundary-layer characteristics. The chief
methods considered are: (a) The one-parameter Kérmén-Pohlhausen method,
with three different assumptions for the velocity profiles, and (b) the
two-parameter method, first applied by Sutton, with two different assump-
tions for the velocity profiles. After the methods are explicitly
described in general terms for the case of zero pressure gradient and
for the case of & pressure gradient in the direction of flow with zero
heat transfer, they are applied to the calculation of the compressible
Jaminar boundary layer over a surface with zero pressure gradient, with
and without heat transfer at the surface, for the purpose of establishing
the accuracy of the methods. Comparison of the results is made with those
of known exact solutions for skin-friction and heat-transfer coefficients,
velocity profiles, velocity derivatives, and especially laminar—boundany-
layer stebility. From this comparison it is found that the Kérmén-
Pohlhgusen method with a sixth-degree polynomial as the velocity profile
1s the most suitable for many practical purposes.

INTRODUCTION

It is well-known that the differential equations of two-dimensional
compressible-laminar-boundary-layer flow are difficult to solve exactly.
Stewartson (reference 1) and Illingworth (reference 2) have recently shown
that if the Prandtl number is unity and the viscosity coefficient is
proportional to the temperature, then the equations for the compressible
heat-insulated boundary layer with a given pressure gradient can be trans-
formed into the equations for an incompressible boundary layer with a
different pressure gradient; however, this principle appears at present
tedious to apply in practice.
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The most frequently used and most fruitful methods of solving the
boundary-layer equations approximately are the integral methods, in
which the partial differentisl equations are integrated over the boundary-
layer thickness, and are hence satisfied only "in the average." By
assuming definite forms for the veloclty profilés as functions of the
normal distance, ordinary differential equations are obtained, with
distence along the surface as the independent variasble. Any integral
method may be regarded as either of two types: (a) The single-integral
type, in which the partial differentiasl equations are integrated once
across the boundary-layer thickness, and the profiles contain a single
parameter to be determined by the resulting ordinary differential equa-
tion; (b) the multiple-integral type, in which several (say m) integral
equations are used, and the assumed velocity profiles contain m param-
eters to be determined by the m resulting ordinary differential equetions.

The best-known integral method is the Kéfmén—Pohlhausen, which is
of type (a) with fourth-degree profiles. This method has been found
quite useful for incompressible flow (cf., e.g., Dryden, reference 3)
but it has two important limitations. It fails to predict the separation
point accurately in an adverse pressure gredient and it often does not
give sufficiently accurate results for stability calculations based on
criteris developed by Lin and Lees (references I and 5). 1 For these
purposes refinements in the usual Karman—Pohlhausen method must be made.

In the methods of type (a) the refinements usually consist of
assuming types of profiles which satisfy more boundary conditions than
the fourth-degree profiles. Schlichting and Ulrich (reference T), for
example, have used sixth-degree profiles for incompressible flow, satis-
fying an additional boundary condition at the wall and also at the outer
edge of the boundary layer. Satisfactory results were obtained, except
for flow in the vicinity of a stagnation point. Weil (reference 8) has
recently applied this method to compressible flow with zero heat transfer,
However, no investigation was made here of the expected accuracy of the
results, although it was pointed out by Weil that the use of sixth-degree
profiles is expected to yield satisfactory results for stability calcu-
lations since these calculations involve first and second derivatives of
the velocity, and the velocity profiles are made to satisfy additional
conditions involving the rate of change of second derivatives (viz, third
derivatives).

Timmen (reference 9) has suggested the use of exponential profiles
based on exact profiles derived from the solutions of Von Karman and

liees (reference 6) has recently applied the KarmAn-Pohlhausen
method to an investigaticn of the stability of compressible laminar
boundary layers with favorable pressure gradients, but this investigation
was considered by its author to be essentially qualitative.
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Millikan (reference 10). Although the calculations are thereby made
more tedious, it is believed that no significant improvement over poly-
nomial profiles should be expected, since the latter type of profile
usuaelly satisfies a fairly large number of conditions at the outer
boundary-layer edge anyway, and since primary interest usually lies in
the region near the wall. Moreover, Yuan (reference 11) and Lew (refer-
ence 12) have also used exponential profiles with no evident improve-
ment in accuracy. In cases of adverse pressure gradients, Timman has
suggested the use of a speclsal profile satisfying an additional condi-
tion involving the fourth derivative of velocity at the separation point.
Consideraeble improvement in the accuracy of prediction of the separation
point was thereby obtained (reference 9).

Loitsianskii (reference 13) has suggested a modification of the
KérmAn-Pohlhausen method based on multiplying the momentum equation by
a small variation of velocity and then integrating across the boundary-
layer thickness. A velocity profile with a single undetermined param-
eter is, as usual, assumed. The skin friction is subsequently calculated
by means of the Karman momentum equation. The method was applied in
reference 13 for several cases of incompressible flow, but the results ,
did not seem to indicate superiority of this method over the usual Kérman-
Pohlhausen method with a fourth-degree profile.

In the integral methods of type (b) the Karmin-Pohlhausen method
is extended by deriving more than one integral equation. This can be
done by multiplying the momentum partial differential equation by a
series of different factors, and then by integrating the resulting equa-
tions over the boundary-layer thickness. The factors which have usually
been chosen are integral powers of either the velocity (Leibenson, refer-
ence 1k; Golubev, reference 15; Sutton, reference 16; and Wieghardt,
reference 17) or the normal distance (Whitehead, reference 18). A further
possibility, suggested and applied by Whitehead, is successive integra-
tion of the momentum equation. The integral equations obtained by these
procedures are to some extent analogous to those which would be obtained
by the method of moments, and an infinite number of such equations would
be equivalent to the original partial differentlsl equation. Because of
the elaborate nature of the calculations required in such a procedure,
however, only the first two of the infinite set of equations have usually
been considered.

The multiple-integral methods have thus far been developed and
applied only for incompressible flow. In the present investigation only
the use of powers of velocity as factors will be considered. Im the
application made by Sutton (reference 16) a fourth-degree velocity pro-
file was assumed with two undetermined parameters. However, one of the
boundary conditions at the wall ordinarily satisfied in the Kermén-
Pohlhausen method was not satisfied. Wieghardt (reference 17) has also
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used this two-parameter method, but he has assumed eleventh-degree
velocity profiles satisfying additional conditions at thé wall (in fact,
the same as those satisfied by the sixth-degree profiles of references 7
and 8) and at the outer boundary-layer edge. Although results of com-
paratively high accuracy can thereby be obtained, Wieghardt's method
can be quite tedious in practice, This, in fact, is one of the general
disadvantages of the multiple-integral methods.

The general case of heat transfer in a compressible laminar boundary
layer with a pressure gradient is complicated by the fact that in this
case there is no known solution of the energy partial differential equa-
tion giving the temperature explicitly as a function of the velocity.

One means of treating such a case is by transforming the energy, as well
as the momentum, eqpation into a differential-integral equation, and
assuming a profile not only for the velocity but also for the temperature.
Kalikhman (reference 19) has 1nvest1gated this case by this means using,
analogously to the ordinary Kérman-Pohlhausen method, fourth-degree pro-
files for both velocity and stagnation enthalpy. Although important
useful results are thus obtained, their accuracy is subject to the limi-
tations of the Karman-Pohlhausen method previously discussed.

The aim of the present study is to investigate the practical feasi-
bility of the most promising integral methods (single-integral and double-
integral methods with various polynomial velocity profiles) from the point
of view of simultaneous accuracy and ease of computation. The approach
here is primarily a posteriori. The implications of each of the methods
considered are developed for only the simplest case, that of a surface
with zero axial pressure gradient in a subsonic and in a supersonic
stream, and these are compared with the corresponding implications of an
exact solution. In particular, results for skin friction and heat trans-
fer at the surface, velocity profiles, velocity derivatives, and laminer
stability based on the work of Lees (reference 5) have been considered.
The comparison of stability is particularly critical, since it is here
that the largest errors are incurred in the approximste methods, and
that the greatest differences among the results of the various methods
appear.

The following points are among the distinguishing features of this
study: (a) The two-parameter method involving two differential-integral
equations is developed and applied to compressible flow, and (b) the
implications of the various methods are directly compared with respect
to stabllity criteria; this, moreover, is the mhin basis here for Jjudging
the relative accuracy of the methods for practical. purposes.

Although it does not necessarily follow, without further investi-
gation, that the conclusions drawn from the analysis of the solutions
for the flow with zero axial pressure gradient will be valid, without
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modification, for flows with axial pressure gradients, it is believed
that the comparisons and resulting conclusions should nevertheless serve
as an indication of the relative merits of the various methods in more
general cases.

It mey be noted that Mangler's tranformation (reference 20), which
brings the boundary-layer equations of axially symmetric flow into the
form of the two-dimensional equations, further extends the usefulness
of two-dimensionel-flow solutions. Moreover, axially symmetric flows
of constant pressure thereby lead to equations analogous to those of
two-dimensional flow with zero pressure gradient.

This work, carried out at the Polytechnic Imstitute of Brooklyn
Aeronautical Laboratories, was sponsored by and conducted with the
financial assistance of the National Advisory Committee for Aeronautics.
The suthors wish to acknowledge the helpful discussions of this research
with Professor R. Paul Harrington and the wvaluable contribution of
Dr, H. G. Lew to the formulation of the program in its early stages.

SYMBOLS
a3 coefficients appearing in velocity profile
C factor of proportionality in equation E. = C%L
He ®
Ce coefficient of average skin-friction drag for surface of
length x |
p specific hegt at constant pressure
Cy specific heat at constant volume
Fy integrals defined in equations (22)
h local heat-transfer coefficient
k thermal conductivity of fluid
M Mach number

Nyu local Nusselt number (hx/kw)
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Prandtl number of gas (ucp/ )

pressure

gas constant (cp - cv)

critical Reynolds number
Reynolds number based on length x (ng/vw)
Reynolds number based on momentum thickness 6 (U;é/%a)

Sutherland's constant
transformation variable defined in equation (15)
absolute temperature

velocity at outer edge of boundary layer
free-stream velocity .

velocity components in x- and y-directions, respectively

coordinates parallel and perpendicular to surface,
respectively

variable defined in equation (35)
mass density
absolute coefficient of viscosity

ratio of specific heats (cp/cv)

kinematic viscosity (i/p)
thickness of boundary-layer velocity profile in xy-plane

thickness of boundary-layer velocity profile in xt-plene

transformation varisble (t/St)
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Subscripts:

© free-stream conditions for subsonic flow; uniform conditions
behind shock for supersonic flow

1 local conditions at outer edge of boundary layer

o conditions at surface

c values at critical coordinste for stability

BASIC EQUATIONS

The following equations describe the steady, two-dimensional, laminar-
boundary-layer flow of a compressible gas along a surface whose radius
of curvature is large compared with the boundary-layer thickness:

Momentum equation in x-direction:

pu(du/ax) + pv(du/dy) = ~(3p/3x) + (3/dy)[1(du/3y)] (1)

Momentum equation in y-direction:

dp/dy = 0 (2)
Equation of continuity:
(3/ax)(pu) + (8/3y)(pv) = 0O (3)
Equation of state:
P = PRT (%)

Energy equation:

puc(IT/3x) + pvep(3T/dy) = u(dp/dx) + (3/3y)[k(3r/dy)] + w(du/3y)? (5)
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As a consequence of equation (2) the static pressure p at any
axial position x in the boundary layer ‘is equal to the corresponding
static pressure in the potential flow, in which conditions are assumed
to be known.

From the momentum (Bernoulli) equation in potential flow, the
pressure p can be expressed in terms of the potential-flow velocity

distribution, thus:

dp/ax

op/ax

i

- UGy ! (6)

where the prime denotes differentiation with respect to x, and the sub-
script 1, conditions at the outer edge of the boundary layer. As is
usual in aeronautical problems, the coefficients of viscosity and heat
conductivity are taken to be kmown functions of the temperature only,
vhile the coefficlent of specific heat at constant pressure will be
assumed constant.

The treatment of these equations is greatly simplified if use is
made of well-known glgebraic velocity-temperature reletions which are
exactly valid for & Prandtl number of unity. These relations are for
the case of zero heat transfer with or without an axial pressure gradient

(u2/2) + T = A (7)
and for the case of zero axial pressure gradient with heat transfer
(u2/2> + cpl = A + Bu (8)

vhere A and B are arbitrary constants determined from wall and free-
stream conditions. With the use of these conditions, equation (7) becomes

Tfr; =1+ (7 - l)(Ml2/2)l:l - (u/Ul)EJ (9)
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while equation (8) becomes

/Ty = (TO/Tl) —{(TO/T]_) - [1+ (7 - 1)(1412/23} (u/Ul) -

(r - 2)(5379) (/) oo

The use of equations (9) and (10) which are valid only for a Prandtl
number of 1 in lieu of the more general energy equation (5) is justified
primarily by the simplifications introduced in the analysis., However,
it has been found that momentum boundary-layer characteristics such as
skin friction are not significantly affected by a change in Prandtl
number from unity to the actual value for air, which is between 0,65
and 0.76., Heat-transfer coefficients are affected approximately 10 per-
cent by such a change.

Before discussing the approximate solution of the basic equations
by means of integral methods, it is convenient to present several sub-

sidiary relations for lster use. Since the pressure within the boundary
layer at any given value of x is a constant, equation (4) gives

p/pl = Tl/T (11)

The most accurate representation of the variation of the coefficient of

viscosity of gases with temperature is usually considered to be Sutherland's

formuls, namely,
ni, = (T/Tm)3/2(Tw + S)/(T + 8) (12)

where S 1s a constant which for air is 216° R and where the sub-
script o dJdenotes reference conditlions taken in the undisturbed free
stream for subsonic flow end in the uniform flow behind any shock wave
associated with the leading edge for supersonic flow. Although it is
possible in principle to use equation (12) in the methods employed here,
it is inconvenient to do so since certain integrels must then be evaluated
numerically. It is thus desirgble that some acceptable simplifying
approximation to equation (12) be made. In reference (21) Chapmen and
Rubesin suggested that the mathemastical adventages of assuming p and

T to be linearly related can be obtained along with satisfactory accuracy
if 1t is assumed that
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h/ug, = C(T/T,) (13)

where C 18 a factor which is chosen so that the Sutherland viscosity-
temperature relation is exactly satisfied at the wall temperature T,.

Thus,
¢ = (o/z)2(z,, + 5) / (T, + 5) ©(1b)

Equation (13) will be used throughout this report.

It is convenient in the method used here to apply the Dorodnitzyn
transformation. Thus a new varisble +t 1s defined so that for a given
value of x +the physical variable y 1s given by the equation

£
v =j; (T/Tl) at (15)

Correspondingly the thickness ©&; of the boundary layer in the xt-plane
is defined as the value of t when y = 5, and therefore

5 = j;at(T/Tl) at (16)

With the additional relations given by equations (11), (13),
(14), and (15), equation (1) can be recast into an infinite set of
integral-differential equations., This can be done by multiplying equa-
tion (1) by v® dy(n = 1,2,3, . . .) and by integrating from y =0 to
¥y = & with the boundary conditions that at y =0

u=v-= O1

and at y =95 L (17)
u—Ul
du/dy = 0
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After transforming to the xt-plane, nondimensionalizing, and introducing
T = t/8;, the following set of equations is obtained:

[(n + l)plUln+2:,-18t(d/dx) 010 %6, fo l(u/Ul) [1 - (u/Ul)m'l:, d_'r} -

(dUi/639(até/Ui)k/;l[u/Ui - (?/Tl)(u/ui>nJ ar =

—~

Iy
-

ncp T (plUle> -1 fo ' ( /Ul)n‘:L [(é/aT) (u /Ul):l 2 ar n

Lf:uwml(plule)'l Ea/aT) (u/Ul)] ) n=0 (18)

The application of the infinite set of equations represented by
equations (18) will now be discussed. By means of equations (9) and (10)
the temperature can be expressed in terms of the velocity component u.
Now if it were assumed that

uf/u; = g{g aj(x)TJ (19)

then several of the aj coefficients could be determined in terms of

the other coefficients so that certain boundary conditions, at least
those in the xt-plane corresponding to those given by equations (17) in
the xy-plane, would be satisfied. The rest of the coefficients and o

could be calculated from the infinite set of first-order ordinary differ-
ential equations represented by equations (18). Such a solution would
in principle be exact and would be equivalent to a solution of the
original partial differential equations.

In actuality, however, since the attainment of such a solution
would be quite difficult, it will usually be considered sufficient for
practical purposes to obtain approximate solutions to the infinite, set
by taking only the first few differential equations of this set and
correspondingly only the first few terms of the power series in equa-
tion (19). Indeed, much information of engineering importance for the
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flat-plate case has been obtained in the past by using only the equation
corresponding to n = O, that is, to the Von Kérmén momentum integral
(e.g., references 3, 11, and 12), Additional accuracy may be obtainable
by the use of a second equation, that is, by the use of equations (18)
for n=0 and n =1, Therefore, these two equations will now be

explicitly written.

For n = 0O:

(F/2)(8:2)" + |:F1' + Fy (loge 0102)" - Fp (loge Ul)]th -
(F3“wcrl> / (plUITgo) (20)

and for n = 1:

(®1/2) (542) [(Fh /2) + (Fu[2) (2oe plUl3)' - F5(loge Ul)] 8,2 =
[(F6u £) / plUl] (T N (21)

where the prime denotes differentiation with respect to x and where

v - fol (afon) 1 - (/)] or
F2=f [u/Ul T/Tl):l ar
_ |:(a/aT) (ulUl):|o &
F), =fol(u,ul):1 - (u/Ul)eiI ar

Fs = fo l(u/Ul) - (T/T:L):I ar
Fg = j; ' EB/BT) (u/Ul):lz ar

g
(W)
|

(22)
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In these Fj dintegrals either equation (9) or (10), as the case may
be, is used to express T/Tl.

In the actuel application of either or both equations (20) and (21),
u/Ui is assumed as some function of T. For convenience a polynomial

in T 1is here assumed, that 1s

N
u /U = ?/__‘O a5(x)r (23)

where N is the degree of the assumed polynomial containing (N + 1) of
the as's
J .

The ad's are determined from the boundary conditions and from the

differential equations (20) and (21). The boundary conditions in the
xt-plane corresponding to those given by equations (17) must be satisfied.
Furthermore, additional accuracy can be obtained if the aj's are selected

so that the approximate solution given by this method has the same value

of lower derivatives at y =0 and y =% as an exact solution to the
partial differential equations would have. These values may be obtained

by differentiating equation (1) one or more times with respect to ¥y

or t. For completeness the useful boundary conditions in the x,t coordi-
nates will now be listed for flows having zero axlal pressure gradient

with or without heat transfer or having an axial pressure gradient but

no heat transfer:

At t=0: ufUp =0 )
b (T1 /T) (T [20) (9%/373) (ufuy) = -pyUy 542
(8%/2r3) (ufuy) = o0 (oh)

At t=08;: ufup =1

(am/a1m (u/Ul) om=1,2,3, . . .)

It may be polnted out that although additlionel conditions et y =0
can be derived they become impractically cumbersome to apply.
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The method involving the simultaneous solution of equations (20.)
and (21) will be referred to as the "two-parameter method," while that
of using only equation (20) will be the "one-parameter method.” In the
two-parameter method one coefficient a; in addition to &y 1is deter-

mined from the two differential equations, the rest from the boundary
conditions. TIn the one-parameter method ©; 1s determined from the

solution of equation (20) and all of the aj coefficients are deter-
mined from boundary conditions.

In carrying out the integration of these differential equations
graphical or numerical methods are in general required. The arbitrary
constants are usually determined so that the unknowns are either well-
behaved or have definite prescribed values at some value of x,.

Before applying the methods indicated here to the case of an axial
pressure gradient, it is considered desirable to investigate critically
the accuracy obtained by using several types of profiles in equation (20)
and in both equations (20) and (21) for the compressible flow with no
axial pressure gradient. An exact solution for this case has been given
by Chepman and Rubesin (reference 21). The accuracy of the results will
be measured by two criteria, namely, by the accuracy of the skin-friction
and heat-transfer values and by the critical Reynolds number for the
stability of the laminar boundary layer.

The application of these integral methods to the flat plate and
the results for skin friction and heat transfer will now be discussed
in detail.

BOUNDARY LAYER WITH ZERO AXTAL PRESSURE GRADIENT

The one-parameter and two-parameter methods described in the pre-
ceding section are here explicitly applied to the compressible flow over
a surface with zero axial pressure gradient. Various profiles will be
assumed and the results compared with those obtainable by a mathematically
exact solution for this case.

Solution of Equations

For the case of zero axial pressure gradient U; =U_ and equa-
tions (20) and (21) become

(ate)' = (2vafFs) / (V1) (25)
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and

(8:2)" = (i, cvg) / (vFs) (26)

vwhere the Fj integrals are in this case constants, and not functions
of x.,

In the two-parameter method equations (25) and (26) are solved for
St and the additional a4 coefficient which has not been determined

from boundary conditions. With the initial condition 5. =0 at x=0
these unknowns are determined by the equations

2F6/Fh = F3/Fl (27)

By [x = \/(2F3/Fl) (C/Rx) (28)

vhere Ry = U;g/vw. Equation (27) leads to a quartic equation in the
unknown coefficient a3, three roots of which must be rejected on physical
grounds. Once the constant value of a; 1s known, F3 and F; can
be evaluated and substituted into equation (28) to complete the solution.

In the one-parameter method the Fj integrals are completely deter-

mined once the velocity profile is chosen so as to satisfy the selected
boundary conditions. Thus, only equation (28) is used to determine the
single unknown By

Skin Friction and Heat Transfer
From the solutions outlined in the preceding section, the skin-

friction and heat-transfer characteristics are readily determined. The
coefficient of average skin-friction drag Cy 1is defined by the equation

Cp = QD;X(H 3u/3y), a{l/( wUm239 (29)
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By use of equation (28) this can be written as

Cp = 2EZF1F3 (C/Rx)] 1/2 (30)
Similarly e local heat-transfer coefficient h can be defined as
h = -(k aT/ay)ol(To -) (31)

where T, 1is the equilibrium wall temperature for no heat transfer and,
for Np,. =1, is given by the equation

T, = Tw{l + [(7 - 1)(Mm2/2)] (32)

By the use of equation (28) the equation for h is found to be

Ny = bx/k

it

(F1F3ReC/2) 1/2 (33)
Hence, by comparison of equations (30) and (33),

Nyu = CgBy [t (34)

Velocity Profiles and Results for Skin Friction and Heat Transfer

Several velocity profiles were assumed and the friction and heat
transfer given by these profiles were celculated. In the two-parameter
method fourth- and fifth-degree polynomials were used, while in the one-
parameter method fourth-, fifth-, and sixth-degree polynomials were
chosen. ‘

The results obtained here are compared mainly with those of the
exact analysis of Chapman and Rubesin (reference 21) which treats a
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general Prandtl number and variable surface temperature. The exact
velocity profiles of reference 21 are derived from the well-known Blasius
differential equation, solutions of which are tabulated, for example,

in reference 22. With the assumptions Np,. =1 and congtant surface

temperature for which equations (9) and (10) are valid, exact temperature
profiles are thus obtainable from the exact velocity profiles of refer-
ence 21, (These profiles, when expressed in terms of the Blasius vari-
able 1 (cf. equation 1k, reference 21), are independent of the surface
temperature and the Prandtl number.)

The variation of skin friction with Mach number for an insulated
surface is represented in figure 1. Included for comparison are results
already calculated in reference 21 for Np, = 0.72, as well as exact

results for NPr =1,

Table I glves values of the skin-friction coefficient and Nusselt
number obtained by the one- and two-parameter methods with the various
veloclty profiles. Values derived from the exact analysis of refer-
ence 21 for Np, =1 and 0.72 are listed for comparison. The free-

stream temperature and the wall temperature, which for an insulated
surface is a function of the free-stream Mach number, are contained
explicitly in the term C. Typical values of VYC for an insulated
surface are presented in table II in connection with the calculation of
the skin-friction drag coefficient.

Table I shows that the values obtained for skin friction &nd heat
transfer by the two-parameter method with either of the two profiles
used and by the one-parsmeter method with & sixth-degree profile differ
from the exact values by less than 0.6 percent. The values obtained by
the one-parameter method with the fourth-degree profiles are in error
by epproximately 3 percent. Thus, all methods used here give sufficiently
accurate results for engineering purposes for skin-friction and heat-
transfer coeffilclents.

Since in both the exact solutions (reference 21) and the solutions
obtained here by the integral methods, the effect of Mach number in the
case of an insulated plate with Np,. =1 is given by the same factor,

namely VE; it follows that (for a linear temperature-viscosity relation)
these integrel methods lead to the exact effect of Mach number on Cgp

and Ny,. It may be noted that the Mach number effect depends solely on

the assumed temperature-viscosity relation. The effect of the latter
can be seen from figure 1, where the results of the various integral
methods and of reference 21, all based on a linear temperature-viscosity
relation, are shown along with Crocco's results which are based on the
Sutherland formula.
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From figure 1 it can be seen, incidentally, that the value of the
Prandtl number has a small effect on the variation of Cp with Mach

number in the case of zero heat transfer. For example, in the range
M=0 to M=5, with T =648°R, Cp\/R, varies from 1.328 to 0.983
for Np, = 0.72, and from 1.328 to 0.954 for Np. = 1. It can be seen

from table I, moreover, that the Prandtl number has a somewhat larger
effect on the value of Nusselt number at all Mach numbers, the change
from Np. =1 to Np,. = 0.72 Dbeing about 10 percent.

Comparison of Velocity Profiles and Derivatives in Physical Plane

For estimating the stability of the laminar. boundary layer, the
accuracy of the first and second derivatives of the velocity profile,
as well as that of the profile itself, are of importance. 1In this sec-
tion the profiles and derivatives obtained by the Integral methods under
discussion are compared with the exact Blasius solution of references 21
and 22, The comparison can be conveniently mede in the physical xy-plane
by introduction of the dimensionless variable

¢ = (y/2x) (Refc) /2 (35)

The derivatives with respect to ¢ are shown in figures 3 and L.

It is seen from figures 2, 3, and 4 that, although the velocity
profiles obtained by the Ilntegral methods agree well with the exact
profile, the derivatives, as might be expected, do not correspond so
closely. Previous comparison of skin friction and heat transfer, which
depend upon the first derivatives at the surface, indicates that each
of the integral methods gives good results for these characteristics.
Hence each of the integral methods may be considered to predict the
value of the first derivative at the surface with sufficient accuracy.
Moreover, except for the fourth-degree profiles, the first and second
derivatives given by all the approximate solutions are in good quali-
tative agreement with the exact results throughout the boundary-layer
thickness. Examination of figures 3 and 4 for first and second deriva-
tives over the boundary-layer thickness indicates, however, that the
one-parameter method with a sixth-degree velocity profile gives on the
whole the most satisfactory results. It is to be anticipated that this
method will consequently also give satisfactory results for stability
calculations.
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DETERMINATION OF CRITICAL REYNOLDS NUMBER FOR STABILITY

The experimental work of Schubauer and Skramstad (reference 23) has
clearly established that the transition from a laminar to a turbulent
boundary layer is due to an instability of the laminar layer, if the
turbulence in the free stream is low, and if the surface of the body
is aerodynamically smooth and has a large radius of curvature. Thus
the laminar-boundary-layer stability theory, which has been developed
for incompressible flow by several investigators over the past 25 years
and which has been recently extended by Lin and Lees (references 4 and 5)
to the practically interesting case of compressible flow, may be used
to predict the local Reynolds number at which instability of the laminar
layer will first occur, or above which self-propagated disturbances are
not damped out. Transition to turbulent flow will take place downstream
of the point corresponding to this local Reynolds number, which is termed
the critical Reynolds number; the exact distance downstream cannot be
predicted by the present stability theory, which is based on small-
perturbation methods, but seems to be dependent on the value of the
critical Reynolds number, on the magnitude of the small but possibly
Tinite turbulence in the free stream, on the surface roughness, and on
the potential-flow pressure gradient.

The exact calculation of the critical Reynolds number for a given
velocity profile is tedious. However, the approximate stability rules
of Lin and Lees (references 4 and 5) permit a rapid determination of
this critical value with a minimum of labor. These rules have been
shown by the work of Lin and Lees and that of Hahneman, Freeman, and
Finston (reference 24) to give relisble results and have, therefore,
been used extensively. It might be further mentioned that because of
approximetions inherent in the laminar-boundary-layer stability theory,
and because of the undetermined relation between boundary-layer neutral
stability and transition, there seems to be no practical justification
for obtaining greater accuracy than that given by the approximate sta-
bility rules.,

The results of stability calculations are sensitive to the accuracy
of the profiles. Thus the critical Reynolds numbers based on approximate
solutions to the boundary-layer equations have not in general been in
good agreement with those based on exact solutions. The reason for this
discrepancy 1s clear when it is considered that the stability calculation
depends strongly on first and second derivatives of the wvelocity profile.
Approximate solutions may be expected to give fairly accurate velocity
profiles, but unless special care is exercised the first and second
derivatives of the profile throughout the entire boundary-layer thick-
ness might be quite in error. This has been shovn in the preg;ogs sec-
tion where it has been pointed out that the frequently used Karman-
Pohlhausen method with a fourth-degree velocity profile gives reasonably
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accurate values for the skin friction, the heat transfer, and the velocity
profile but ylelds quite inaccurate values for the derivatives. It may

be expected, therefore, that a crucial test of the accuracy of approxi-
mate solutions to the laminar-boundary-lsyer equations would be a com-
parison of the critical Reymolds numbers predicted by these solutions
with those predicted by exact solutions.

In this section the critical Reynolds numbers of the profiles
obtalned in the previous section for the zero-heat-transfer case are
obtained and compared with those of the exact solution of Chapman and
Rubesin,

With the prime denoting partial differentiation with respect to ¢,
Lees! criterion modified for the viscosity-temperature relation used here
1s given as follows:

d
"

cr 2(Rx,crc)l/2
o5 (uf0r )y o(2/10) 2 (e/0r) H 1 - m2[1 - (wfr) 2} 2 )

where the subscript c¢ denotes values at the point € = €. at which
the following relations are satisfied:

5 = (o) (o) (/o) (/o) ] [Co/mn) (o/m) " = (o) (3/2) ]

(37)

and

0.580/T =1 - 2 Ku/Ul)o'e(u/Ul) - :l (38)

It will be noted from equation (37) that the first and second deriva-
tives of the velocity and temperature profiles in the critical region
around €, are influential in the determination of R.,. The procedure

for obtaining R.,. is to calculate J from equation (37) for various

values of ¢, and to find the values of ¢ = ¢z for which equation (38)
is satisfied. After the values of (ufUj). emnd (T/T;). eare determined

at this point, Rg. and Ry . follow from equation (36).
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For comparison with previous results it is convenient to calculate
the critical Reynolds number Re,cr based on momentum thickness. Since

6 1is defined by

. =f06 (0/p1) (u01) [1 - (u/Ul)] dy (39)
it is found, for the integral methods, that
Rg,cr = (F1F3/2)l/ Rer (ko)
and for the profiles of reference (21)
Rg,cr = 0.33Rcy ()

Calculations of the minimum critical Reynolds numbers have been
made for the flow over a flat insulated surface at free-stream Mach
numbers of 0, 1, and 2., The results are tabulated in table IIT and
plotted in figure 5. Primarily, comparison of the integral methods
presented here should be made with the results derived from the exact
profiles of reference 21 since identical temperature-viscosity relations
are used in both, The results of Lees, given in figure 5 of reference 5,
are also presented for comparison. Note should be taken that Lees'
approximate values are based on still a further approximation to equa-
tions (36), (37), and (38) presented here,

Figure 5 indicates that the one-psrameter sixth-degree polynomial
method gives the best general agreement with results of the exact solu-
tions over the range of Mach numbers studied. The two-parameter, fifth-
degree method is next best, while in order of decreasing accuracy, the
one-parameter fifth-degree, two-parameter fourth-degree, and one-parameter
fourth-degree polynomials follow. The two-parameter methods seem to
give better general agreement than the one-parameter methods for equal
degree of the assumed polynomial for the velocity profile. (Because of
the inaccuracies introduced by the approximation in this stability
criterion, as well as by the required graphical method involved in its
application, the derived results are not reliable to more than two signif-
icant figures.)
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The stability anslysis given here has thus indicated that integral
methods of solution of the boundary-layer equations may be used to
predict the critical Reynolds number provided that either additional
integral equations or higher-degree polynomials and additional boundary
conditions with a single integral equation are used. Thus the choice
of method to be used in the more general cases of pressure gradient with
and without heat transfer is either the two-parameter method or the one-
parameter method with higher-degree polynomials, particularly of the
sixth degree.

Vhile these two methods lead to results which are of nearly the
same accuracy, use of the one-parameter method has the advantage of
simplicity of calculation, which becomes significant in cases involving
pressure gradient, It is thus concluded that the one-parameter method
with sixth- or higher-degree polynomials is the most satisfactory and
promising method for extension to general compressible boundary-layer
analyses., Sixth-degree polynomisls will probably prove to be satis-
factory in many cases, but use of a seventh-degree profile satisfying
an additional condition at the separation point (cf. reference 9) may
increase the accuracy of determining the separation point in adverse-
pressure-gradient cases, Moreover, a sixth-degree profile may not be
satisfactory for flow near a stagnation point (cf. reference T).

CONCLUSIONS

The laminar-boundary-layer equations for compressible flow can be
converted into one, two, or more integral-differential equations. Approxi-
mate solutions can be obtained by assuming special forms for the velocity
profiles satisfying various boundary conditions and containing, in
practice, either one or two parameters to be determined by these equations,

From a comparison of the integral methods discussed here for the
compressible flow over a surface with no axial pressure gradient, the
following conclusions can be drawn:

1. All of the methods predict the values of the skin-friction and
heat-transfer coefficients at the wall as well as the over-all velocity
profiles with satisfactory accuracy for engineering purposes. The two-
parameter method and the one-parameter method with a sixth-degree pro-
file are particularly accurate.

2. The one-parameter method with a sixth-degree velocity profile
gives on the whole the most accurate results for velocity profiles and
their derivatives throughout the boundary-layer region.
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‘3. The critical Reynolds number for laminar-boundary-layer sta-
bility is predicted with qualitative accuracy by all methods. Moreover,
reasonably good quantitative accuracy is obtained with the two-parameter
method and with the one-parameter method with a sixth-degree profile.

l, Because of computational simplicity and equality of accuracy,
the one-parameter method with sixth- or higher-degree polynomials appears
to be the most satisfactory and promising method of investigating the
more general case of laminar compressible boundary layer with axial
pressure gradient and heat transfer.

Polytechnic Institute of Brooklyn
New York, N. Y., November 6, 1950
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TABLE I.- SKIN-FRICTION DRAG COEFFICIENT
AND NUSSELT NUMBER
Boundary conditions 1/2
Methog ~ [DoETee of satisfied icf(5_1£> / 2y (RyC) M2
po-yn (cf. equations (2k))|2 "\ C
y 1,45m = 1,2) 0.663 0.663
Two paremeter 5 |1,2)4,5(m = 1,2) .660 .660
Ly 1,2,4,5(m = 1,2) 0.685 0.685.
One parameter 5 1,2,3,4,5(m = 1,2) .6hh ann
6 1,2,3,4,5(m = 1,2,3) .661 .661
Reference 21 '
T, = Constant 0.664 0.664
Nppr = 1
Reference 21
0.664 0.592

T, = Constant

FLPI. = 0.72
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TABLE TI.- VALUES OF \/C FOR AN

INSULATED SURFACE FOR Np,. =1

Me

T

720 F absolute

648° F absolute

1.0

1.021
1.057
1.07%
1.067
1.043

1.0
.976
.916
.8k
776
.718

"!ﬂgﬂ"”
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TABLE III.- MINIMUM CRITICAL REYNOLDS NUMBERS FOR STABILITY

IN LAMINAR-BOUNDARY-LAYER FLOW OVER AN INSULATED

FLAT SURFACE
My = O Mo =1 Mg = 2
Method e (_1_1_) Rer (Ro,cr Bx,cr e (L) Rer|Rg,cr|Bx, or € (_1_1_) Rer|Bg,cr|Bx,cr

Lees' exact

gtability

calculation 150 | 51,000 110 27,000
Tees' approximate’

stebility

criterion 0.4186 195 | 86,000 0.499 119 {32,000
Chapmen-Rubesin |0.64 .49 | 540| 180 | 73,000 [0.945| .517[290| 96 (21,000 | 1.97{0.724|T7 | 26 {1480
2 paremeter-i .56| .370 | 890| 290 [98,000 | .BE2| .47 {L6O| 152 |53,000 [ 2.05| .75 |62 | 2L 960
2 parsmeter-5 .59| .381 | 780| 260 [52,000 | .958| .51 [310( 102 |24,000 | 2.17| .TT3|%0 | 17 630
1 parsmeter-U .52| .345 |1210| 420 PB70,000 | .829| .46 [520| 178 |68,000 | 2.05| .T3 |77 |26 |1480
1 perameter-5 69| 436 | 450| 145 {51,000 |1.067| .56 [201| 65 |10,100 | 2.20( .788 |4k 14 480
1 paremeter-6 .61| .39% | 690| 230 [19,000 | .963] .52 [280| 93 [19,600 |2.07| .75 |62 | ol 960

lFor example, 2 parameter-l means two-parameter method with a fourth-degree profile. W

15551

G693 NI VOVN
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1.4
.3
1.2
¢ /R 1.1

1.0

1.5
1.4

¢,/R, 1.3

29

(a) T, = 648° F absolute.

(b) T, = 72° F absolute.

C-R,N=1
I-6 T
I-4,5
j1-4 I St i I ——
L —— | ™ — = ——7— -~
_——_—é—:';r" -
| c-R,N=0.127 c-s/| 1-5
' |
-
= F F Tt T T
1 Y 5
(o)

Figure 1.- Variation of skin-friction drag coefficient with free-stream

Mach number for insulated flat surface.

I, one-parameter method;

II, two-parameter method; 4, 5, 6, degree of polynominals; C-R,
Chapman-Rubesin (reference 21) 3 C-S, Crocco's calculation based on
Sutherland's temperature-viscosity relation (cf. reference 21).



http://www.abbottaerospace.com/technical-library

30

1.0

NACA TN 2655

—
=
%’

8
CHAPMAN - RUBESIN— |#
(REFERENCE 21)

TWO-PARAMETER.

FIFTH-DEGREE POLYNOMIAL

ONE—PARAMETER.

SIXTH-DEGREE POLYNOMIAL

Cle
On (o))

0 -5 i.0 |
y

.5 2.0 2.5

R
= e _}_
¢t =2x/ 7T

(a) M, =

O.

Figure 2.- Comparison of velocity profiles for flow over insulated flat

surface,.
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Figure 2.- Concluded.
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(a) Two-parameter method; M_ = O.

Figure 3.- Comparison of first derivatives of velocity profiles for flow
over insulated flat surface,
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. (b) One-parameter method; M, = O.

Figure 3.- Continued.
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(¢) Two-parameter method; M_ = 2.

Figure 3.- Continued.
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(d) One-parameter method; M_ = 2.

Figure 3.- Concluded.
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(a) Two-parameter method; M_ = O. -

Figure k.- Comparison of second derivatives of velocity profiles for flow
over insulated flat surface.
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Figure 4.- Continued.
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(c) Two-parameter method; M, = 2.

Figure 4.- Continued.
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Figure k.- Concluded.
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Figure 5.~ Variation of minimum critical Reynolds number with Mach number

for laminar boundary layer flow over insulated flat surface with
Np. =1
Pr .

NACA - Langley Fleld, Va.
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