g2

NACA TN 2682

CHv——r

St

L€
7""- a?/p&.

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 2682

TRANSVERSE VIBRATIONS OF HOLLOW THIN-WALLED
CYLINDRICAL BEAMS
By Bernard Budiansky and Edwin T. Kruszewski

Langley Aeronautical Laboratory
Langley Field, Va.

Washington

CLIBRARY COBY  muie  FOR REFTRENCE

th 1 1988 P

{ANGLEY RESEMROH CENTEH - if HOZ X0 BE TAKEN FRUX THIS ROOM
Mﬁéﬁ‘ VIRGINA _ -

Hw,


http://www.abbottaerospace.com/technical-library

NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL NOTE 2682

TRANSVERSE VIBRATIONS OF HOLLOW THIN-WALIED
CYLINDRICAL BEAMS

By Bernard Budiansky and Edwin T. Kruszewski
SUMMARY '

The varigtional principle, differential equations, and boundary con-
ditions consldered appropriate to the analysis of transverse vibrations
of hollow thin-walled cylindrical beams are shown. General solutions
for the modes and frequencies of cantilever end free-free cylindrical
beams of arbitrary cross section but of uniform thickness are given.

The combined influence of the secondary effects of transverse shear
deformation, shear lag, and longitudinal inertia is shown in the form
of curves for cylinders of rectangular cross section and uniform thick-
ness. The contribution of each of the secondary effects to the total
reduction in the actual frequency is also Indicated.

INTRODUCTION

The elementary theory of bending vibretion is often inadequete for
the accurate calculation of natural modes and frequencies of hollow, thin-
walled cylindrical beams., Such secondary effects as transverse sheer
deformation, shear lag, and longitudinel inertia, which are not considered
in the elementary theory of letersl oscillations, can have apprecisable
influence, particularly on the higher modes and frequencies of vibration.
The effects of transverse shear deformation and of rotary (rather than
longitudinal) inertia have been studied by many on the basis of the
original investigations of Rayleigh (reference 1) and Timoshenko (refer-
ence 2). Anderson and Houbolt (reference 3) have presented & procedure
for including the effects of shear lag in the numerical calculation of
modes and frequencies of box beams of rectangular cross sectlion. How-
ever, there does not appear to exist a general solution for the vibra-
tlon of hollow beams that incorporates the influence of all the secondary
effects mentioned.

The purpose of the present paper 1s threefold: TFirst, to exhibit
the variational principle, differentiasl equations, and boundary condi-
tions appropriate for the snalysis of the uncoupled bending vibration
of hollow thin-walled cylindrical beams; second, to give genersl solutions
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for cantilever and free-free cylimnders of arbitrary cross section but of . -
uniform thickness; and finally, to show quantitatively the influence of R
the secondary effects by means of numerical results for hollow beams of
rectangular cross section aof various lengths, widths, and depths. ’

SYMBOIS
A cross-sectional ares -
Ay Fourier coefficient i
Ag effective shear-carrying ares ' -
B; . parameter defined in equation (30)
c constant ) g
E modulus of elasticity ,
G shear modulus of elasticilty o
I moment .of inertia o ' . -
X geometrical parameter defined in equation (29)
L length of cantilever beam, halfvlength'bf free-free beam
Ny parameter defined in équatién (38)
T maximum kinetic energy -
U maximum strain energy ) o _ - )
a half=depth of rectangular beam - i
b : half-width of rectengular beam ‘
8mns Pn Fourier.seriés-coefficients
i,J,mn inﬁegers“ : : e D R e

) p.Ll"
kp . .. frequency coefficient [w|{~—
ET
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kg .coefficient of shear rigidity (% \ﬁi_'é >

kRI coefficient of rotary inertia (-jl__"— \J-—}é—j )

P perimeter of cross section

8 -distance along periphery of cross section (see fig. 1)
% " wall thickness

u(x,s) longitudinal displacement in x-directio.ﬁ

-w(x) vertical displacement in y-direction

X longitudinal coordinate

¥ vertical coordinate

b2 y-coordinate of center of gravity of cross section
7xs shear strain®

€x iongitudinal strain

] inclination of normal with vertical (see fig. 1)

A Lagrangisn multiplier

1 mags of beam per unit length

p mass density of bean

g longitudinal direct -stress

T -  shear stress

w natural frequency of beam

Wo natural freqﬁency_ of beam.calculated from elementary beanm

theory
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BASTIC EQUATIONS

Assumptlons.~- The problem to be considered 1s that—of the natural
bending vibration of a thin-walled hollow ¢ylindrical beam whose cross
section is symmetrical sbout at leastone axis (see fig. 1). The
transverse vibration 1s supposed to take place in the direction of this
axis of symmetry of the cross section so that no tor51onal oscillations
are induced. ) v

In the present anslysis, the following simplificetions are introduced:

(a) Changes in the size and shape of the cross section are neglected

(b) Stress and strain are assumed to be ugiﬁgrm across the wall
thickness - *- = : o

(¢c) The small effect of circumferential stress upon longitudinal
strain is neglected

In accordancé with statements (a) and (b), the distortions of the
vibrating beam are completely described by the vertical displacement w(x)
of-a cross section and the longitudinal displacemént u(x,s) of each
point of the median line of the beam wall. ‘

The longitudinsl and shear strains are given in terms of u(x,s)
and w(x) as ) e ea .

€x = % . o= '_(l)
7xs‘_=%+gx—wsin9 : (2)

and the corresponding stresses become

x=ER @
and ) : -
e = 622 + & o1n o) (%)

where 6 is the inclinstion of the normal with the vertical (see fig, 1).

T
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In elementury beam theory, where the effects of sl1]1 shear distortion
are neglected, the longitudinagl distortion _u(x,s) is related to the
vertical displacement w(x) by

u(x,s) = (¥ - y)%’

where ¥ is the y-coordinate of the center of gravity of the cross sec-
tion., In the present paper, however, u(x,s) is allowed to be perfectly
genersl, so that shear distortions (and consequently the so-called shear-
lag and transverse-shear-deformation effects) are fully teken into account.
Furthermore, because cross sections are not constrained to remain plane,
the inertis .effect sssociated with motion in the longitudinal direction is
more properly desighated gs the effect of longitudinal inertis rather than
rotary inertia.

Variational principle and geometricel boundary conditions,- The varia-
tional equation to be written is approprieate to beams whose ends are either
fixed, simply supported, or free., For some such beam vibrating in a
natural mode, the meximum strain energy is

| U=%f§£ (g:)tdsd.x+ fﬁg (as i‘isine)etdsdx (5)

where u(x,s) and w(x) are the amplitudes of displecement for the par-
ticular mode considered. The meximum kinetic energy is

j;Lﬁg ptwaw‘e_é.s ax + %ALﬁ pwauaqs ax (6)

where ® 1s the natural frequency of the mode under conslderation and
.p 1s the mass density of the beam. The second term in equation (6) con-
stitutes the contribution of longitudinal inertia to the kinetic energy.

T =

-

Then a natural mode of vibration must satisfy the variationsl
equation .

8(U - T) =0 (1)

where the variation is taken independently with respect to. u(x;s) and
w(x) and with the provision that both u(x,s) and w(x) must satisfy
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the geometrical boundary conditions of the problem; furthermore, u(x,s)
must be periodic in s with & period equal to the perimeter p. The
geometrical boundsry conditions are w=0 and u =0 &t g fixed end
and Just- w = 0 at a simply supported end. At & free end no geometrical
boundary conditions are imposed. o : C '

Differential equations and natural boundery conditions.- Equations (5),
(6), and (7) in conjunction with the usual procedure of the calculus of
variations yield the following simultaneous integrodifferential equations
for u and w: )

2y du + ¥ ) -
Et*a— + a—s Gt(as Eeino)l + ptwu =0 (8)
2, _
jgc;t %u sin 6 + &Y s1n2e ds + patw = 0 C(9)
ds Ox ax2

where . o . : U R S

" =§gpt ds ' : o (10)

aend the boundary equetions st each end of the beam are

55 Et(gﬁ)ﬁu ds = 0 (11)

Sgc;t(a—u- + ¥ sin G)Sin 0 ds 8w = O (12)
3

At a fixed end, both boundary equations (11) and (12) are satisfied
by virtue of the fact that the geometrical boundary conditions require
that both Bu and &w be zero. At a simply supported end &w = O, but,
since ©du(x,s) is perfectly arbitrary, the variational process forces
the equality : : B T

ou

Et-é;=0 - . (13)
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Finally, at a free end, since there are no geometrical constraints, both
du and B&w are arbitrary and hence the variational process forces, in
addition to equation (13), the equality

k¢;Gt(§E _-%ﬁ sin q>sih 6'ds = 0 ; (14)

Equations (13) and (14) comstitute so-called "natural boundary
conditions" because they are automatically satisfied as the result of
a variational process. Equation (13) is recognized as the condition of
zero longitudinal direct stress while equation (1k4) simply stipulates
that the total vertical ghear force vanish.

Thus to summarlze, the appropriate boundary conditions required for
the solution of equations (8) and (9) are

Fixed end: B
w.=20
u =0
Simply supportedieqd:
- w=20
o
Et 5§_= 0

Free end:

k¢;Gt(§E + I an G)Sin 6 ds = O

S

The integrodifferential equations (8) and (9), which specify
equilibrium in the longitudinal and transverse directions, respectively,
can, of course, be written directly without recourse to the varlatiOnal
principle. -
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GENERAL SOLUTIONS FOR CYLINDERS OF UNIFORM WALL THICKNESS

The following exact solutions for cylinders ¢f uniform wall thick-
ness are carried out by means of Fourier series in conjunction with the
application of the veriational condition (equastion (7)). This procedure,
which does not require explicit considerastion of- the natural boundary
conditions, was believed to he.more expedient than a direct attack upon
the—simulteneous integrodifferential equations (8) and (9) and all their
associated boundary conditions.

Cantilever beam.—_The_geometrical.goundgiy_cogditions, for a canti-
lever beam, as previously shown, are w(0). = u(0,s) = 0 (see fig. 1).
Appropriate essumptions for the displacements w(x) and u(x,s) are

w(x) = C + E by, cos anx _ - (15) A
n=1,3,5" el
and - i_
00 [e2] - -

u(x,s) = - E _ . E fmn oin zzx cos 22:5 (16)

The condition u({0,s) = O _1s satisfied by each term of equation (16);
the condition

wo)=c+ >  byi=0 (17)

is introduced into the variational procedure by means of the Lagrengian
multiplier method. The choice of the particulsr trigonometric functions
used in the Fourier series (15) and (16) wass guided by considerstion of
the orthogonality required for the simplification of expressions in the
strain energy. The constant C i1s needed in the expression for w(x)

in order that w(L) .be unrestricted. - . o L
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Using equations (15) and (16) in equations (5) and (6) yields

[+]

L o0
-1 99 E E mt
U-T-= E\/q Et( . R 8mn T
0 m=1,3,5 n=0,1,2

==

2nsn

cos =X cos
2L

2
> ds dx +

mxx 2nns

L [oe]
%f §§Gt Z ; —apy
0 w=1,3,5 n=0,1,2

29

m=1,3,5 n

>
=0,1

1)2

To meke equation (18) stationary and at the
straining relationship

it is sufficient to set

8(U - T - ) =

p

8mn sin ST, cos

sin sin

2L

mnX

2
21;“) ds ax  (18)

same time satisfy the con-

(19)

0 (20)
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where the veriation is with respect to the a's, b's, and C considered
as independent variables; here A 1is 8 Lagrenglan multiplier, This varia-
tional process results in the following equations:

00
- 2 AL
M-x?ﬂ.: ot 1B A—nain+GH2—S—bi-
ob ob _ 2 2 2L 2
i i n_,,2 ) .

1-1

Ly, 1) @ 2L e -
pm2§bl-(1) To Ha C - A
=0

(1 =1, 3,5, « . .) (21)

U - T) _ pofix)? Lp 23x\? Lp 1gn® o . Lp

1, 3, 55 ¢ « o3
0,1, 2, . . .) (22

~
[N
o

(U -T) , 99 _ 2 2L %l
S R 1:3, = (-1) by - pePLC - A

=0 (23)

where

Ap = %'ggs_in 6 sin 2n1:rs ds (24)

Ay = fvt sin®@ ds (25)

¥
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With the use of the nondimensiondl parsmeters

L
kg2 = B oP (26)
ET -
ASGL ' ' ' '
2 _ I _ I '
= e @
K2 = 1—61—2- | ' (29)
Agp
and
B;Z = 12 - kM2k32(§)2 ' (30)

egquations (21), (22), and (23) may be reduced to

(=]
E ing? It 1{ix\2 1 1
T o g Anain + 5(?) bi - E kBabi -

n=0,1,2 g E
2 2. . 2n A _ =
(_l) i—ﬂ'-[-kB C - E'I—_O (i - 1, 3’ 5} o o o) (31)
(kSEBiz + Keje)aij + K2 _).:E_L Ajjﬁjbi =0 (i : 1, 3, 5, . ._): (32)

kp2 123: 2 (c1) 2 by +apPe o0 (33)
n=
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For J = 0, equation (32) becomes

kS2 Ez - kBEkRIE(%)EJ a4 = 0 (i =1, 3, 55 « & .) (31")

Equation (34) is not coupled to any of equatioms (31) to (33). A given
value of 840 corresponds to the amplitude of the ith mode of longi-

tudinal oscillation, and 1f this value of a;,5 1s not-equal to O,

then equation (3%) simply gives the frequency of this longitudinal mode.
Consequently those equations in equation (32) for values of 3 = O are
not assoclated with transverse bending and so are ignored henceforth,.
For the remaining values of J (that is, J # O) equation (32) ylelds

2
s - -K° i Agtd ) =135 ...
ks2312 + KEJQ 'j = 1, 2, 3, e 0 o) (35)

Substituting the expression for = in equation (35) into equation (31)
ij

and solving for by gives -
i-1
(-1) 2 £ g%+ %3_’_“
by = X L (1=1,3 5 ...) (36)
Ny _
where
2 k2 A
T 2 2
o . — A,“(in)
oL S Kkl - 1 2 (37)
8 kg2 nT;73  Ks®Bi2 + Kn? z

In the appendix this expression for N; is shown to be equivalent to

125t 5 1242 A Ay® 1
Ny = B2 - 0 2 g k2 - L kg2 (38
i 32 1 16 Ag 158 n=1,Zz, 3 Kene (kszBiE + Ken?) 2 B~ (38)
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Since the series in equation (38) is considerably more quickly convergent
than thet in equation (37), equation (38) should be used in actual
numerical calculations of Nj.

Substitution of equation (36) into equation (33) and the constraining-
relationship equation (19) gives the following two homogeneous equations
in C gnd A:

00 ' ) n-1
2 1 = 2 1|13
kp? |1 + kg 5 2) Lo, 1+ kg° E (-1) = === =0
B n=1,3,5 (nﬂ) Nn n=1,3,5 o Ng |EI
(39a)
Ew B, g = 1\i3
1 4+ k2 (-1) = =lc + < -—-)— =0 (39p)
B
n=1,3,5 nx Np n=1,3,5 Ny /EI

Finally the condition for a nontrivisel solution for C and A glves
the frequency equation

oo B o n-1
o 2 2\2 1 2 > 2 1
k= |1 + kg E (-—) — 1+ kg Z (-1) —
n=1;3,5 nx N, _ n=1,3,5 nx Np
=0 (ko)
o n-1 &
ek > (mE 2l > i
n=l,3’5 . nix n ’ n=1’3,5 n

which the frequency parameter kg must satisfy. Since the terms of the
infinite series which appear in the frequency equation contain kp

itself, the roots of equation (U40) are most convenilently found by trial.
Fortunately the infinite series in equation (40) as well s the series
in the definition of Ny converge rapidly so that only a few terms are

needed to evaluate them with sufficient accuracy.
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Once kp has been determined for a particular mode, the corre-
sponding mode.shape can be found by letting C = 1 .and solving either -
of equetions (39) for A and then finally evalusting b; end 81 j ’
successively from equations (36) and (35).

Free-free beam - symmetrical modes.- If the origin of a free-free

beam of length 2I 1s takén at the midspan (see fig. 1), the form of
the Fourier series assumed for w(x) and u(x,s) when the beam is
undergoing a symmetrical mode of vibration mey be exsctly the same as
thet assumed for the cantilever beam of length .L (see equations (15)
and (16)). The only difference in.the ensuing calculations is that the
constraining condition (19) is not—introduced. Consequently, 1t can be
readlly seen that the frequency equetion for the symmetrically vibrating
free-free beam is obtained from equation (3%9a) by setting A =0 sand

is

2 2 2\ 1| .

After a particular root kg is found from equation (41}, the shape
of the corresponding symmetrical free-free mode may be obtained from
equations (36) (with A = 0) and equation (35).

Free-free beam - antisymmetrical modes.- Consider a free-free beam
of length 2L wundergoing antisymmetrical vibrations, Explicit con-

sideration need be given only to the right halfof the beam (see fig. l),

and for this half-beam the only geometrical boundery condition thet must
be imposed is that w(0Q) = O. The spanwise displacement u(0,s) is
unrestrained by virtue of antisymmetry.

Appropriate assumptions for the displacements w(x) =nd u(x,s)
are then o C

o0

w(x) = 2; by sin B2 4 ox (42)
n=2,L4,6 2L L o

2T

and . . . . o e

u(x,s) = :g:j z;i 8yn’ COS. 7 eés-Enns_ K ~(43)

m=0,2,% n=1,2,3 - P
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The linear portion Cx of the expression for w(x) is needed in
order to give the beam sufficlent freedom at the tip (x = L). The choice
of the particular trigonometric function in the series expansion for
u(x,s) was, as in the case of the cantilever beam, guided by considera-
tion of the orthogonality required for the simplification of the expres-
sions in the strain energy. The zeroeth term in the series for u(x,s)
in the g~-direction was omitted because it only leads to the freguency
equation for longitudinal oscillations.

Using equations (42) and (43) in equations {5) and (6) yields

o0

L y - 2
U-T =22'-f ‘ngt( E _S_ -8y -nél-% sin =X cos 2nxs ds dx +
0 w=0,2,Y4 n=1,2,3 2L P

1/

L o]
jéjGt E ~8mn 2nx cos =X gin 2nxs +
0 m=§, 4 n=1,2,3 P L P

L o - o
2
lf § p-ta)2 E E amn COS X cos 228 ) as ax (44)
2 0 2L P
3

The variation of equation (44) with respect to the a's, b's, and
C gives, after sultable simplification,

(Bizkse + Kaja)aij - K £ agigp; = 0 (1
J

2, 4, 6, . . .
1, 2, 3, « « «) (L5)

nu
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1 It ine® 1. 1 f(inN3, .1
S Ll 1 pp, g
n=f;7,3 kg" & ¥ 2 yq2\2 2
(-1)1/2 2 mpPcL = 0 (1=2
00 00
1 It L s
—— 7= nuhpag, - s - k
n=1,2,3 kg2 AS B n=2,4,6
1, 24 _
= kg“CL = O
From equation (L45)
2 _
K Asij
8i4 = ﬁ% J b (1 =2
13 55 5.5 01 Y
B;“kg= + KJ J =1,

vhich, except for sign, 1s the same expression as thet
cantilever and symmetricelly vibrating free-free beams
From equation (46)

K £ a5 (
Bng = c ’ J
°J ByZkg? + K23° -

"o
.
-

NACA TN 2682

, by 6, . L)

é% (_1)n/2bn +

(L6)

(47)

(48)

(49)

obtalned for the

(equation (35))

2, 35, ¢ o o)

(50)
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Substitution of equation (49) into equation (47) gives

: k2
b = (02 2 (1=2,%6 ... (51

where Ny is defined in equation (37).

Substitution of equations (50) and (51) into equation (L48) and
simplification gives as the frequency equation for the antisymmetrically
vibrating free-free beam

2 2 '

2 2 \2 kp 2 A 2 An' 1
kg (__) —_ +— kgt +=|=0 (52)

n=2, )-l-, 6 nx Nn ﬂé AS n=l, 2’ 3 BOEk 2 + K2n2 3

After a particulaer value of kg is found from equation (52), the

shape of the corresponding antisymmetrical free-free mode may be obtained
by giving C the arbitrary vaelue of unity and calculating the D's
and a's successively from equations (51), (50), and (49).

Discussion of parameters.- The parameters entering in the frequency

equations merit discussion, The unknown natural frequency is contained
only in the frequency coefficient kg, which is defined by the formula

w = kB\lEI , and is in common use in beavaibration analysis., The param-
pL

eters kg and kpy are identical with the shear and inertia parameters

defined in reference U4, which considers the effect of only transverse
shear and rotary inertia on beam vibretions. The quentity Ag which
appears 1in the present definition of kg 1s actually the effective
shear-carrylng area when plane sections are constrained to remain plane;
that 1s, when shesr lag is neglected. The remsining paremeters appearing
in the present derivation, namely, A[Ag, K, and A3, Ay, . . . are

essentially shape parameters which actually depend only on the contour
of the cross sectlon; as shown in the appendix,

= 2
-7 An.

B _1 §
A =1,2,3
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and

_2a Y 4%
o 7(2'[;{3n=;31712

r&=2

and the Ap's are simply the Fourler coefficients of the function sin e,
which is dependent only on the shape of the cross section. These shape
parameters are related to shear-lag effects and their interaction with
transverse gshear and longitudinal lnertia.

The effect of longitudinel lnertis 1s gssociated with the parameter
kpy. If the effect of longitudinal inertia is to be neglected, it is

sufficient-to set krr equal to zero in the final frequency equation.
If kgt 1s equal to zero, B; becomes independent of kp. Appreciable
simplification in a trial-and-error solution for the nstural frequency
then results since, with Bj independent of kp, the infinite summation
contained in N;j 1s also independent of kg and need be calculated

only once for any particular beam. As is shown in the following section,
the effect of disregardlng the influence of longitudinal inertis may
of'ten be negligible,

Without presentatlon of details, it may be mentioned that for the
case of-a circuler cylinder, which has no shear lag, all the Aj's
except A; vanish and the frequency equations (40), (41), and (52) may
be put into closed forms identical to those given in reference k. Again,
if in the general frequency equations kg 1is set eéqual to zero, the
equations may be put into closed forms equivalent to those of refer-
ence 4 where only rotary inertis is considered.

RESULTS FOR CYLINDRICAL BEAMS OF RECTANGULAR CROSS SECTION

In order to show quantitatively the effects of shear lag, transverse
shear deformation, and longitudinsl ipertis on the natural frequencies
of hollow thin-walled cylindrical beasms, numerical calculations have been
performed for cylinders of rectangular cross section oscillating as free-
free beams. The calculations have been limited to symmetrical modes of
vibration, and consequently the frequency equation (41) is applicable.-
For rectangular cross sections the quentity Nj msy be put into closed

form as shown in the appendix, and this closed-form version of Ny was

used in the calculations. A wvalue of E/G edual to 2.65 (appropriate
for aluminum alloys) was assumed.
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The results of these calculbtions are shown in figures 2, 3, and L,
In figure 2, the ratio of the natural frequency w to the natural fre-
guency dap obtained from elementary beam theory is shown as a function
of the plan-form aspect ratio L/b for cross-sectional aspect ratios of

1.0, 3.6, and . The contribution of each of the secondary effects to
the total reduction in the natural frequency for the cross-sectional

aspect ratios §'= 3.6 and 1.0 can be seen ip figures 3 and k4, respec-

tively. The cross-sectional aspect retio of % = o corresponds to the

limiting case of a beam where the effects of transverse shear deformation
and longitudinal inertia are negligiblé and therefore the reduction in
naturael frequency is due entirely to shear lag.

The deshed lines in figures 3 and 4 show the reduction in frequency
due to the inclusion of the effect of only transverse shear deformation
as obtained from reference 4.

The long- and short-dash lines are calculated from the frequency
equation (41) with kpy = O and consequently represent the reduction

in natural frequency when both shear lag and transverse ghear deformation
are teken into account. Thus the hatched area between the dashed and

the long- and short-dash lines may be considered as showing the additional
reduction in nastural frequency when the influence of shear lag is con-
sidered. Finally, the solid lines are calculated with kgpy taken into

account, and consequently the shaded area shows the additional influence
of longitudinal 1nerties in reducing the frequency.

Examination of figures 3 and 4 and the curves for §-= o in fig-

ure 2 shows that the influence of shear lag increases as the cross-
sectional aspect ratio Iincreases; whereas the influence of transverse
shear and longitudinal inertia decreases with Increasing cross-sectional

aspect ratio. Indeed, it appears from the results for 3 = 3.6 that

for this aspect ratio the effects of longitudinal inertis may slready
be considered practically negligible.

A word of caution concerning the interpretation of figures 3 and 4
may be 1in order. Since in some cases the depth of the hatching increases
with increasing L/b, it might appeesr, at first glance, that the shear-
lag effect increases with increasing plan-form aspect ratio. However,
if the additional effects of shear lag are considered on a percentage
basis with the dashed line as a base, it will be found that shesr-lag
effects actumlly reduce in percentage with increasing L/b. A similar
criterion should be used In judging the influence of longitudinal
inertia.
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CONCLUDING REMARKS

The numerical calculations show that secondary effects have appre-
ciable influence on the natural frequencies of rectangular box beams of
uniform wall thickness. These results constitute en indication of the
probable inadequacy of elementary beam theory for the vibration analysis
of sctusl sircraft—structures of the monocogue and semimonocoque type
and emphaesize the need for practical calculatlon procedures for such
gtructures thet would take into account transverse shear deformetion,
shear lag, and, when necessary, longitudinal inertia. The general solu-
tions presented for cylinders of uniform thickness, as well as the
numerical results for rectangular box beams, should be useful in the
assessment of the accuracy of any procedure of this kind that may be
developed.

Tengley Aeronauticel Laboratory
Netional Advisory Committee for Aeronautics
Langley Field, Va.,, January 21, 1952
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APPENDIX
TRANSFORMATION OF PARAMETERS

BExpressions for AS/A, I, and K°.- If sin 6 is expanded into a

Fourier series

(=]
sin 6 = E Ap sin 2nns (A1)
n=1,2,3
the Fourler coefficlents Ap are the same as those defined 1n equa-
tion (2L4); that is,
Ap = -?—’jgsin 6 sin 21;‘5 ds (a2)

The effective shear area Ag (equation (25)) can now be written as
a function of the Fourier series expansion for sin 6 as

‘.7§ 2nns 3
Ag = t<n=lZ 5 Ap sin = )ds (A3)

With the use of the appropriste orthogonelity conditions, equa-
tion (A3) becomes, after the integration is performed,

or

As 1 2
n=1,2,3


http://www.abbottaerospace.com/technical-library

22 ' NACA TN 2682

The moment of inertia I of a cylinder is defined as (see fig. 1)

I = j;P y2t—ds - AF° (25)

where ¥ 1s the y-distance to the center of gravity of the cross section

and is given by
1Y
Jy oo
= 0

V== o (A6)
But . - A . —
s .
y = f sin @ ds (AT)
o _

or

(=]

y = E - Ap 2_:51?{(1 - cos 2n:rs> (A8)
n= 3 P

=)

and, consequently,

00

- iy
y = Ap m— ) (49)
n;;§;;3 T : I

With the use of equations (A8) and (A9), the—expression for I in
equation (A5) becomes

2 = A 2
= A’—;z (A10)
83'( n_l’ 3 n

With the series expansion for I in equatlon (A10), the parsmeter K2
as defined in equastion (29), becomes

2
K2=%§;Sn=z & - (a11)
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Transformation of expression for Nj.- In equation (37) N3 was
defined as

<0

2, 2

Ny = - x2 & Z -t
17 8k 16kg? 8 pf7,3 kgPBy2 + KPn2 2

kg (a12)

The infinite serles that appears in this expression converges as

An2 and therefore is a relatively slowly converging series. In order
to increase its rate of convergence, the following transformations are
made.

By adding and subtracting An2/K? inside the infinite summation in
equation (A12) and using equetion (A4), the equation simplifies to

2.2 = A2

Ny By
16 -As n=l,2,3 kSEBiE + 1(2112

By adding and subtracting A,.2[K2n2 inside the infinite summa-
n

tion in equation (Al3) and using equation (All), the expression for Ny
can be transformed to

124 _ 5 122 B, 2 i An2 12
Ny = =45~ B4 - - (A1k)
17732 71 " Tg As B n=$;3,3 K2n? (ks®B12 + K2n?) 2 §:

The infinite series in equation (Alk) converges as A %/nh and

therefore is considerably more quickly convergent than the series in equa-
tions (Al2) and (A13), which converge as Ap° and A, /n2, respectively.

Closed form of Ny for cylindrical beams of rectangular cross

section.- For & cylindrical beam of rectangular cross section, with
dimensions as shown in figure 2, it 1s possible to write the expression
for Nji in a closed form. The parameters for such a cross section
become
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As=)-l-at B

A = 4(a + b)t = pt

A, =0 (n even) r (A15)
= ;['—n cos ar;“b (n odd) |

With equetions (Al5) the parameter N; shown in equation (Al2)
becomes

cos
122 1% p P L2 (AL6)
3k32 ksz a ' ‘ 2 B

or

B’ z *
L5 5 02 4
o o5 Jnnb
E P _ 12
2, . 5 kg (A1T)
n=1,3,5 l—:3—2 By + n
X

Each of the infinite summations in equation (Al7) can now be written

in closed form as shown in reference 5, and the closed expression for Ny
then becomes '

¥ (QE -
___12_;: X P_SinhEKBip l)

N =l -
17 aig? KkgB; &

n kg *
cosh = X _Bi

kg 1
x5 - =2 : A18
tanhE_KBi ng ( )

L]
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(a) Typical cross section, (b) Sign conventions.
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(c) Cantilever beam. (d) Free-free beam.

Figure |.— Coordinate systems and sign conventions.
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Figure 2— Change in the natural frequency of a symmetrically vibrating free-free cyiinder due fo the inclusion of secondary
effects,
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Figure 3.— Contribution of transverse shear deformaiion, shear lag, and
tongitudinat inertia to the reduction in natural frequency for -%-- 3.6.
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Figure 4.— Contribution of transverse shear deformation, shear lag, and
longitudinal inertia to the reduction in natura! frequency for < - LO.
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