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SUMMARY

The Kérmin-Pohlhausen method is extended primarily to sixth-degree
velocity profiles for determining the characteristics of the compredsible
laminar boundary layer over an adiabatic wall in the presence of an gxisl
pressure gradient., It is assumed that the Prandtl number is unity and
that the coefficient of viscosity varies linearly with the temperature.

A general spproximate solution which permits a rapid determination of
the boundary-layer characteristics for any gilven free-stream Mach number
and given velocity distribution st the outer edge of the boundary layer
is obtained. Numericsl examples indicate that this solution will in
practice lead to results of satisfactory accuracy, including the critical
Reynolds number for stability. For the special purpose of calculating
the location of the separation point in an adverse pressure gradient, a
short and simple method, based on the use of a seventh-degree velocity
profile, is derived. The numerical example given here indicates that
this method should in practice lead to sufficiently accurate results.
For the special case of flow near a forward stagnation point it is shown
that the Kédrmdn-Pohlhausen method with the usual fourth-degree profiles
leads to results of adequete accuracy, even for the critical Reynolds
number,

INTRODUCTION

In reference 1 it was concluded that from the viewpoint of both
accuracy and convenlence of calculation a suitable method for deter-
mining. the characteristics of a compressible laminar boundary layer is
that based on an extension of the Kdrmén-Pohlhausen integral method to
velocity profiles of higher degree than the fourth, especially sixth
degree. An ordinary differential equation for general types of flow was
derived, but only the flow over a flat plate at zero incidence was
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investigated in detail. The purpose of the present investigation is to
apply explicitly this method to flows with axisl pressure gradients.

The ordinary differential equation derived in reference 1 1s con-
verted here into a convenient nondimensional form, and a genersl approxil-
mate solution of this equation in closed form is then derived. By means

of this solution the physically significant boundary-layer characteristics

of the flow over an insulated wall csn be calculated fairly easily and
quickly for any given free-stresm Mach number and for any given velocity
distribution outside of the boundaery layer. For particular accuracy in
determinstion of the separation point in an adverse pressure gradient,

a simple method based on the use of a seventh-degree velocity profile,
which, in accordance with a suggestion of Timmsn (reference 2), is made
to satisfy an additional condition at the separation point, is derived.

For illustrative purposes, two simple but basically different types
of flow are treated in deteil. In the first exsmple flow with a linearly
diminishing velocity at the outer edge of the boundery layer 1s con-
sidered. Such a flow is of particular interest here because it repre-
sents the simplest case of an adverse pressiure gradient and because the
usual application of the Kdrmén-Pohlhausen method with fourth-degree
velocity profiles has been known to lead to.highly inaccurate results
in such cases (cf., e.g., reference 3). The skin friction, velocity
profiles, and critical Reynolds number are talculated for several Mach
numbers in this case by measns of the general solution derived here.
These results are then compared with known series solutions of the
partial differential equations (references 4 and 5) for this case; the
agreement 1s shown to be satisfactory for practical purposes. This
sgreement includes critical Reynolds numbers for laminsr-flow stability
and location of the separation point. In connection with the latter it
is significent to note that for zero Mach number the KArmén-Pohlhsusen
method with fourth-degree veloclty profiles leads to an error of sbout
30 percent in predicting the separstion point, while the use of a sixth-
degree profile reduces this error to 15 percent, and the special use of
a seventh-degree profile for this (end only this) purpose practically
eliminates the error for all Mach numbers (0 to 3) considered numeri-
cally here.

The second example treated is the flow near a forward stagnstion
point, This case is of interest not only because it may represent the
subsonic flow over a blunt nose but also because it had already been
found by Schlichting and Ulrich (reference 6) that in such a case no
physically significant values can be found for the boundary-layer thick-
ness when sixth-degree profiles are used, It is shown in the present _

investigation that although this is, strictly spesking, true, an approxi-

mate value for the thickness is nevertheless obtainable. It is also
shown thet in this case the ususl type of application of the Kdrmén-
Pohlhausen method with fourth-degree velocity profiles leads not only

. i
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to real values of the boundary-layer thickness but also to results of
satisfactory asccuracy, even for the critical Reynolds number. Conse-
quently, in such a case fourth-degree profiles may be used with confi-
dence in the accuracy of the results to be obtained.

As in reference 1, it has been assumed that the viscosity coeffi-
cient is directly proportional to the absolute temperature, and that,
following a suggestion of Chepman (references T and 8), the constant of

" proportionelity may be chosen so that §utherland‘s relation 1s exactly
satisfied at the wall. This introduces considerable mathematical sim-
plification gnd will lead in practice to fairly accurate results at
least for lower Mach numbers (below 5). For the same reasons it has
also been assumed that the Prandtl number is unity, and this may be
viewed as an spproximation for air, where the Prandtl number is more
neerly O.72.

This work, carried out at the Polytechnic Institute of Brooklyn
Aeronautical Leboratories, was sponsored by and conducted with the
finsncial assistance of the Ngtional Advisory Committee for Aeronautics.

SYMBOILS
as coefficient of 72 in velocity profile; also given
' by equation (20)
as constant "average" value of ap
b constant in given velocity distribution ul/ubo(g) s
equations (27a) and (30a)
C factor of proportionality in equation pfu, = C(T/Tm)
Cr skin-friction coefficient ((u du/dy) O/(pmum2/2))
CpsCy specific heats at constant pressure and gt constant

volume, respectively

F1,Fp,F3 integrals defined by equations (12)

Fls:F231F3s values of F;, Fop, and F3 based on seventh-dggree
profiles; given by equations (B2)
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constant defining strength of a shock wave in flow
outside of boundary layer; given by equation (19e)

integrating factor of equation (21)

constant defined by equetions (18a) and (18b)
thermal conductivity of fluid

characteristic ldngth; see equations (13)

characteristic length in stability calculations
(appendix C)

Mach nunber
pressure
Reynolds number

free-stream Reynolds number (pmuéL/um)

Sutherlend's constent, defined by equation (8); for
air, S = 216° R

absolute temperature
transformetion varisble defined by equation (10)
velocity components in x- and y-directions, respectively

coordinates parallel and perpendicular to surface,
respectively

quentities defined by equations (C2)}
ratio of specific heats (cp/cv); for air, 7 = 1.k
physical boundary-layer thickness in xy-plane

boundary-layer thickness in xt-plane
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Ag value of A based on seventh-degree profiles and used
only for determining separation point

i coefficient of viscosity

v kinematic viscosity (u/p)

g dimensionless distance slong well (x/L)

p mass density )

T dimensionless varigble (t/St)

Subscripts

o] values at wall, for example, T,

1 local values at outer edge of boundary layer; for
exesmple, M;, T;, and uy

a initial value in region of adverse pressure gradient
(eppendix B)

b values immediately behind a shock wave at leading edge

¢ values at critical point for stability (eppendix C)

8 value based on seventh-degree profiles

© values in undisturbed free stream; for example,

Mps Tes and u,

A prime (') denotes at first differentistion with respect to x.
In equation (14) and thereafter in the main text, a prime denotes dif-
ferentiation with respect to £. In appendix C, it denotes differen-
tiastion with respect to y/1.

BASIC EQUATIONS
Two-Dimensionsl Compressible Flow
The following equaetions chsaracterize the steady two-dimensional

compressible flow of a gas in the laminar boundary layer over a surface
of large radius of curvature compared with the boundary-layer thickness:

3 du .3 du
pu <=+ pv i Pyt 4 ay(u ay) (1)
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oT oT . ‘Q {, or du\@
pucp 5= + pvey 5 = =pjuyu,tu + S;(F §§> + p<§§) (2)
) ) B
-B-J_c(pu) + S;(pv) = 0 (3)
p _T1
I = = L
== ()

Equations (1) and (2) are the momentum end energy equations, respectively.
The equation of continuity is given by expression (3), while equation (4)
follows from the ideal gas law. In equations (1), (2), and (4) account
has been teken of the well-known implication of Prandtl's basic boundary-
layer assumption that the pressure gradient Bp/ay across the boundary-
layer thickness is zero, Thus the axisl pressure gradient can be con-
sldered as given by the Bernoulll equation

dp _ .
S - P! | | (5)

where the subscript 1 refers to the potential flow over the surface
streamline outside of the boundary layer. This potential flow is '
gssumed to be known.

For a Prandtl number pcp/k of unity and zero heat transfer at the
vall (OT/3y = 0 at y = 0) it can be shown, by eliminating plulul'
from equations (1) and (2), that

ul

- + cpl = Constant : (6)

Equation (6) can be expressed in the following nondimensional form:

¥ 1 1]2
T — . 2
= + M - — 6

«
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Thus the energy equation (2) can for this case be replaced by equa-~
tion (6e), which gives the temperature explicitly as a simple function
of the velocity. This case of unit Prandtl number and zero heat trans-
fer is the one which will be treated in the present analysis.

It will be assumed here, as in references 1, 7, and 8, that the
viscosity coefficient cen be expressed as a linegr function of the
temperature in the form

B _oT
™ T (7)

where C 1is s constant determined so that relation (7) will give the
same value of p a8t the wall as the Sutherland viscosity-temperature
relation. The latter relstion is generally assumed to be accurate at
least below the hypersonic range. Thus

o (T_o)l/E 1+ (sz,) (8)

To)  (TolTw) + (8/T.)

[>2]

where. S 1is a constant which for air has the value S = 216° R. From
equation (6a) it follows that the wall temperature T, as a function

of the free-stream Mach number M, will be:

H

0 -1+ (—7—'—3)345 (9)

T,

Hence the constant C will be & function of the Mach number M, and
the free-stream temperature T_.

By integrating equation (1) with respect to¢ y across the boundary-
layer thickness y =0 to y =8 and introducing the Dorodnitzyn veri-
gble t defined by the transformstion

t
y:f A dt (10)
o T1
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the following equation, essentislly the Kﬁrmén integral momentum equa-
tion for compressible laminar boundary layérs, cen be derived (cf. ref-
erence 1, equation (24)):

1 2\1 .2\t s 2 _ HoC Ty
2 Fl(St ) + Erl' + Fl(loge N ) - F2(loge ul):' 8,° = Fy o T
(11)
Here
1 )
- 26 ) ar
o u 3
1 u T
F2 =‘/; (1—11- - ﬁ) dr ?‘ (12)
- |9 (11)
P, = | & [ L
3 [BT ul:lo _

and By, the value of t when y = B, is the boundary-layer thickness

in the xt-plane, while T = t/5¢.

Introducing the dimensionless varigbles

1 B¢ \2
— R [t

Ll

A and £ defined by

(13)

where L 1s a characteristic length sand R, = pwumL/u°° is the free-
stream Reynolds number, equation (11) can be written as

Fo

Fy

F 1 t
1. n
Fl ul

+

b7

=2 =2

W PL T Fy

(14)

where the primes henceforth denote differentiation with respect to &.
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Velocity Pfofiles

If a definite form of profile for u/u; as & function of T is

assumed, then equation (14) becomes an ordinary differential equstion
in x(gs. In the present analysis, sixth-degree profiles will be
assumed for most cases and will be chosen to satisfy appropriate bound-
ary conditions at the wall and at the outer edge of the boundary layer.
This is in accordance with the results of reference 1, where it was
concluded that, with the possible exceptions of determination of sep-
aration point in an adverse pressure gradient and of calculation of the
boundary layer in the vicinity of a stagnation point, the use of sixth-
degree profiles should for practical purposes lead to sufficiently accu-
rate determination of laminsr-boundery-layer characteristics, including
critical Reynolds number for stability. Sixth-degree profiles have glso
been applied recently by Weil (reference 9).

The following boundary conditions, expressed in the Xt-plane, will
be satisfied:

At T = 0 =

95&3[3;2 =0 r (15)

At T = 1:

B(u/ul) _ 82(u/ul) - 83(u/u1) =0
a'r - 672 aT3 -

It should be noted that the second condition at the wall (1t = 0) in equa-
tions (15) follows in genersl from the original psrtial differentiasl equa-
tion (1) in conjunction with equation (7). The third condition at the
wall follows from differentistion of equation (1) with respect to t, in
conjunction with the condition of zero heat transfer ((BT/BT)O = O) at the
wall. The second and third conditions of equations (15), moreover, are
valid only for zero normsl velocity at the wall.
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The sixth-degree polynomial satisfying conditions (15) is found
to be

ﬁ% = 2(} - %?)T + a272 = (5 + 2a2)7h + 2(3 + a2)75 - (2 + % 32)76 (16)

where:

u,' T. p 2
oy =22 To Pl (an

Substitution of equation (16) into equations (12) leads to the
following explicit expressions for Fj, Fp, and F3 in terms of au:

o n

F. = 0.1093 + 0.0021la, - 0.000622a

1 2 o« 2
Fo = -0.2857 - 0.0190585 - 1— Iu 2(0 3950 +

2-"‘- a. 2 2 l .

< (18)
0.02116ap - 0.000622s,2)
= 2 - 0,4000

F3 = 2 - 0.40008; g

By substituting expressions (18) and (17) into equation (1k4), the latter
becomes en ordinsry differential equaetion of the first order in k(g).

The quantities with subscript 1 may be regarded as given functions
of ¢t from the potential flow outside of the boundary layer. From the

relstion (u2/2) + cpT = Conmstant, which is valid outside of the boundary

leyer even scross a shock wave, it follows that

T1 y - 1\, 2 u®
-T——l+(———2 )Mw<—;1-—2' (193)

0o
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Moreover, the local Mach number M; can be expressed by:

o2l

If there are no shock waves, the flow outside of the boundary layer may
be considered as isentropic, so that the relstion

5 7 (19¢)

[+ [>¢]

o1 _ (T_1>l/(7-1>

is valid, In the presence of a shock wave, the flow may be considered
as isentropic before and behind, though not across, the wave, In that
case, equation (19c) may be modlfied to

5 - (194)

0 =]

PL _ G(Tl>l/(7_l)

wvhere G 1is & constant given by

(@R 150

while pp end Ty are the values of p gnd T immediately behind the
wave, end p; and T; refer to the region behind the wave at the outer

edge of the boundary layer. Relastion (19c) can be considered as a special
case of relation (l9d), namely the case of G = 1, The ratios pb/p°° and

Tb/T°° may be considered as known from the given flow outside of the bound-

ary leyer.

By the use of equstioms (9), (19a), and (19d) the expression (17) for
ano can be written, more explicitly, as

-, 3-27

P
A U y -1 2) y - 1) > wy2\|”
=2 = g1 + L—=—= Lo = 1 - — 20
an 5 o ( + > Mo )1+ < 5 My um2 (20)
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GENERAL SOLUTIONS OF EQUATIONS

For a given poterntial-flow velocity distribution ullu (g) and
Mach number M_, the differentisl equation (14) can be solved for A(§)

without any basic difficulties by well-known numerical methods, such

as Adam's method or the Runge-Kutta method (ch, e.8., reference 10).
Such a straightforward procedure may 1n practice nevertheless be tedious.
A relatively simple genersl approximaste solution of equation (1k) will
therefore be derived in this section. This solution will be found to

be sufficiently accurate for most practical purposes.

General Approximate Solution

The solutlon to be derived here will be based on the approximeting
assumption thaet in the expressions for F; and Fp the quantities ap

and a22 as given by equation (20) may be replaced by constant "average"

values Eé and a22 for the flow. This assumption is Justified by the
fact that in expressions (18) for F; and F, the s, terms are rela-
tlvely small; hence even large errors in the evalustion of s will lead
to only smell errors in the evalustion of Fl and Fo.

By replacing ap eand a22 by constant average values a2 and
22 in expressions (18) for Fy and Fp, the quantity Fl becomes &
constant, while F, can be written as

Fy = -0.2857 - 0.01905a, - (7 > l)KM12 (18s)

where K 1is a constant given by

K = 0.3950 + 0.021168, - 0.0006228,° ELY
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By use of the relation

T -
_o_=]:+(')'21>M12

which follows from equation (62), and by insertion of expression (18a)
for F,, expression (18) for F3, and expression (17) for a, in the

right side of equation (14), the latter equation can be written in the
form:

t u t
RPN fus . 1 PO -1-(0.08571 + 0.019058,) +
PL Y P
(7’1) AT V-l G e - (21)
2 5/F] + F1 U1 P] Te

Equation (21) is now a linesr differential equation of the first
order in A. By use of relatioms (19a), (19b), end (19d) it will be
found that an integrsting factor I of equation (21) is:

uco Tco

. (ul)4+ -F?i(o.08571+o.0190552)'(,f_l >%_ F1I (k-3)

The solution of equation (21) satisfying the boundary comdition A = O
or some finite velue (in the case of a stagnation point at & = 0) at
€ =0 is then:

2 1 —
f& (u1)3+. 31—1(0-08571“0-0190532)(11)7%' E(o.195o+o.023.1652-0.00062&32 )
A = U0

E: T, ag
1 h-k——(0.0857l+0.01905§ -----(o.1950+o.02116§ -o.oooGzéEEE)
<El) Fy T1>7-1 Fq 2
U T

where Tl/ T, 1s obtained from equation (19a).
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For a given velocity distribution ul[uw(g), the effect of Mach

number M, 1is given by the Tlle terms in equation (22) and, in the

case of a shock wave at the leading edge, also by the constant G
(cf. equation (19e)). If the flow over a given object is considered,
however, then the Mech number effect will be contained also in the
ul[u°° terms, since the velocity distribution ulluo° will then be a

function of Msch number.

The integral in equation (22) can in practice be evaluated without
difficulty by numerical mesns such as Simpson's rule (cf., for example,
reference 10). An average value an for.___a2 can, in any glven csase,

be chosen by considering equation (20).

Boundary-Layer Chsaracteristics

Once ME) has been determined, the boundary-layer characteristics
follow from the equations developed here. Thus the local skin-friction
coefficient Cp will be:d

anp
(1 du/dy) uq T (1 - ")
Dmuwg/ 2 oo Too \p"_

The physical boundary-layer thickness 1n the xy-plsne can be determined
from trensformation (10), and an explicit expression for it in terms of
A 1s given in appendix A.

The velocity profiles in the xt-plane are given by equation (16).
These can be converted to the physicel xy-plane by means of transforma-
tion (10). An explicit expression for y in terms of t 1is given in
appendix A, The temperature profiles follow from the velocity profiles
by mesns of equation (6a). It should be noted, however, that for most
practical purposes it is not actually necessary to determine the profiles
in the xy-plene., Skin friction (cf. equetion {23)) and separation point,

lIt is demonstrated subsequently that the flow near s stasgnstion
point is better represented by a fourth-degree velocity profile than by
a sixth-degree profile. 1In such a region the expression for the skin-

a
friction coefficient is altered in that the term ( - ??) is replaced

an
b 1l ~ —
y( 6
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for example, can be determined directly from results in the xt-plane,
while stability calculations (cf. appendix C) can be performed without
use of the profiles in the xy-plemne,

The equations developed thus far should be adequate for the prac-
tical determination of boundary-layer characteristics in most cases.
There are, however, two important exceptions. These are: (a) The loca-
tion of the separation point in an adverse pressure gradient and (b) the
flow in the vicinity of a forward stagnation point. Item (a) is treated
in the immediately succeeding paragraph, while item (b) is investigated
in a later separate section.

Determination of Separation Point

Although the equations thus far developed will ususlly be found to
lead to sufficiently accurate results for most boundsry-layer character-
istics even in flows with adverse pressure gradients, it will be found
that the location of separation points will still be predicted with
appreciable error. This error can be greatly diminished by a simple
modification of the preceding equations.

For the purpose of determining the separstion point, velocity pro-
files can be chosen which, in sddition to satisfying boundsry condi-
tions.(15), satisfy a further boundary condition at the separstion point,
The additional boundary condition is obtained by differentisting equa-
tion (1) twice with respect to t, and by then tasking values at the wall
at the point where Ou/dt = O. In this manner, with the use of equa-
tion (6a), the condition

S5
__ﬁgfgil = 0 (2k)

is obtained,

Condition (2k4) is strictly valid only at the separation point (where
du/dy = 0). Nevertheless, by using this condition for the entire flow,
it seems plausible that the locgtion of the sepsration point in any given
case could be predicted with improved accuracy, since the value of the
dimensionless boundary-layer thickness A may be expected to be thereby
more accuretely determined at the separation point. This hss already
been shown by an example for incompressible flow in reference 2 and will
be further shown by examples (table I) for compressible flow in the present
analysis,
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A seventh-degree polynomiasl in T satisfying conditions (15) and
(24) can be chosen. By proceeding in the same menner as (previously)
with the sixth-degree profiles, the following solution Ag for A(t),

analogous to equation (22), is obtained (e detailed derivation is given

in eppendix B):
ﬁ& (u_l)6'128<;l)0'9366 ae
_32.83 o ®

8 ¢ fu \[-10 Ti 2.137
=)@

The value of 7 = 1.4 has been used in equation (25). In case the
region of adverse pressure gradient follows a region of favorable pres-
sure gradient, and hence starts at some point behind the leading eige,
then equation (25) should be modified to equation (B4) in appendix B,
Separetion will occur at the point where (see appendix B):

(25)

7(_ 8 §
-3
A 1+ (7 > l)M 2

The location of the separation point is thus determined at the
value of & for which equations (25) (or (B4)) and (26) give the
seme value of Ag. For any glven adverse pressure gradient (negative

ul'(g)) end free-streem Mech number M , the function Ag(&) can be

plotted against ~ ¢ in accordance with both equation (25) (or equa~-
tion (Bl4)) end equation (26) in the (anticipeted) vicinity of the
separstion point., The point of intersection of these two curves is

theh the separstion 1.7oin‘c.2 It should be emphasized that equation (25)

2This point will, according to equations (25) and (26), be inde-
pendent of G; hence one may put G = 1 for this purpose., This does
not imply thet the separstlon point will actually be unaffected by &
shock wave at the leading edge, since the values of ul/u“ﬁg) and

u'fu (&) may still contain the effect of such a wave,
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is to be used only for determination of separation point. For other
purposes, such as determinetion of skin-friction distribution or of
critical Reynolds number, equation (22) and its related equations are
to be used, even for a region in an adverse pressure gradient, unless
properties close to or at the separation point are sought.

An application of the generel solutions developed here, as well as
s check on the accuracy of results obtained from them, will now be given
by means of examples based on two different types of flow outside of the

boundary layer.

FIOW WITH LINEARLY DIMINISHING VELOCITY
The case -

ke A (27a)
uCD

where b 1s a positive constant, is now considered. This represents
the simplest type of adverse pressure gradient. By introducing the
linear chsnge of varisbles

E’l = b§
(28)
A1 = bA

equation (1k) remains unchanged, except that & 1s replaced by ¢§;
and A, by Aj. Moreover, ullu°° now becones

w
-u—=l- & (27b)

-]

Thus the constant b no longer appears in the equations, Consequently,
in this case it is actually necessary to solve equation (14) only for
b = 1, since for any other value of b 1t is necessary only to replace 3
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by &3 and A by A in the solution obteined for b = 1. The
present exsmple, therefore, will treat the case

bt R (27c)

B

A constant average value @y for a, can be chosen by noting that
in this case a, will vary from O (at & =0) to 5 (at the separation
point, where, according to equation (16), 1 - (82l5) = O). Consequently

the value Eé = 2,5 may be chosen. Moreover, the value aeé 12,5 will

be used here. With these values, the approximaste solution (22) for the
case represented by equation (27c) without a shock wave (G = 1} at the
leading edge becomes:

1
-1 L
37.5 n5'5°E P T n2Z|5/ an

A = S (29a)

_ 2.
n6-5°[1 + (7 . l)Mwe(l - nzﬂ "

where 1 =1 - £, For zero Mach number, that is, M_= 0, equetion (29a)

0
reduces to:

=561 - 076 ] (290)

The skin friction follows from equations (23) and (20), while the
velocity profiles can be obtained, as previously explained, by means
of equations (16) and (A2) (eppendix A). For M_ = 1 and 3, the inte-
gration in equastion (29a) was performed by expending the integrand in
a series according to the binomial theorem., The results for A(E),
skin friction st the wall, and velocity profiles are shown in figures 1,
2, and 3, respectively, with M, =0, 1, and 3.
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The critical Reynolds number for the stability of the laminar
boundary layer in the presence of small disturbances was calculated
here on the basis of criteria developed by Lin and lees (references 11
and 12). The method of calculation is outlined in appendix C, and the
results for the critical Reynolds number pwumL/p°° at the station

t = 0.0496 are given in teble II for M, = O, 1, and 3. By comparing
the results for zero Mach number with those for the critical Reynolds
number (1,500,000) at the same station for the flow over a flat plate
based on the solutions of reference 8 (see also reference 1), it is
seen that the adverse pressure gradient is here highly destabilizing.
Moreover, it can also be seen from table II that higher Mach numbers
greatly destabilize the flow over an adiabatic wall.

As a check on the accuracy of approximate solution (22) to differ-
ential equation (14), equation (1k) was solved exactly for this case
for M_ =0 and numerically by Adem's parabolic method (reference 13)
with increments of At = 0.01 for M, # 0. The solutions thus obtained

for A(&) and for the profiles sre shown in figures 1 and 3, respec-
tively. The agreement between these solutions and those bassed on equa-
tion (22) is seen from these figures to be satisfactory for practical
purposes. As a further check, the critical Reynolds number at £ = 0.0496
wae calculated for M, = O by using the exact solution of equation (1L4).
Teble II indicates satisfactory agreement between this result

((Rm)c = 380,000) and that ((Rm)c = 330,000) based on equation (22).

It is thus indicated that equation (22) is a satisfactory approxi-
mation to an exact solution of differential equastion (14). It is also
desireble to check whether an exact solution of equation (14), or
approximation (22), is a satisfactory approximation to an exact solu-
tion of the original partisl differential equation (1). This would con-
stitute a check on the practical réliability of the basic method used
here, nsmely the extension of the Kdrmdn-Pohlhausen method to sixth-
degree profiles. Such a check can be made by comparing the results
obtalned by means of equations (1k) and (22) with the results of Howarth
(reference 4) for zero Mach number, based on an accurate solution of the
original partial differential equations (1) and (3). Such a comparison
1s shown in figures 2 and 3 for skin friction end velocity profiles,
respectively, and in table IT for critical Reynolds number. In a1l
cases the comparison indicates that the solutions obtalned by means of
the equations developed here give sufficiently religble resulis for
practical purposes, .

The separation point is determined by equating the right sides of
equations (25) and (26). In the present case the point at which these
right sides are equal was determined by plotting Xg(é) according to
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both equations (25) and (26) on the same sheet in the vicinity of y
¢ = 0.14 for M, = 0O and 1 and & = 0.10 for M, = 3. These are the

vicinities in which, according to figure 1 (based on sixth-degree, not
seventh-degree, profiles), separation might be expected to occur. The
separstion points determined by this means for M, =0, 1, and 3 are
shown 1in table I, together with the results of Stewartson (reference 5).
The sgreement between these two sets of results is seen to be excep-
tionally good.

For purposes of comparison, the separation point was also deter-
mined by the use of equation (22) and by means of the classical Kérmén-
Pohlhsusen method based on fourth-degree profiles, the latter for zero
Mach number only. The results are shown in table I. Although the use
of the sixth-degree profiles (equation (22)) gives a more accurate
location of the separation point than the fourth-degree profiles, the
special use of the seventh degree (equations (25) and (26)) for this
purpose gives here virtuelly the exact wvalues.

Tt msy be asked whether the seventh-, instead of the sixth-degree
velocity profile could be used for determining the other boundary-layer
characteristics, in addition to the separation point. Consequently, the
skin friction and velocity profiles for the present case were determined
on the basis of the seventh-degree velocity profile, in conjunction with
equation (14) (cf. appendix B). It was found that the results, even at
a station failrly close to the separation point, did not agree so closely
with Howarth's solution (reference 4) as those based on the sixth-degree
profile, It is therefore concluded that the seventh-degree profile
should be used only as & means of determining the separation point in
regions of adverse pressure gradients and that otherwise (except for
flow near s stagnation point) the equations developed on the basis of
the sixth-degree velocity profile should be used.

FLOW NEAR A FORWARD STAGNATION POINT

The case

Loy ' (308)
%,

represents physically the flow in the vicinity of a forward stegnation
point, such as over the leasding edge of a Rlunt object in subsonic flow.
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As in the preceding case (equation (27a)) the constant b here can be
eliminated by means of trsnsformations (28). Hence only the case

ey (300)

need be trested.

For zero Mach number (M“,= O) an exact solution of ordinary differ-

ential equation (14) in the case represented by equation (30b) is of the
form X = Constant. This can also be seen from solution (22) for this

case, with Eé = an and a22 = a22, where according to equation (20)
(with Me=0, G=1, and up'fu = 1) ap = -»/2. From equation (22),
in fact, the following cubic in A 1is obtained:

£(0) = 23 + 37.433% - 979.4A + 6435 = O (31)

By plotting £(A) against A, it is found that there are no physi-
cally significant roots of equation (31). Such a result was already
obtained by Schlichting and Ulrich (reference 6). It will be found,
however, that the curve f(A) against A in the physically significant
region comes relatively close to the A-axis at a point when the curve
haes a local maximum value. If the value of A at this point is taken
for purposes of an approximation, then

A= 9,481 (32)

Since the spproximetion (32) does not appear to be satisfying in
principle, the use of fourth-degree velocity profiles will be inves-
tigated for this case. The fourth-degree polynomial satisfying all the
boundary conditions in equations (15) with the exception of the two con-

ditions involving the third derivative of velocity (33(u/ul) / a3 = o
at 7=0 and at T = l) is
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u 8-2 2 . . an
— = (2 - —3—) + a7t - (2 + az)'r3 + (l + -3—)-rh' (33)

With the profile (33), equation (14) remsins valid, but the F's as
defined by equestions (12) sre now given explicitly by the following
expressions:

Fy = 0.1175 + 0.00212a5 - 0.000Lk41a,2 B
Fp = -0.3000 - 0,01667ap - L™ Ml2(o.u175 +
¢ (34)
0.01878a, - 0,000kk1a,?)
Fgy = 2 - 0.3333s, -

Expressions (34) replace, in this case, expressions (18) based on sixth-
degree profiles. For the case (30b) with M_ = O, equation (1) leads

to a cubic in A whose physically significant root is now found to be
(cf. also reference 3)

A =T.052 : - (35)

To compare the accuracy of solutidn (32), based on sixth-degree
velocity profiles, with that of solution (35), the skin friction, veloc-
ity profiles, and critical Reynolds number for leminar-flow stability
have been calculsted on the basis of both of the solutions., The results
thus obtained, together with a comparison with results of an exsct solu-
tion (reference 14) for this case, are shown in tables III and IV and in
figure 4, From these comparisons it 1s seen that the solution based on
fourth-degree profiles leads 1n this case 1o more accurste results than
that based on sixth-degree profiles for the boundary-leyer chesracter-
istics considered, including the criticel Reynolds number. It may there-
fore be concluded that for a stagnation-flow case represented by equs-
tions (30a) and (30b), a satisfactory solution for practical purposes
can be obtained by means of equatioms (33), (34), and (35) based on
fourth-degree velocity profiles.
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For M_ # 0, en approximste solution of equation (14%) quite similar

to equation (22) can be obtained for the present case. Using expres-
sions (3L4) and putting ul/um = £ 1in accordance with equation (30b),

the following approximate solution is thus obtained:

2 1 _ —
N £ 3+E(o.1333+o.01667§2)<,l._l )7%- F.l_(o.2508+o.01.87832-0.ooolmla2 ) "
FlG‘ Tm .
= ; — (36)
2 _1 =
§h+ F—l(o.1333+0.01667§2) <T_1 )-7_—1 -E(o.z5oa+o.01878a2-o.oook4152 )
T

where F; 1s now given by equation (34). At the leading edge (& = O)
the value Ay of A will be, according to équation (36),

r-2
- -1
(1 + 7 - - = lee)y

(0.1333 + 0.01667a, + 21?1)

Ao = (36a)

(o RV

As a numerical exemple, the case M _= 1 was calculated by means

of equations (36) and (36a), essuming &, = -4.18 and a22 = 20.1. The

results for A(£), skin friction, and velocity profiles are shown in fig-
ures 5, 6, and 7, together with the results for M_ = O.

CONCLUSIONS

From the foregoing analysis, based on an extension of the Karmén-
Pohlhausen method primarily to sixth-degree velocity profiles for deter-
mining laminar-boundesry-layer characteristics in the compressible flow
over an adigbatic wall in the presence of an axial pressure gradient,
the following main conclusions cen be drawn.

1. For a given free-stream Mach number and a given velocity distri-
bution outside of the boundary layer, a relatively simple general spproxi-
mate solution to the boundary-layer equetions has been derived for a
Prandtl number of unity and for a linesr relation between the viscosity
coefficient and the temperature. This solution not only is convenient
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to apply but slso leads to results which will be sufficiently accursate
for most practical purposes, including determination of critical Reynolds
number,

2. For the particular purpose of determining the location of the
separetion point in a region of sdverse pressure gredient, a relatively
quick and simple method has been given here, based on the use of seventh-~
degree velocity profiles. The numerical example indicated that the
results thus obtained should in general be quite accurste,

3 In the speclal case of flow near a forward stagnation point, the
Kfrmén-Pohlhausen method with fourth-degree velocity profiles gives
results of very satisfactory accuracy, even for the critical Reynolds
number,

4, The numerical exsmples given here illustrate the destebilizing
influences of an adverse pressure gradient and of a Mach number grester

than zero,

Polytechnic Institute of Brocklyn
Brooklyn, N. Y., May 28, 1951
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APPENDIX A
PHYSTCAL BOUNDARY-IAYER THICKNESS

Results in the xt-plasne can be transformed into the physical
Xy-plane by means of relation (10). Thus

y/8¢ = J;T' (T/Tl) dr (A1)

By inserting velocity profile (16) and equations (19a) and (19b) into
expression (6a) for (T[Tl), equation (Al) yields:

2

Uq Uy 2

SL=T—%1M°°2 (J'/ ) 2{—T+&<L—a—2>'r3+
t 1+L_:;__£M__2<l_‘_ll§> 3 2,

00

%(3 + 82) (2 + % 82> 2. %(2 + —g- ag>21’13} : (a2)
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After B8i (&) has been obtained, the point ¢,y in the physical plene

corresponding to any given point £,T in the mathemstical plane can be
directly determined by means of egquation (A2).

The boundary-layer thickness & i1in the physical plasne is the wvalue
of y at which 7 = 1. Hence, by putting T =1 in equation (A2), the
following explicit expression is obtained for the boundary-layer
thickness:

00

5o, (0.3950 + 0.021168, - 0.0006228,2)  (a3)
7 -1ly2f; _ T

(7 2 1) szc_l)a

u
]
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APPENDIX B
DETERMINATION OF SEPARATION POINT

A seventh-degree-polynomial velocity profile satisfying condi-
tion (2L4) in addition to conditioms (15) is

u 7 & 2
— =+ - Z)T + a7 -

where as, is given by equation (20). With the profile (Bl), the F's

as defined by equations (12) become (= subscript s is used for the
present results to distinguish them from the corresponding results based
on sixth-degree profiles):

(21 + 10a2)T5 + (7 + 3a2)76 - (g + a2)T7 (B1)

=l

-
F,, = 0.1156 + 0.00253s, - 0.00145ka 2
= -0.02976 0.3125 - 2= w.2(0. 128
Fzs—"n297&2- o3 5"' 2 l - l+
S (B2)
0.03229a,, - 0.001)-|-5a22)
Fag = 1.7500 - 0.50008, )

t

The sepsration point will be loceted where [B(u/ul) / a{]o = 0; 1t

therefore follows from equation (Bl) thet laminsr-flow separation will
occur at the point where a5, = 3.5. By using expressions (B2) and

assuming, es in the section entitled "General Approximate Solutions,"
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thet in the expressions for Fjg and Fpg -the quantitlies a, and 322

mey, as an approximation, be replaced by constant values &, and a22,
the following spproximate solution Ay for A(E) of differential equa-
tion (1) (with F,, Fp, and F3 replaced by Fig, Fpg, and Fzg,
respectively) is obtained:

I
TQ

2 v l
f& <ul>3+51;(0.062%0.02976&2 ( >_1"F"‘° .1781+0.032298,-0.00145a, ) .
u, £
1 o} ®

g = g (B3)

T 1s

F14C (ﬂ)lu é(o.oé25+o.0297652)<5‘>il = (0.1781+0,03229%,-0. 0014587 )
um

Since the main opject oI equation (B3) is to determine the separa-
tion point, the values of ?3'2 and ;? may fo_r this purpose be chosen
as those which ap and a22 would actually hsve at thaet point. Hence,
for determining the separation point, the values 52 = 3.5 sand
a_-2-2_ = 12,25 are inserted into equation (B3). With 7 = 1.4, expres-
sion.(25) for Ag(&) +then results.

Since separation occurs where a, = 3.5 and since ap, which is

proportional to A, is given by equation (20), the value of A at which
separation occurs will be that given by equation (26) in the main text.

Equations (B3) and (25) for Ag(8) are valid only under the bound-
ary condition Mg = O at & = O. In case the region of adverse pressure

gradient starts at some point €& = & other than the leading edge, this
boundasry condition must be replaced by the condition Mg = Ay &t £ = Eg.

Solution (25) for Ag(§) must then be replaced by the following solution

32.83 : (ul)6 128( )0 .9366 at + N <u1)7 128( )2 437
T a T
G ga . o u ” g_ga

hg = - . (BL)

uy 7.128 T 2.437
@) )
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The wvalue of Xa is obtained directly from equation (22) of the mein
text. Thus

ta 3+ 3(0.08571+o.019o5‘2 -Fi 0.1950+0.021168,~0.0006228,, )
u) i1 1y as
b do \® e

Ag = FlG (BS)

(ul)lH 1?2—1(o.o§571+o.019c>'5ae ( ) FL o 1950+0.021168,-0. 00062232 )
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APPENDIX C N
DETERMINATION OF CRITICAL REYNOLDS NUMBER

In accordance wlth the procedure outlined by Lees in reference 11,
the critical Reynolds number at a given station x for the stability
of the laminar boundary layer can be determined in the following manner.
It is required first to determine the value of y/Z such that

a’ —
(1 - 23)(0.580)—' 1= (c1)
where
~
u ' uy\T 1t - 1
" (ul) o(ul T1 (%) (%)
O = = -

p— . ; o To _'I_.l_)l l)

(EI) TI 1 Tl g (02)

B = = -1
Gl
-
the prime here denotes differentiation with respect to y/Z and 1 is a
convenient length. In the present analysis the quantity 5t wasg chosen

for 1, except in the case of Howarth's series solution (reference 4) of

the partial differential equations, where the quantity 2(vx/uw)1/2 was
chosen for 1.

The appropriate wvalue of y/Z setisfying equation_(Cl) muet usually
be found graphically by trial. After this value has been determined, the
critical Reynolds number based on 1 and on local values can be obtained

from the expression:
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W TEB)
K B -t -a)

denotes values at the point where equation (CL)

(RZ)C =

e (c3)

where the subscript ¢
is satisfied.

For compressible flow it is more convenient to perform calculations
in the xt-plane than in the xy-plane. With 1 = St, the foregoing rela-

tions can be expressed directly in the xt-plane by use of the relations:

3 _ 3 /_§_>=Tla
3(y/1)  3Ay/1)\3T

R <_T_1_)2.£ . EM@)
Ay/n2 \T/ 2 T o A3

where T = t/St. Using a dot (°) to denote differentiation with respect

to T, equations (C2) and (C3) become
1

> (ck)
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u18 c
(Rat)c = <‘\:i-]t)c = 172 (c5)

The quentity y/8; in terms of T i given by equation (A2) in

appendix A; the trial value of . T (instead of y/1) must now be found
which satisfies equation (C1).
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TABLE I

SEPARATION POINTS CAICULATED BY APPROXIMATE METHOD (EQUATIONS (25) AND (26))

COMPARFD WITH STEWARTSON'S SOLUTION AND WITH OTHER CAICULATIONS

N |

£ at separation point for M, of -
Method
0 1 3
Method of equations (25) and (26) 0.122 0.113 0.0768
Stewartson's solution (reference 5) .120 .110 Noid
' Method based on sixth-degree profile
(equation (22)) 143 .136 .102
Method based on. fourth-degree profile 156 | emeee | mmeee

TABLE II

VALUES OF CRITICAL REYNOIDS NUMBER FOR STABILITY AS CAICULATED
FROM APPROXIMATE SOLUTION (EQUATION (22)) OF EQUATTON (1k)

COMPARED WITH OTHER SOLUTIONS FOR ZERO MACE NUMBER

[_u_1= 1-¢§;¢ = o.oh96]
Yo

(Rg)e for M, of -

Method
0 1 3
3 g\3
Approximate method, 120 x 103(1 + %) 1500(1 + ‘1‘_.,7)
sirth-degree profile | 330 X 103 5 5
(equation (22)) (1.2 + i)(l..01936 + i) (2.8 + i) (1.17&2 + i)
T T T T.
Exact solution of 380 - . N _

equation (1k4)

Howarth's series 290 ——— R U
solution (reference 4)

Flat-plate flow
(reference 8) 1500
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TABLE IIT

NACA TN 278L

COMPARISON OF CALCULATED SKIN-FRICTION COEFFICIENTS -

u
ESETRE

Method Rm}/ch/é
Fourth-degree profile (equation (35)) 2.390
Sixth-degree profile (equation (32)) 2.530
Solution of Falkner and Skan (reference 1k) 2.468
NACA

TABLE IV

COMPARISON OF CALCULATED CRITICAL REYNOLDS NUMBERS FOR STABILITY

Uy
[uT“ M%

Method (Reo) €%
Fourth-degree profile (equation (35)) 210 x 106
Sixth-degree profile (equation (32)) 170
Solution of Falkner and Skan (reference 14) 2ko

TNACA
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Figure 1.- Comparison between approximate solution (equation {22)) and
exact solution of ordinary differential equation (equation (1h)).
Curves terminate at separation point. u;/fu, = 1l - E.
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Figure 2.- Skin-friction coefficients obtained by approximate solution
(equation (22)) of ordinary differential equation {equation (1%))
compared with Howarth's solution for M, = O (reference 4).
w1/ = 1 - E.
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Figure 3.- Comparison of velocity profiles obtained from approximate
solution (equation (22)) and exact solution of ordinary differential
equation (equation (1%)). wuj/u, =1 - & & = 0.0495.
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Figure L, - Comparison of fourth- and sixth-degree velocity profiles
with solution of Falkner and Skan (reference 14). u]_/u‘,0 =£&; M, = 0,
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Figure 5.- Approximate solution (equation (36)) of ordinary differential
equation (equation (14)); fourth-degree velocity profile. uyfue, = E.


http://www.abbottaerospace.com/technical-library

Lo

NACA TN 278%

2.4

1.6 \/, /

/A

S
W

“!ﬂsﬂ!"

0 .2 4 .6 .8

&

1.0

Figure 6.- Skin-friction coefficients based on approximste solution

(equation (36)) of ordinary differential equation (equation (1h4))

fourth-degree velocity profile. uj/ue = &.
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Figure T.- Velocity profiles based on approximate solution (equation (36))
of ordinary differential equation (eqﬁation (14)); fourth-degree
velocity profile. ul/uc,° =& & =0.k
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