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EQUIVALENT PLATE THEORY FOR A STRAIGHT MULTICELL WING

By Stanley U. Benscoter and Richard H. MacNeal
SUMMARY

A structural theory is developed for the analysis of thin multi-
cell wings with straight spars and perpendicular ribs. The analysis
is intended to be suitable for supersonic wings of low aspect ratio.
Deflections due to shearing strains are taken into account. The theory
is expressed entirely in terms of first-order difference equations in
order that analogous electrical circuits can be readily designed and
solutions obtained on the Cal-Tech analog computer.

INTRODUCTION

In the process of designing thin supersonic wings for minimum
weight it is found that a convenient construction with aluminum alloy
consists of a rather thick skin with closely spaced spars and no stringers.
Such a wing deflects in the manner of a plate rather than as a beam.
Internal stress distributions may be considerably different from those
given by beam theory, particularly for torsional or eccentric loading.

A thin-walled multicell wing may be regarded as an elastic shell
in which the webs, or wall segments, act as membranes. By introducing
appropriate simplifying assumptions it is possible to reduce the equa-
tions for such a shell to the form of plate equations provided that one
simple criterion 1s satisfied. The chordwise cross sections must have
& horizontal axis of symmetry. This corndition is usually satisfied in
supersonic wings which 4o not contain stringers.

The theory which has been developed is of the simplest form that
could be reasonebly expected to give results of an accuracy that would
be satisfactory for engineering purposes. The loading is assumed to
consist of a set of vertical concentrated forces acting at the inter-
sections of the ribs and spars. The distributed load on the wing must
be replaced, in some rational manner, by en equivalent set of concen-
trated loads. '

In order that a solutioh may be obtained on an analog computer,
the structural theory is expressed entirely in terms of first-order
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difference equations. The design of the analogous electrical circult
is explained and illustrated. ' '

This paper was prepared at the California Institute of Technology
under the sponsorship and with the financial assistance of the National
Advisory Committee for Aeromnautics.

SYMBOLS

Ay _ area of rib (shear web only)
Ag . area of spar .(shear web only)
a,b,c,d components of displacement which midpoints of & panel take

when panel is put in shear -
C shearing stiffness of a spar or rib
D bending or twisting stiffness of an element B
Dij' = MHEL/(1 - u@)

Dji' = MJMEL/(1 - p2)

E Young's modulus -

G shearing modulus of elasticity

h thickness of wing

I moment of inertia of skin per unit of width

Ir moment of inertia of vertical web of rib

Ig moment of inertia of vertical web of spar

i number of & rib

J number of & spar

ASRYAY) increase in a function across ith rib and Jth spar,

respectively
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M bending moment

m number of a bay along a spar; also a mass

n number of & bay along a rib

OmyDn increase in a functlon across mth bay of a spar and nth bay

of a rib, respectively

P concentrated load

q shear flow

R flexibility

t thickness of skin

T twisting moment

v shear

W deflection

X spanwise coordinate

y chordwise coordinate

Z vertical coordinate

am , Oy angles center lines of a panel rotaﬁe through when panel is
put in shear

B rotation of a normal

V4 shearing strain

A length of a bay

u Poisson's ratio

W frequency

6 slope of elastic axis

Subscripts:

ij quantity in ith rib at jth spar

Ji quantity in jth spar at ith rib
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in gquantity in ith rib at center of nth bay

Jm quantity in Jth spar at center of mth bay

mn gquantity on spanwise cross section at center of cell mn
nm quantity on chordwise cross section at center of cell mn
i value 1n ith rib

J value in jth spar

K value in rib along line of suppdrt

m value in mth bay along spar

n value in nth bey along rib

X value in web of spar

¥y value in web of rib

Xy quantity having same value in rib or spar

max maximum value
PHYSICAL ASSUMPTIONS OF THEORY

All stresses are assumed to be in the elastic range. The thilckness
of all webs is assumed to be sufficiently small that the variation of
stress over the thickness may be neglected. It 1s assumed throughout
the analysis that chordwise cross sactions of the wing have a horizontal
axis of symmetry. Some violation of this limitation can be tolerated in
most cases wlthout reducing significantly the accuracy of the solutions.

Two simplifying epproximations must be introduced as follows:

(l) Since the depth of a wing varies in all directions, the shear
flows in the skin on any cross section will have vertical components.
The contributions of these vertical components to the shears on the
cross sections are assumed to be negligible.

(2) Because of the variable depth of the wing, the normal stresses
in the skin will have vertical components. The contributions which these
vertical components make to the shears on the cross sections are assumed
to be negligible.
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As & result of the sbove assumptions the difference equations for
the structure may be derived by considering a wing of constant depth
without any loss of generality. The wing will also be assumed to have
a constant chord as shown in figure 1(a). The wing may be supported
at the face of the fuselage as shown. For purposes of analysis the
original structure may be replaced by an idealized structure as indi-
cated in figure 1(b). All of the normal stresses are assumed %o be
carried in flanges located at the Jjunction of the ribs or spars and the
skin. All connecting webs carry only shear flows.

'EFFECT OF AXIS OF SYMMETRY OF CROSS SECTIONS

When a wing is acted upon by vertical loads or torsional loads and
the cross sections have a horizontal axis of symmetry, it can be shown
that the normal stresses have an antisymmetric distribution gbout the
axis of symmetry. Hence the normal stresses may be considered to form
bending moments Just as in an ordinary plate. Similarly the shear flows
in the skin may be shown to be antisymmetrical and, thus, may be consid-
ered to form twlsting moments corresponding to ordinary plate theory.
Since the intermnal stresses due to vertical or torsional loading may be
expressed in terms of vertical shears, bending moments, and twisting
moments, the equations which govern the structure take the form of plate
equations.

VERTICAL EQUILIBRIUM OF AN ELEMENT

The first step in the development of the theory is to determine the
relation between the internal shears and the applied load. The concen-
trated load acts at the intersectlon of the ith rib and the Jth spar.

A small portion of the wing surrounding this point may be removed for
analysis. If the skin and idealized flanges are removed from the ele-
ment, the remaining webs will appear as shown in figure 2. Only the
vertical forces which act on the element are shown. In the idealized
structure the shear in s rib or spar wlll be constant over the width
of a cell, or bay. The first subscript indicates the member in which
the shear acts and the second subscript indicates the bay in which the
shear occurs. From figure 2 the equation of equilibrium is seen to be
as follows: '

Vi(mt1) = Vim + Vi(n+1) = Vin + P13 =0 (1)

Differencing symbols will now be introduced. The symbol Aj indi-
cates the Jump 1In a function across the ith rib. The symbol AJ indicates
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the Jump 1n a function across the Jth spar. An application of these
operators to the shears yields the following formulas:

AiVim = Vi(m+l) - Vim (2a)

AgVip = Vi(n+l) - Vin (2b)

Substituting equations (2) into equation (1) gives
AiVim + AgVin = P13 (3)

This equation is a first-order difference equation.
EQUILIBRIUM OF MOMENTS ON AN ELEMENT

The next relation to be consldered 1s that which holds between
moments and shears. For this purpose an element of the wing must be
considered as shown in figure 3. This element extends along the Jth
spar over the length Ap of the mth bay. The only forces shown on
the drewing are those which form couples having axes that are perpen-
dicular to the spar. From figure 3 it 1s seen that the equation of
equilibrium for moments is as follows:

M3(1+1) =~ M31 + Tmn - Tm(n-1) - MmVjm = O (&)

The twisting moment Tyn 1s the total twisting moment over the width
of a cell rather than the twisting moment per unit of width which occurs
in ordinary plate theory. The bending moment MJi is the moment in the

Jth spar of the idealized structure at the point of intersection with
the ith rib.

One may consider an element corresponding to the illustration of
figure 3 which is oriented in the perpendicular direction. This element
would contain the nth bey of a ridb of length Ap with the adjoining

skin. Equilibrium of moments for couples having axes parallel to the
x-axls gives the following equation: )

Mi(g+1) - Mij - Tpp + Tn(m-1) - MVin = 0 (5)
Additional differencing symbols mey now be introduced. The symbol

Ay indicates the incresse’ in a function across the mth bay of a spar.
The symbol An indicates the increase in a function across the nth bay
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of & rib. These operators may be applied to the bending moments to
obtain the following formulas:

ApMsi = My(141) - Mj1 (6a)
ApMi3 = Mi(3+1) - Mij _ (6b)

The operators Aj and Aj, which have been previously defined, may be
applied to the twistling moments to obtain

AiTnm Tnm - Tn(m_l) (78')

A,ijn Ton - m(n-1) (o)

Equations (6) and (7) mey be substituted into equations (L4) and (5) to
obtain the following first-order difference equations:

AnM3i + A3Tmn = MoV im (8=)

ApMiy - AiTnm = ApVin (8b)

Since the shear flow in the skin on two perpendicular planes must
be equal, there exists a simple relstion between Typn &and Tpm which

is expressed as follows:

m - - Zom (9)
Am An

RELATTON BETWEEN BENDING MOMENTS AND ROTATIONS OF NORMALS

The next step in the development of the theory is to form relations
between bending moments and rotations of the normals to the middle sur-
face. This requires a consideration of the deformation of a rib or spar
which takes place when shearing strains are significant. In figure 4(a)
there 1s shown a segment of a spar acted upon by shears and bending
moments. A solid vertical line has been drawn normal to the elastic
axis before distortion.

The spar is shown in its distorted position in figure 4(b). The
original normal has rotated through an angle PBx and makes this angle
with the vertical dashed line cd. The dashed line ab has been drawn
perpendicular to the elastic axis in its deflected position. The original
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normal mekes an angle 74 with ab where 7y is the shearing strein

in the web of the spar. The angle between ab and cd is equal to the
slope of the elastic curve.

The normal strains in the idealized flanges are proportional to
the rate of change of rotation of the original normals in the spar.
Because of the Poisson ratio effect in the skin the rotation of the
normels in the ribs will also contribute to the normal strains in the
spars. Similar considerations can be gilven to a rib. This permits the
writing of bending moments in terms of rotations of the normals in the
ribs and spars.

The following equations may be written for the bending moments in
the ith rib and the jth spar, respectively, at their intersection point:

3B o :
Myj = -Dij<$z)ij - Di; '(g’i)ij (102)
38, 38y

The coefficient Dij 1is the bending stiffness of the rib including

the vertical web and the skin extending to the center of each adjacent
cell. If I is the moment of inertia of the skin per unit of width
and I, 1is the moment of inertia of the vertical web of the rib, the
formula for the bending stiffness of the rib becomes

Dij = M —== 5 + FIr (11a)

l-up

If Ig 1is the moment of inertia of the vertical web of the spar, the
total bending stiffness of the spar becomes

I 5 + Elg (11p)
l1-u i

it =
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The Polsson ratio effect occurs only in the skin and hence the coeffi-
cients Dij' and Djji' are defined by the following equations:

HET
D' ! = X' ——— (l2a)
l'j L 1 - ua
pET
Ji J —1 2

For a nonuniform wing the values of I, I, and Ig may be computed

at the point of intersection of the rib and spar. For better accuracy
I may be computed as an average value over an appropriate area and

I, and Ig may be computed as average values over an appropriate length.

The derivatives which are contained in equations (10) must be
replaced by finite differences. If B4 1is the rotation of a normal

in the ith rib at the center of the nth bay, the approximation to the
first derivative is given by

oB 1
OBy o LBy - Bins
(By )13 y U31n Bi(n lﬂ (13a)

The corresponding equation for the spar is given by

op
(ﬁ)ij = %il-_éjm - Bj(m—lzl (13b)

If the appropriate differencing symbols are introduced, equations (13)
become

Bﬂx) 1
=L AsB (1ka)
<5y TR R -

(1h4b)

i
e
2
™
C e
B

&
3x /15 M
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The finite differences which are given in equations (14) may
be substituted into egquations (10) to obtain the following equations
relating bending moments and the rotations -of the normals:

D, Dy 4!

ﬁiAjﬁin + Ki AiBym = -Mij (158)

D D,s'

:‘_Ei\iﬁjm + —J_xz AsBin = -Mj1 (150)
. _

RELATION BETWEEN TWISTING MOMENTS AND ROTATIONS OF NORMALS

4 relationship must now be derived between the twisting moments
and the rotations of the normels to the middle surface. The twisting
moments may be related to average velues of the shearing strains in
the skin panels. Simple relations may be found between these average
strains and the rotations of the normals in the ribs and spars. These
relations can be developed readily by reference to the ldealized structure.

In figure 5 there is shown a panel of skin enclosed between two
adjacent ribs and two edjacent spars. The posit.on which the panel
takes when the structure is loaded 1s shown in dashed lines. It will
be assumed that the rotations of the normsls in the ribs and spars are
defined at midpoints which are indicated as A, B, C, and D in figure 5.
The new positions which these four points take in the loaded structure
are also shown. The components of displacement which these points
take, in the direction of the members on which they are located, are
indiceted as a, b, ¢, and d. ' .

The average shearing strain in the panel may be assumed to be
equal to the change in angle made by the two center lines. These center
lines rotate through the angles o &and on. Hence the shearing strain

in the panel is given by
Yym = %m + On (16)

These angles can be expressed in terms of the displacements and panel _
dimensions as follows:

(172)
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_b-d
M

11

(170)

The displacements can be expressed in terms of the rotations of normals

as follows:

a=- % Bin
h
b =-7 B+l
c=- %‘B(i+l)n
h
d =« 5 Pim
Substituting equations (18) into equations (17) gives
ap = _:E[?(- n - B‘]
g P(1#1)n in

on = %I@(aﬂ)m - Byl

Introducing the appropriate differencing symbols gives

_ -h
Qg = Ei;jﬂmﬂin
-h
an = ETw ApBym

Equations (20) may be substituted into equation (16) to obtain the

following formula for the shearing strain:

hi{ 1l 1 .
Ymm = - E[H OmBin + EAnB;nEl

(18a)

(18b)

(18¢c)

(184a)

(19a)

(19v)

(20a)

(20b)

(21)
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The twisting moments must now be expressed in terms of the shearing
strains. The shearing stress is obtained from the strain by multiplying
by the shearing modulus. The shear flow is then obtained by multiplying
by the skin thickness.

Gmn = G?f( OmBin + ——Anﬁjm) (22)

The twisting moment per unit of width is obtained by multiplying by the
depth of the wing. The total twisting moments for the cell are then
obtained by multiplying by the length or width of the cell. The formulas
thus obtained sre

2 Axpan + BB AnBym = Ton  (230)
i;—% buBin + liTnm ABim = Tom (23b)

The stiffness coefficients which appear in equations (23) may be computed
from the following formulas:

2 |
Dun = Mn —-Gt; = AgGI (2ks)
>
' Dpm = An Gt: = AgGI (2Lb)

RELATION BETWEEN DEFLECTIONS AND ROTATIONS OF NORMALS

It now remains to express the deflections in terms of the rotatlons
of the normels by finite difference equatlons. Returning to figure L
and considering similar conditions in the chordwise direction, the fol-
lowing two equations can be written:

éw‘ = By * 7x (25a)
ox
gty - (25)
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The shearing strains are average values over the vertical webs of the
ribs or spars. In the idealized structure these strains are constant
over the shear webs.

The shearing strains are related to the shears by the following
formulas:

_Vx _Vy
Ix = GAs " Ty (262)
Yy Yy (26b)

In equations (26) Ag and Ar are the areas of vertical webs of the

spars and ribs, respectively. Equations (26) may be substituted into
equations (25) to obtain

ow _ Vx
-—ax = Bx + Cx (275-)
N _ Yy
Sy By + oy (27p)

It is now necessary to replace equations (27) by difference equa-
tions. The quantities on the righit-hand side may be regarded as values
at the center of a bay or they may be regarded as average values over
a bay. The left-hand side may be replaced by finite differences to
obtain the following egquations:

1 Vim
EE’(iﬂ_)j - Wi,ﬂ = Bjm * 53% (28s)

in cl—;‘- (281b)

|
™
+

%E’i(yl) - Wiﬂ

In equations (28) the shearing stiffnesses may be computed at the center

of the bay although better accuracy will be obtained by computing average

values over the bays. Introducing appropriate differencing symbols into
equations {28) gives -~

v

1 - Jm
EAani,j = Bjm + q; (29"1)
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1 Vig '
P = Bip + — (29p)
" Dpvy g in Cig

The complete solution is now defined by nine first-order difference
equations. "The nine unknowns consist of six internal force quantities
(shears, bending moments, and twisting moments) and three displacement
quantities (deflections and rotations of normels). The first-order
equations may be combined to form equations of higher order. This would
be necessary if the solution were to be computed on a digital computer.
However, when the solution is to be computed on an analog machine the
equations may be left in their present form. Coupled circuits may be
designed in which the voltages and currents are related by first-order
difference equations which have the same mathematical form as the struc-
tural equations. From these circuits one may read any one of the nine
unknown quantities independently. '

VIBRATION MODES

The natural vibration modes and frequencies of the wing may be
easlly determined by replacing the distributed mass by an equivalent
set of concentrated masses. These masses must be considered as being
located at the intersection points of the ribs and spars. Using
D'Alembert's principle and assuming sinusoidal motion at a frequency
w, the concentrated load becomes

.Pij =w2mijwij (30)
Equation (30) may be substituted into equation (3) to obtain

. 2
AiVym * AgVin = -07my §wy 5 (31)

Equation (31) must be used in place of equation (3) for vibration anal~
ysis. All other equations remain unchanged.

BOUNDARY CONDITIONS

When the computations are to be made on an analog computer the
boundary conditions on free edges may be stated directly in terms of
force quantities. In stating the boundary conditions for quantities
which are defined at the center of a bay or a cell, it is convenient
to introduce a row of imaginary cells surrounding the plan form of the
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wing as shown in figure 6. For convenience it will be assumed that the
Plan form has double symmetry and the boundary conditions will be stated
for the first guadrant.

If npgy 1s the maximum value of n on the plan form, the exterior

row of imaginary cells in front of the leading edge may be numbered
Omex + 1 as shown in the figure. Similarly the row of cells beyond

the wing tip is numbered mp., + 1. The rib at the tip is numbered
imgx (maximum value of 1) and the spar at the leading edge is mum-

bered . jnax (maximum value of J). The rib at the line of support is
numbered K. In terms of the above-defined symbols the boundary condi-
tions can be expressed as follows:

Line of support:

wgy =0 . (32)
Wing tip:

Vi(mgey + 1) = O (33e)
My(1p00) = O (33p)
Tn(mpax + 1) = O (33¢c)

Leading edge:
Vi(npax + 1) = © (3ka)
My(g0) = O | (3kb)
To(ngay + 1) = O (34c)

DESIGN OF ANALOGOUS CIRCUIT

An explanation of the design of the analogous circuit will be given
in & manner corresponding to the treatment of beam analogies which is
contained in reference 1l. Since the design procedure has been described
in complete detaill in reference 1, the present design will be stated
more briefly. Since the structural equations have the same form as
plate equatione the analogous circuits will be approximately the same
as those given by MacNeal (reference 2). The only difference will be
due to the allowance for the effect of shearing strains upon deflections.
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In reference 1 the structural quantities and the electrical gquan-
titles were represented by completely separate sets of symbols. In the
Present paper the structural symbols will also be used as electrical
symbols. Thus it will not be necessary to write additional equations
for the electrical circuit. For convenience in the discussion of the
circult the structural equations which govern the problem are repeated
in a group as follows:

DiVyy + ByVyy = -Py (3)
DM st + BygTun = AV gm (8e)
AmMij = B3Tpm = MVin (8b)
Ton _ _Tmm
™ o (9)
D Dys'
I;;QAJBID + AiB,jm = -Mij (158-)

D i' D i
—;‘L,j— AjBin + ;:;_L‘ AiBsm = i-ij_ (15p)
20 ARy + DHB ALByy = Ty (238)
An A
EEE=AnB + EEE;AmB =T (23b)
*n Jm Py in nm .
1 \'i
EAmwiJ = BJm +E§ﬁ (295-)
L Apwiy = Bin + L (29p)
An Cin

It is seen that equation (3) expresses a relation between force
quantities and hence is represented electrically by an application of
Kirchhoff's law to a nodal point. This nodal point is shown in fig-
ure T where the structural equation is also given. The currents are
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deslgnated with structural symbols so that the structural equation may
be interpreted as an electrical equation.

The next equation to be considered is equation (8a). This again
calls for an egpplication of Kirchhoff's law at a node and is illus-
trated in figure 8. In this figure it will be noted that the "loading
current" ApVjm proceeds from a transformer through a resistance.

This resistance is required to allow for the effect of shearing strains
upon the deflections. Equation (8b) is of a similar nature and the
analogous node is shown in figure 9.

Three different nodsel points have been illustrated. Esach of these
nodes must occur in a different planar circuit. Hence three planar
circuits must be designed and interconnected by means of transformers.
A panel of the shear circuit is shown in figure 10. In this circult
the voltages represent deflections and the currents represent shears.

The design of the other two planar clrcuits requires the intro-
duction of additional circuilt elements. The next .structural equations
to be considered are equations (15). For more convenient electrical
representation these equations are solved for the differences in rota-
tions in terms of bending moments. The result of such a solution may
be written as follows:

AiB,jm = -RXMJi + nyMij (359-)

AjBin = RgyMyy - ByMsy (35b)

The circult elements corresponding to equations (35a) and (35b) are
shown in figures 11(a) and 11(b), respectively. In order to see more
clearly that the voltages and currents shown in figure 11 are related
by equations (35) one may rewrite equations (35) in the following form:

AsBim -(Rx - Bxy)Mji - ny(Mji - Mij) (362)

Mgpin = Fayfag - Mgi) - (Ry - Ry - (360)

Equation (36a) msy be immediately checked by an inspection of
figure 11(a). In order to see that equation (36b) is valid one must
use the transformer laws. These laws have been 1llustrated in refer-
ence 1. One-hslf of a transformer is shown in figure 11(a) and the
other half of the same transformer is shown in figure 11(p). This
transformer has a l:1l turns ratio. The plus and minus signs indicgﬁe
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the polarity (or phase) of the terminal voltages. The manner in
which the circuit elements of figure 11 are coupled is 1illustrated
in figure 12.

The next equations to be considered are equations (23). For
convenience in designing the circuit these equations may be written
in the following modified form:

ApBim + % ApPin = - %m_ Tmn (37a)
Y
ApBam + % ApBin = Eﬁ";' Tom (37b)

Equations (37a) and (37b) are not independent since the right-hand
sides are related as shown by equation (9). A circuit element is shown
in figure 13(a) in which the voltages and currents are related by equa-
tion (37a). The associated circuit element is shown in figure 13(b).
The manner in which the elements of figure 13 are coupled 1s shown in
figure 14. A verification of equation (372) as an electrical equation
requires an application of the transformer law for voltages. Equa-
tion (9) is a direct statement of the transformer law for currents.

It is seen from these equations that the ratio xn/xm must be the

transformer turns ratio.

The next equations to be considered are equations (29). These
equations may be interpreted as electrical equations by referring to
figures 15 and 16. Figure 15 shows the transformer connection between
the shear circuilt wherein voltages are deflections and the spanwise-
. bending-moment circult whereln the voltages are rotations of the normals
in the spars. The point at which the voltage corresponds to the slope
of the elastic curve of the spar is indicated as 93m~ Figure 16 shows

8 similar connection between the shear circuit and the chordwise-bending-
moment circuit.

A panel of the circuilt for spanwise bending moments is shown in
figure 17. A similar circuit for chordwise bending moments is shown
in figure 18. Complete assembled circuits are shown in reference 2.

CONCLUDING REMARKS

A theoretical method of analysis has been developed whereby the
stresses and deflections may be determined for a thin supersonic wing
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of low aspect ratio. It is assumed that chordwise cross sections of

the wing have a horizontal axis of symmetry. This permits the reduction
of the solution to the form of plate theory. In order to carry out the
analysis on an analog computer the theory is expressed in terms of first-
order difference equations. The analogous electrical circuits are also
derived.

California Imnstitute of Technology
Pasadens, Calif., February 5, 1952
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Figure l.- Uniform multicell plate.
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Figure 2.- Vertical forces acting on element of plate.
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Figure 3.- Spanwise moments acting on element of plate.
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(2) Segment before distortion.
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(b) Segment after distortion.

Figure 4.- Distortions of a segment of a spar.
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Figure 5.- Shearing distortion of a skin panel.
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Figure 6.- Symbols required for statement of boundary conditions.
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Figure 8.- Nodal point in spanwise-bending-moment circuit.
AmM,ji + DgTpn = xmvjm. '
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Figure 9.- Nodal point in chordwise-bending-moment circuit.
A’nMij - B8iTpy = ApVin:
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Figure 10.- Panel of circuit for shears and deflections.
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(2) Spanwise bending moments.

AiBym = -RyMyg + RyyMy 5.

NACA TN 2786

ﬁin

(b) Chordwise bending moments.

AgPin = ByyMys - RyMj 4.

Figure 1l.- Circuits for bending moments.
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Figure 12.- Coupling of circuits for bending moments.
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Figure 14.- Coupling of circuits for twisting moments.
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Figure 16.- Relation between deflections end chordwise slopes.
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Figure 17.- Panel of circuit for spanwise bending moments.
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Figure 18.- Panel of circuilt for chordwise bending moments.
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