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IN A SUPERSONIC TUNNEL HAVING A GIVEN
STATIC PRESSURE GRADIENT

By H., F. Iudloff and M. B. Friedman
SUMMARY

, The corregtions for 1lift, drag, and moment of a two-dimensional air-
foil have been analyzed, on: the assumption that the airfoll is ‘tested in
the working section of a supersonic tunnel in which the pressure field,
instead of being uniform, is characterized by gradients in the axial and
transverse directions.

The pressure gradients of the tunnel as well as the effect of the
airfoil to be tested are regarded as perturbations of the original rec-
tilinear flow field of given Mach number., Therefore the velocity poten-
tial of the flow, the nonlinear differential equation of motion, and the
boundary conditions are expanded into double series in powers of two
parameters, one characterizing the airfoil thickness ¢ and the other,
the inhomogeneity of the field b. In this way the nonlinear problem
is split into a system of linear boundary-value problems, corresponding
to the different powers of b and c«¢.

In each of the resulting problems there appears, besides the 4if-
ferential equation and boundary condition, an additional condition to
be stipulated on the characteristics passing through the leading edge.
Particular attention has been paid to the correct formulation of this
"characteristic condition.”

The solution procedure is carried out up to orders b2, 62, and

€b 1in the velocity potential., This means that, for example, the drag
is computed up to orders b2€, 63, and €2b. The physical meaning of
the results is discussed. The drag term in b represents the
"horizontal buoyancy" of the airfoil, the term proportional to bel 1is
a consequence of the interaction of the airfoil field and the inhomo-
geneous pressure field, and the term in b2¢ may be considered as a
"second-order buoyancy." The meaning of the various 1lift and moment
terms may be interpreted similarly. The resulting expressions have been
derived for arbitrery given pressure gradients and general profile form.

All solutions are obtained in closed, analytic form ready for imme-
diate evaluation. Representative examples with graphs are included.



http://www.abbottaerospace.com/technical-library

2 NACA TN 2849
INTRODUCTION a

Reports from supersonic tumnels indicate that sometimes there exist
in the working section undesired static pressure gradients due to design
or construction flaws, which are difficult to eliminate. As & consequence,
force measurements made upon models have to be corrected to agree with the
forces to be expected in rectilinear flow.

For incompressible flow the correction to be applied to the drag,
in the case of a longitudinal pressure gradient is well-known (refer-
ence 1). Because of the occurrence of a "horizontal buoyancy," the cor-
rection turns out to he equal toc the product of the pressure gradient
and the sum of volume and "spparent volume" of the test body; the appar-
ent volume, like the real volume, depends only on the geometrical shape,

The present analysis is an attempt to solve the analogous problem
in supersonic flow under the most general conditions, which require cor-
rections to be gpplied also to the 1ift and moment. A two-dimensional
pressure gradient in both the longitudinal and trensverse directions is
considered, which is equivalent to a stream-angle variation along the
tunnel axis. 1In the first approximation the computations must be .
expected to yield a superposition of well-known results. Hence, it is
important to carry the calculations up to the second approximation,
which includes a term characterizing the interaction between the airfoil ¢
field and that of the given pressure gradient. .

This work was conducted at New York University under the sponsorship
and with the financial assistance of the National Advisory Committee for

Aeronautics.

SYMBOIS
b parameter characterizing inhomogeneity of field
c local sound speed |
Co sound speed at M,
k(x) dimensionless airfoil profile function measured
above flight direction
k(%) profile function measured above chord

A ¢ chord length a
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M local Mach number
Mo Mach number of uniform field
m(x),n(x) X~ and y-components of velocity, on axes, due to

inhomogeneity of flow field (dimensionless)

9

P local pressure

Po pressure at M, ’
a local veloéity .
X,y dimensionless coordinates, axial and verticé}
B =\M= -1 |
v4 adiabatic exponent

€ ‘ airfoil thickness parameter |
e local angle of attack

) angle of attack of chord

E,m characteristic coordinates

p local density

Po density at M,

0] dimensionless velocity potential

B velocity potential of basic flow field

' velocity potential due to airfoil disturbance
¥(x) ordinate of leading-edge characteristic

STATEMENT OF PROBLEM
Physical Formulation
Suppose that in the test section of a supersonic tunnel the velocity

field, instead of being uniform, is represented by the velocity distribu-
tion along the axis y = 0, as follows:
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At y = 0:

My = M, + bm(x)
(1)

bn(x)

My

Here My = gyfc, and My = qy/co, where q, and g, are the x- and
Yy-components of the local velocity of the flow field, c, 1s the sound

velocity in a region where the Mach number is M,, x and y are

dimensionless coordinates measured in units of the length 1 of the test
body, and b 1is a dimensionless parameter characterizing the magnitude
of the inhomogeneity of the flow field and the pressure gradient. Under
actual conditions b i1s a small quantity such that

bm(x)
< M, - (2)

bn(x)

where m(x) and n(x) are given arbitrary functions along the axis,
which may be determined by measurement. With conditions on the axis
fixed the flow field in the whole xy-plane is automatically prescribed

by the equations of supersonic flow. Terms of the order b2 may also
be given arbitrarily on the axis but are assumed to be zero in the
present case. This does not imply, however, that terms of the order b2
do not appear in the field away from the axis.

In this velocity field a thin airfoil of given profile form k(x)
and thickness ratio € 1is inserted, which may be regarded as another
small perturbation of the rectilinear flow field M,. Two kinds of dis-

turbances then exist, the one produced by the velocity or pressure gra-
dient measured by b -and another one produced by the airfoil and
measured by €. Therefore, it appears appropriate to expand the veloc-
ity potential ¢, as well'as the potential equation of supersonic flow,
and the boundary condition on the airfoil surface into a power series in
powers of both parameters b and €. ;

In this way, the nonlinear problem is split into a system of linear
boundary-value problems corresponding to the different powers of D
and €. In each of the resulting problems there appears, besides the
differential equation and boundary condition, an additional condition to
be stipulated on the characteristics passing through the leading edge:
It is to be required that the disturbance produced by the airfoil vanish
along these curved lines in order to make the solution unique. It may
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be noted that the characteristics of the complete differential equation
are curved, while those of the resulting linear equations are straight.
It is shown later how the condition on the characteristics can be for-

mulated for each linear boundary-vaelue problem separately.

Analytic Formulation

Because of the relatively small thickness of the airfoil, the shocks
at the leading edge will be weak and the entropy changes in the flow
negligible. Hence, the complete flow field will be described by a veloc-~
ity potential which obeys the well-known, nonlinear differential equation.
Introducing a nondimensional quantity ¢, equal to the potential divided
by lcg, this equation may be written:

(55 - o) - 2meyiy + (S5 - 9oy - 0 3)

Co o

where the subscripts x and y indicate differentiation.

The local sound speed c¢ corresponding to the local velocity g

is related to the sound speed c, by means of the energy equation

L2 5) ()

where

q2 c02 = csz + chz

Substituting equation (4), equation (3) can be written:

.E+7_%_1_(M02_¢y2)_7;1q)x?%_2%%+

b+ 252012 - 02) - 222 ey, - 0 (5)

e e e — e —————— e~ —
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Now, ¢ may be expanded as a series in powers of the perturbation
parameters b and ¢, as follows:

@ = %0 + bgPL + b29%2 + b0 + 2Pl + @12 + bl + 2olt  (6)

The potential coefficients
¢B = 00 4 b¢01 + b2¢02 (7)

represent the potential of the basic inhomogeneous velocity field before
an airfoil was placed in it.

The terms
o' = bpl0 + b2l + 2pl2 + ebgl3 + €2¢lh . (8)

represent the perturbation potential produced by the airfoil in the
basic field.

It is to be noted that the perturbation potential contains the
terms bmlo +‘b2¢;l vhich do not vanish for an airfoil of zero thick-
ness (€ = 0).

A disturbance for which € = O may be thought of as a very thin
flat plate placed at a given angle into the basic flow field. In order
for the inhomogeneous flow to follow the surface of the plate, vertical
disturbance velocities must be produced of such megnitude (up or down-
ward) as to cancel the vertical velocity components of the inhomogeneous

flow field, which are proportional to b or b2,

The potential term proportional to €b is due to the interaction
between the basic field and that produced by the airfoil. The ¢ and
62 terms represent the first- and second-order potentials of an airfoil
in a homogeneous field. ’

Finally, the analytic procedure to be followed in'this investigation,
will be outlined briefly:

(1) Differential equation: Substituting series (6) for ¢ into the
nonlinear equation (equatien (5)) and splitting in powers of b and ‘e,
a set of homogeneous or nonhomogeneous equations of the wave type is
obtained.
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Those equations which are proportional to b, €, and €2 are
homogeneous:

(sz _ l)quik _ nyik -0 (9)

. The equations which are proportional to b2 and €b are of the
nonhomogeneous type:

(sz _-l)mxxik _ nyik - Fik(@z?) (10)

where the functions Fik can be shown to be known functions of lower-

order sz vhich have been computed before.
(2) Boundary condition: Insert series (6) for ¢ into the usual

boundary condition stating that the flow is everywhere tangential to the
surface of the body:

¥y -
<®X>surface ek (x) (11)

and expand equation (11) ebout y = O in powers of €. This imposes
on each of the potential coefficients @ X a condition of the form

(CPYE)FO - ou(o™) (12)

where, again, the furctions Gj) can be shown to be known functions of

lower-order @&,
(3) "Characteristic condition": As mentioned before, the poten-
tlal ¢@' describing the various disturbances produced by the airfoil

is required to vanish on the leading-edge characteristics which may be
written: ‘

¥y = ¥(x,0) =¥o(x) + bhylx) + . . . (13)

since the form of the characteristics is influenced by the inhomogeneity b.
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Tt can be shown (see section "Characteristic Condition") that the
"characteristic condition"” for ¢' 1is equivalent to the following

relations to be imposed on the individual %

For the orders b, €, and €2

o= (x,45) = 0 (14)

For the orders b2 and be

q)ik(xﬂlfo) = ‘lfl(x)sz(x:‘l‘o) - (15)

where, again, the coefficients sz- are known lower-order potentials
and wo(x) and V¥y(x) may be computed by means of the theory of

characteristics.

At the end of this procedure the solutions @ik will have been
derived in closed, analytic form, and the pressures at any point can be
computed. Since the objective is to compute the corrections for forces
and moments, it is sufficient to determine the velocities and pressures
on the airfoil surface only, thus simplifying the considerations.

BASIC VELOCITY FIELD

Differential Equation

The analysls can be clarified by considering first the basic inhomo-
geneous field alone. Then the series expansion for ¢ reduces to:

L

©
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Substituting equation (1) into equatioq\(5) ylelds:
1 - Mb2 - b(y + l)Mb¢x01 + .. ;](b¢kx01 + b2¢xx02 + . . .) -
2(M, + . . .)(bq)y01+ . .)(bcpxyOl+ .. .)+

[i - b(y - 1)M’ochol + .. £]<b¢yy01 + b2¢yy02 + .. .) =0 (17

In deriving equation (17) %0 = M x has been substituted in equa-
tion (5), since it is obviously a solution; furthermore, all those terms
have been kept which could possibly contribute to the differential equa-

tion in b and b2. Splitting up in powers of b, the following equa-
tions result:

In D;
2 _
(Mo _ l)q’xx01 _ cpyy01 o
and in b2:
(Moe _ 1) 2,02 - q)yyoe - M IZ, N l)wxo%nm + (7 - l)q’xOICPyyOl .

2q)y01q)xym]

Boundary Condition

- The velocity distribution (equation (1)), prescribed on the axis
Yy = 0, may be considered as a boundary condition for the potential of
the basic flow.
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Substituting equation (16) into equation (1), it follows that

M, + b, OM(x,0) + b2, 02(x,0) = M, + bm(x)'
and (18)
bq;yOl(x,O) + b2<py02(x,0) = bn(x)

Ordering terms in powers of b, & boundary problem in b and one in b2
are obtained.

Boundary-Value Problem in Order b

The boundary-value problem in order b consists of the differential
equation

2. 0Ol

B Py -0 ‘ (19a)

- Qy_y

where Bz = M2 - 1, and the boundary conditions, at y = 0,
J

9, 0X(x,0) = m(x)
(19b)
2,07 (x,0) = n(x)
The solution of differential equation (19a) is
o (x,y) = £(x + By) + g(x - By) (20)

vhere f and g are arbitrary functions to be determined by boundary
conditions (19b).

Differentiating equation (20) with regard to x and y and then
putting y = 0 yield:

1(x) + g'(x) = m(x)

9. 2L(x,0)
(21)

q)yOI(x,O) B[:fl (X) _ g! (le — n(x)

where f' and g' indicate derivatives with regard to the whole argument.

I
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From equations (21) there follow:
£ (x) = %En(x) + %‘- n(x{l

2o - 0]

Since it can be seen from equation (20) that f and g or their
derivatives are constant along their characteristics x + By, it may be
concluded from equations (22) that

(22)

g' (x)

—

£ (x +yBy) = —;—E(x + By) + ;:;— n(x + Byﬂ

and > (23)

lE(x - By) - %n(x - Byil

g'(x - By)

N

-

Differentiating equation (20) and substituting equations (23), the
velocity components of order bl for the entire field follow:

o O (x,y) = -;—El(x + By) + % n(x + By) + m(x - By) - %n(x - Byﬂ
(2k)

oy M (%) gE(x + By) + %- n(x + By) - m(x - By) + % n(x - Byzl

From equations (24%) the expressions for q;xxOl and cpxyOl which appear
in the differential equations for q)ll and cpl3 mey be readily derived.
Since, later on, the values of the velocity and pressure field are

required only on the surface of the body, that is, near the axis s expres-
sions (2l4) may be expanded about the axis:

2t [, ex(x)]

m(x) + ek(x)n'(x) . . .

Il

(25)
n(x) + ek(x)Bzm'(x) . o e

cpyO]- E{, ek(xﬂ

14
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Boundary-Value Problem in Order b2

In order b2 the boundary-value problem consists of the differ-
ential equation -

2, 02 02 _ 01, O1 01, Ol
B = By = M [(7 + Vo e, Pt + (7 - D e Ot

XX
0 (0XR
29,0,y :] (26a)
and the boundary conditions

q)xoz(x} 0) =0
(26b)

Qyoz(x,o) 0

In order to determine the velocity and pressure field on the airfoil sur-
face, no explicit solution of equations (26) is necessary. This can be
seen by the following reasoning.

For y = ek(x) the derivatives of @,02(x,y) may be obtained by
expanding about the axis: .

2,02 [x, ek(x) | = 9 %P(x,0) + ek(x)q; P (x,0) + . . .
(27)
¢y02 x,ek(xZ] = gyog(x,o) + ek(x)¢&y92(x,0) ¥ oe e

Since according to equation (16) @Og is of order b2, the second- and
higher-order terms in equations (27) are of order b2e, b2e2, e e .

and may thus be neglected so that in order b2:

cpxo2 E{,ek(x}] X0

N
o

q).yOE E: € k(_le
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Therefore, the total velocity components of the basic field on the
airfoil surface are:

P> = My + bm(x) + €bk(x)n' (x) + b20 . . .
| (29)
98 = bn(x) + ebk(x)p2n' (x) + b2 . . .

It is to De noted that the second derivatives 0,07 and gy, 02

appear in the differential equation for o1l (see equation (32c)) and
hence it may seem that the boundary-value problem (equations (26)) has

to be solved after all. However, the combination nyoa - BEQXXOE,

which is required in equation (32c), may be expressed in terms of the

known lower-order potential ¢Ol, as differential equation (26a) indi-

cates. Carrying out the proper differentiations and substitutions
yields:

cPy_yOE _ 32%02 - %%2(7 + 1) El(g) + %Eﬂ'(g) + n'(BEZl +
El(ﬂ) - 'n(B—n)]Eﬂ' (n) - _ntéﬂil} + | '
[+ 1)+ (7 - 3167 l}(n) - n—(;—l] w' (£) +'n'g§)] +

E(g) . n—‘éQ]E'(m _ n'f;‘)]} (30)

where E =x+ By and 1 = x - By are the characteristic coordinates
of the problem. )
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VELOCITY FIELD OF AIRFOIL

Differential Equation

The next objective is to determine the perturbation potential pro-
duced by an airfoil which is placed into the (inhomogéneous) basic Ffield
at an arbitrary small angle of attack, the leading edge coinciding with
the coordinate origin. Inserting series (6) for ¢ into equation (5),
the quantities QOl and ¢02 may now be considered as known and
@10 e o @lh, as looked for. Keeping only those terms which may pos-
sibly coptribute to a differential equation of the order b, €, b2,
be, or ¢2, (equation 5) yields:

{1 S M2 - z_%;lgmo(q)xm + 910 + cangl? . ]} y

12 02

o™ * 5a%) + cm® + ¥¥(a® + ap) ¢ ema e Pt
ZMOE(%OI N cpy10) +eg2 . ;IE(CPWOI . (pxylo) v 12 :I .

{1 _ 2 . 1E2Mo(¢x01 + cpx10) v eam 12 |, ]}E)(q,yym . cp'yylo) .

e@yyle + be(q)yyo2 + ¢yyll) + €b¢yyl3 + €2¢yy14 .. Z] =0 (31)

Ordering terms in powers of b and €, equation (31) will split into
the following set of linear equations:

In b:

B0 - @330 = 0 ' (322)
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In e€:

B2y - Pyy'? = 0 (320)

In b2:
B2l - oyl = 'MO{KV + 1)+ (7 - 1)52](%01 N cpxx10)(%01 . cpx10) .

2(cpy°l N cpylo)(chyOl N cpxylo)} N cpwoe - 20, 02 (320)

In Dbe:

po, 13 - qu.y13 = —MO{KV +1) + (7 - 169 E)xlz(@nOl + @xxlo) +
Pec2(0,00 + q)xlo):| . 2@12(%01 + g 10) +

Py 20,0 + cpylo)]} (324)

Bl - @ 2 = E7 £ Do 20,12 + (7 - gyl 12 +

12

20,0, (32e)

Whenever the differential equation is inhomogeneous, the right-hand side
turns out to be a function of the lower-order solutions which have been
computed in an earlier step.

Boundary Condition

The usual boundary condition that the velocity of the air is every-
where tangential to the airfoil surface may be written as follows:
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Aty = ¢k(x)
oy = €k’ (x)py (33)

As in the basic field, so also here the values of the various potential
coefficients Q;k on the airfoll surface may be obtained by expansion
ebout y = O:

Qxik x,ek(xi] = Qxik(x,o) + ek(x)@xyik(x,o) + ...
(34)

@Yik x,ek(xi] = myik(x,o) + ek(x)myyik(x,o) + ...
Meking use of equations (34), substituting equation (6) into equa-

tion (33), and ordering in powers of b and ¢, the following set of
boundary conditions results:

In b:

oy 10(x,0) = -9,9%(x,0) = -n(x) (352)

In e:
oy t2(x,0) = k' (x), 00 =X (x)Mo (35b)

In b2
oyt (x,0) = -9,%%(x,0) = 0 (35c)

In eb:
2y30x,0) = 1 (0 [, 21(x,0) + 2%x,0)] - x(x) [y 1,0 + oy 10(x,0)]
= k'(x)E(x) + cpxlo(x,Oﬂ - };(x)[ﬁzm’(x) + q)yylo(x,oﬂ (354d)

In €2

9yt H(x,0) = k' (x)9,12(x,0) - k(x)qpy, 2(x,0) (35e)

Also in equations (35) the right-hand sides are known after the lower-
order problem has been solved.
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Characteristic Condition

Procedure.- It may be noted that for the computation of the basic
flow fleld both velocity components were prescribed, separately, along
the axis, whereas in the present problem only the ratio of the two veloc-
ities is fixed by the airfoil condition. Thus, an additional condition
is required.

From the fundamental laws of supersonic flow it is evident that no
perturbation of the basic field can exist upstream of the two character-
istics passing through the leading edge in & downstream direction. Exist-
ence theorems for hyperbolic differential equations require that the
potential be continuous everywhere. Hence, the perturbation potential
must vanish all along the leading-edge characteristics.

To formulate this characteristic condition analytically, the equa-

tion of the characteristics has to be known. Suppose the differential
equation is given by:

A(575 @s0) Py + 2B(T5 0,0)0, +

C(%,¥5 BesPy)Byy *+ F(X:5 PpoPy) = O (36)

where A, B, C, and F are linear or nonlinear functions of x, Y,
and the first derivatives ¢, and Py Then the equation of the char-

acteristics is as follows:

Ady2 - 2Bax dy + C ax2 = 0 (37)

so that
% = %(B + \B2 - AC) (38)

Thus, the characteristics are seen te depend only on the coefficients
of the second-order derivatives in equation (36). In general, these
coefficients are functions not only of x and y but also of the
desired function ¢. Hence, in a rigorous theory the characteristics
are not known beforehand but only after the function ¢ 1is determined.
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By assuming a power-series solution for @, this indeterminancy is
removed; the nonlinear equation, equation (36), is replaced by a set
of linear differential equations whose second-order derivatives have
the same constant coefficients for each equation. In this way, the
characteristics of each linear equation of the set turn out to be the
same straight Mach lines, x & By = Constant, determined by the recti-
linear component of the basic flow field, whereas the true characteris-
tics are functions of the entire flow field (including the perturbation
field ¢') and hence they are curved. This is an unsatisfactory state
of affairs.

It is possible to improve the computation of the characteristics
somewhat by considering once more nonlinear equation (5), before it is
split up, and by merely dlstinguishing between the potential of the basic

field ¢B, which is known, and that of the disturbance field ¢', which
is looked for. If the order of magnitude of the various potential coef-
ficients @ik is, for the moment, left out of consideration, curved
characteristics can be obtained also for linear differential equations,
as the following illustration may show.

Substituting the potential series (6) in the form:

p=¢ + ¢ (39)

equation (5) becomes:

fori2fee - (o2 e ) - 5202 - o) (o? o) -

202+ 0) (07 ¢ o ) * 0y') ¢ D20 LEER - (P4 )] -

32 o}l o) -

Since @B has been determined already as a function of x and Yy, equa-
tion (40) may be considered as a differential equation for the unknown @'

only and may then be written in the following way:

A@xx' + 2B¢xy' + Cny' + f(x,y; mx',Qy') =0 (41)
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Here F is, as before, a given function of x, Yy, and the first deriv-
atives ¢y' and my'. Each of the coefficients A, B, and C consists

of one part that depends only on ¢B and a second part which is propor-
tional to @x' or gy':

C

A t
hen(@) o0 L) 2

’

Since it is the prime purpose of this analysis to determine the influence
of the inhomogeneous field upon the pressure distribution around the air-
foil by means of a linear theory, it is sufficient to approximate the
equation for the characteristics, by neglecting in the coefficients A,
B, and C that part which depends on @', so that now:

A
Br® £1(e8) ~ & (=)

In this way, the characteristics of the total field around the airfoil
are approximated by the characteristics of the basic inhomogeneous field.
On the other hand, the lines represented by equation (38) which result
from such a procedure will be curved. Thus, the equation for the char-
acteristics becomes: :

{2 - () - 22 o dele) s

forptfer - ()] - 22 w2 e )
where

ob = MX + beOl + b2¢02 (k)
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Analytic formulation.- Substituting equation (4k4) into equation (43)
and retaining only terms up to first powers in b, the coefficients of
equation (43) become:

[B2+ U+ Dby 01 4 L L ]
-_ggm%m- > (45)
c=[1-(r- 1mpppt . . ] )

vhere @0l and ¢y01 are functions of m(x,y) and n(x,y) given by
equations (2L).

Inserting equations (45) into equation (38) and keeping consistently
only terms up to first powers in b, the equation of the characteristics
becomes:

ay _ MoboyOt ¥ VI - & - v [62 + (7 + o]
82 + (7 + 1)M bp,OL

(2

(46)

and after expanding the right-hand side in powers of b:

gx—y=i%{1-b_|:+1+(7 l)B‘ﬂq)x01+blé°qny°1...} (¥7)

The upper (or lower) sign is used for the characteristics above (or below)
the airfoil. . .

Equation (47) may be solved by an iteration process, in which the
first approximation is obviously

Bl
i
H

|-
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This leads to the Mach lines:
y = /B (148)

where the constant of -integration has been set equal to zero so as to
yield the leading-edge characteristics.

Substituting equation (L8) into the right-hand side of equation (A7)
yields in the second approximation:

dy _ ,1 ), MpP ~ 1va2l (e, OB Mo 9,01
ax " ‘raJIEL 262 G2 e - 0o, - y—+x/}

(49)
From equations (24) substitute for the characteristics above (or below)

the airfoil: ‘
0 1, L B(E) n(o)] |
R

(QYOl)y=ix/B ='%[%é(2x) + Ei%ﬁl 7 m(0) + E%?%]

Inserting equations (50) into equation (L49) and integrating yield
for the characteristics:

. (50)

y = WO(X) + b\lfl(x) e o o

where

ix/B .7

n(EXT] dx +
B

¥olx)
MO X

v(x) = 705 {E . (7 - 3)M02]f0 El(zx) +
w207 + 1) [s(0) = n(o:\}

The upper (or lower) sign refers to the upper (or lower) surface,
respectively. '

Y

(51)
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. Coming back to the characteristic condition indicated in the sec-:
tion "Procedure," the following requirement has to be fulfilled: For

¥y o= Volx) + b¥g(x) + . . .

o' = b0 + b2l + ¢l + ebgpl3 + ezq)lh -0

More explicitly: s

bo0fx; Wo(x) + iy (x) « . ] + pRPM[x; wo(x) + B¥y(x) . L L]

e 2[xs wo(x) + By (x) . . L]+ ebqai,3Ec; Yolx) + By (x) - . o] +

20 s Wolx) + buy(x) . . ] =0 (52)

Expanding @' a&bout y = Ilfo(x) in powers of b yields:
bcplo(x,wo) + bgﬁl(x)q)ylo(x,\lfo) + q)ll(x,llfo):l + ecplz(x,wo) +
€b I__\l:l(x)q)yl2(x,‘4f0) + @13(3:‘1'01] + €2q)lll-(x’¢0) =0 (53)

Splitting equation (53) in powers of b and ¢ furnishes for each
potential coefficient @¥ one characteristic condition:

In ©b:

70(x,¥0) = © . (5ha)
In e:

#2(x,%0) = 0 (51b)
In b2:

cPll(X:"‘l’o) = ‘\lfl(x)@ylo(x:‘yo) (5k¢)
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In €b:

. @13 (x:ﬂr‘o) = 'Wl(x)@ylg (X;W.o) (54a)
In €~:

o (x,¥) = 0 (Ske)

Whenever the relation is inhomogeneous, the unknown potential is expressed
in terms of known lower-order potentials.

Each of the boundary-value problems consisting of a differential
equation, a boundary condition, and a characteristic condition has now
been formulated and will be solved in the appropriate order.

COMPUTATION OF FERTURBATION POTENTIAIS

In the following discussion (see fig. 1) k(x) denotes the ordinate
of the profile above (or below) the x-axis, which is the direction of the
relative wind Mb. To distinguish between the upper and lower surfaces,

ky and kp are used; k(1) is zero or unequal to zero depending on
whether the airfoil is at zero or at finite angle of attack. If there

are two signs in front of a term, the upper sign refers to the upper,
and the lower sign, to the lower surface. ’

Computation of @lo

That part of the disturbance potential which is proportional to b,
namely, Qlo, obeys the following equations: The differential equation:

—

32¢kx10 _ @yylo =0
the boundary condition:

q>y1°(x,o) = -n(x) > (55)

and the characteristic condition:

o'0(x,x/B) = 0
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To obtain a solution, it is convenient to introduce the characteristic
coordinates:

£ =x+ By
n=x- By
Then
Px = P * Wy
(56)
%y = B(% - @)
and
Bo0y - Oyy = 4850, (57)

As the characteristic condition is different on the upper and lower sur-
faces, the two surfaces will be treated separately.

Upper surface.- In characteristic coordinates equations (55) may be
written as follows for the upper surface: The differential equation
becomes -

432%“10 -0

the boundary condition,

10 10
o020 - @) __ -at0 (58)
I
and the characteristic condition,
Integration of the differential equation yields:
9™%e,m) = F(t) + G(n) : (59)

where the arbitrary functions F and G are determined by the boundary
condition and the characteristic condition.
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From.the characteristic condition there follows:

. qulo(g,o) =F'(&) =0 for any ¢ (60)
Then the boundary condition requires that
ol (&) - )], =8 (0 - @ ()] = om0 (61)

Taking into account equation (60), it follows that:

5

G'(x) = 3 n(x)
(62)
G'(n) = % n(n)
Therefore:
¢, 0(x,y) = % n(x - By)
(63)

cpylo(x,y) = -n(x - By)

To obtain the pressures on the airfoil surface y = €k(x), equations (24)
may be expanded: :

I

910 [z, eky(x) ] = 9 10x,0) + edy(x) ey 10(x,0) . . .

=%Mﬂ-e%uh%ﬂ+... L (6w
O0(x,ek (x)| = -n(x) + ek (x)n'(x) + . . .
Lower surface.-~ On the lower Furface, the boundary condition is the

same:

BQQE}O - qJ*110)§=n=x = -nlx)
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but the characteristic condition differs:
9'%(x,- %) = o1%0,) = 0 (65)

From equation (65) there follows: q)n(O,n) = G'(n) = 0, for any 7.
Then, from the boundary condition there follows:

J

BP, = BF' ()¢ = -n(x)
so that

9 (8) = -3 n(t) (66)

Using equations (L42)

-

cpxlo(x,y) = -% n(x + By)

and - (67)

qnylo(x,y) = -n(x + By)

On the airfoil surface:

chIOE’GkL(}Q] =—%n(x) - ekL(x)n‘ (x) . ..
< (68)

qJYlOE,ekL(x)] =‘—n(x) - gskL(x)n’(x) . . .

~
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Computation of @11

For the potential .Qll which is proportional to b2, the boundary-
value problem can be formulated by means of equations (32c), (35c),
and (54c): The differential equation is

B2, M - q)yyll - oM, {lb +1)+ (7 - 1)32] (q)moLr cpxx10) (CPXOl wxlo)J

01 10 0l 10 02 2 02
2o+ 320) (8™ #9310 } + 93302 - 8P

the boundary condition, L (69)
9, (x,0) = 0

and the characteristic condition,

@LL(x,4x/B) = -y (x)@y10(x,4x/8) |

Upper surface.- Inserting the values for ¢Ol, mlo, and
nyoa - B2Qxx02 from equations (24), (64), and (30), for the upper

surface problem (69), in characteristic coordinates, is as follows:
The differential equation becomes

B

[ +1)+ (- 3)B§| {—IL'(;HE(E) N n(ﬁ&):' N

E%?l ml(§5 +'n'é§T[}> (70)

the boundary condition,

gy, = -%(@ + 1062 + 2] [t 4 w2l

B(cpgll - cpnfu)&n:x =0 (1)

and the characteristic condition,

o"1(€,0) = ¥(&,0)n(0) (72)
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The rest of the procedure may be indicated here briefly, the details
being carried out in appendix A.

Upon integrating equation (70) with regard to & and 7, respectively:

£ = Gy (m,n) + P (E)
L (73)
inl = Go(m,n) + Py'(n)

where G; and G, are known functions of m(&), m(n), =n(t), end
n(n) and P, end P, are unknown integration constants.

Now, characteristic condition (72), upon ditferentiating with regard
to &:

t

?g(¢,0) = ¥1,(8,0)n(0) (74)

determines P;'(&) by means of equations (73).

Then boundary condition (71), after imsertion of equatioms (73),
fixes Py'(n).

With P; eand P, . determined, the two velocity components @Xll(x,o)

and myll(x,o) that are necessary for the computation of the pressure on
the airfoil surface can be determined by means of equations (73) and (56).

Lower surface.- For the lower surface an analogous procedure can be
cerried through; note that the characteristic condition is now:

¢, 11(0,n) = ¥71(0,1)n(0)
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The resulting velocity components on either airfoil surface are
as follows:

2
Py (x,0) =¢f—B%(|Z7 - 3M 2+ ’Z' {in—(;%—- + En'(X) e
(] [ sl dn.,} 2l - 2 Falnta)

o - ne2)

B

- (75)

myll(x,o) =0

Computation of ¢12
That part of the disturbance potential which is proportional to e,
Qle, mist be expected to equal the expression obtained in the Ackeret
theory.

Hence, the velocity components above (or below) the airfoil are:

[
n
I}

?%? kU(L)'(x ¥ BY)
(76)
12 - Moky(z)' (x = BY)

)
e
[

By expanding about y = O, the velocities on the upper (or lower)
airfoil surface are:

~
Qxlz[g,Ek(XZ] = ;%? kU(L)'(x)_+ MbekU(L)(x)kU(L)“(x) . o

—— o
Mka(L)'(X) F MbBGkU(L)(x)kU(L)"(X) . . .

il

q)yl2 X, ek(le
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Computation of Ql3
The potential @13, which is proportional to €b, may be considered

to originate from some kind of interaction between the inhomogeneity of
the basic field and the airfoil disturbance. The boundary-value problem

for @3 can be formilated by means of equations (32d), (35d), and (54d):
The differential equation is

-~

B2¢xxl3 - nyl3 = M {I} +1+ (7 - l)B%]EéxlaQPXXOl + Qxxlo) +
CPxxlE(q’xOl + q)xlo)] N QE)yle(q)xym + q,xylo) N

T (nyOl + cple):l}

the boundary conditionm, > (78)

9y13(x,0) = ky(ry* () [m(x) + 9,10(x,0)] -

iz () [B%0 (2) + @y2%x,0)]

and the characteristic condition,

90, 2x/B) =~y ()oy B, /) ]

Upper surface.- The treatment of the upper surface is as follows:

Inserting for ¢l° and ¢l2 expressions (63) and (77), problem (78)
written in characteristic coordinates becomes:

The differential equation:

”SH+%wmmn+%§B+

[ + 1)(e2 + 1)] {kv'(“) o (n) + n_l(ati] * kg ()]mn) + n_(gll]}> e

2
bpZp,, 13 = %(E)’ +1) + (7 - 3)p2] {kU'(n) m (&) +
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The boundary condition:

B(cpr ) %13)§=T]=x = ky' (x) jn(x) + 'n_(;”):l - szU(X)lEn'(x) + _n"(ax) (80)

’

The characteristic condition:
913(8,0) = -¥1(€,0)M k' (0) (= 0) (81)

The rest of the procedure may be indicated here briefly, the details
being carried out in appendix A.

Upon integrating equation (79) with regard to € and 1, respectively:

q)gl3 Fl(m:n)k) + Jl' (&) (82a)

and

%

Fg(myn;k) + Jg' (T]) (82b)

vhere Fj and Fp are known functions of k(&), m(&), n(E), xk(y),
m(n), and n(n) and Jyp and J, are unknown integration constants.

Now characteristic condition (81)

9gt3(8,0) = by (8,000, (0)

determines J,'(€) by means of equations (82). The function Fq

vanishes for k(0) = 0 and k'(0) = 0, as can be seen from appendix A.
Also equation (81) vanishes in that case. Then it follows simply that:

Jl'(ﬁ) =0

This simplification suggests making the assumption . k'(0) = 0, which is
an artifice frequently used in linearized theories. The error introduced
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by this deviation from the true contour is known to yield small inac-
curacies in the flow field in a very thin strip adjacent to the two
characteristics passing through the leading edge. Therefore the sim-
plification is permissible.

Boundary condition (80), after insertion of equations (82), fixes
Jo'(n). With Jy and Jp fixed, the two velocity components P 13(x,0)
and ¢yl3(x,0) that are necessary for the computation of the pressure on
the airfoil surface can be determined by means of equations (82) and (56).

lower surface.- For the lower surface an analogous procedure can
be carried through. Note that now the characteristic condition is

P;(0,n) = O and that different expressions for k(x), 10, and ¢l2
have to be inserted.

The resulting velocity components on the airfoil surface are:

13 _ M2 2 g _ 882 : , o], |
cpx (XJO) —1-8—Bé- EMO (7 —l) + - MQZ]kU(L) (X) m(x) + _B_] +
L '
EM°2(7 "3 O %kﬂm(x) m (x) * %)‘]} L (83)
wf%mm=kmmwmﬁu)i%§]-&%@ﬂﬂEqﬂinéw]

[N

Computation of @lh
That part of the disturbance potential which is proportional to 52,

that is, @lh, obeys equations (32e), (35e), and (5ke): The differential
equation is )

g2, 14 cpy_ylll- - —M°E7 F 1) 20,12+ (7- Dy Py, 12+ 2q)y12q’xylﬂ

the boundary condition,

> (8L4)
PyH(x,0), = @ 12(x,0)ky(r) " (%) - @y 2(x,0)ky () (%)

and the characteristic condition,

cpl)'l'(x,i'x/ﬂ) =0
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Upper surface.- For the upper surface, after inserting for ¢12
expressions (77), problem (84), written in characteristic coordinates,
is as follows: The differential equation becomes

)
4o, 14 = - 2—;—@ + Ly (n)kg' (n))] (85)
the boundary condition,
Mo 1 11
oo - ), - - R 200 + Byt () (86)

and the characteristic condition,

ol¥(&,0) = 0 . (87)

Integrating equation (85) with respect to ¢ and 1, respectively:

M5 ]
g = - ﬁEE—.}—l‘ku'(“)e:l v 1 (e)
5 - (88)
q:n1”=--%[7+ l)kU’(n)kU”(n)Ezl *My () |

-’

.

where Mi and M, have to be determined from the boundary condition
and the characteristic condition.

From characteristic condition (87) there follows:
9 (€,0) = 0 (89)

which, by means of equations (88), fixes Mi‘(g) = 0 if again the assump-
tion k'(0) = 0 is made, as in the computation of @13,

Then boundary condition (86), after insertion of equations (88),
fixes Mo'(n).

With M; and Mp -fixed the two velocity components on the airfoil
surface can be determined by means of equations (88) and (56).
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Lower surface.- After analogous considerations %or the lower surface
have been carried out, the velocity components on the two surfaces are:

-
o LH(x,0) = -% {Ey + 1M - k(M - 1ﬂ ky(p)' 2(x) +

[18"ep(2) Gy @} - (90)

2y HH(x,0) =:MB—° ty(r)' Z(%) * BMoky( ) (¥)ky(r) ' (x)

FORCES AND MOMENTS ON AIRFOIL

Complete Velocity Field on Airfoil Surface

To obtain the pressure distribution, the squares of the velocity
components of the whole field are needed. By adding all of the com-
ponents (up to the second order in b and ¢€), there result:

9y? =M%+ b° wa‘;l)a + (90) + E@XOlq)xlﬂ +
2eb0, 120,10 + 30L) + 6e(cpxlg)2 v o, E(‘PxOl + 0 10)

L (91)
a2 + b2(p02 + o)) + e 13+ Ge%{lh]

q)ye - E2(%12)2 + p2 (%01 + cp}}0)2 + 2€bcpy12(%01 + cpy10)

-~

Substituting the expressions derived in the preceding sections:

-~

2 sz + bAl + €A2 + b2A3 + ebAh + 62A5

Px
~ (92)

\Y)
I

€2Mb2kU(L):2(X)
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Here:

A, = Molj’ﬁm(X) £+ 2 -D(Tx)z'
2
t2 - T potay 00
2
Ag = ‘:En(X) iggng:Z‘?z(KV— 3)M02+ﬂ X
+n2(x) ' + n' (x) X n(qn') .
{_—62 +‘|zn(X)- B]\/o 8 dq}+
(93)
R R |
n(x)
B:I ¥

kU(L)(x)[Z; + M2y - 3) + % m (x) = nrl(ax)]}

M3 3
Ay =t-l£-—3- kU(L)'(X) )-l—Moe()' -1) + 8 - %—]E(x) +

Mo

MO 652
b5 = ~—oF Fo(z) 2(")<7 vl g.%)

Pressure Distribution on Airfoil Surface

The pressure distribution can be obtained from the velocity distri-

bution by means of the energy equation (reference 2) vhich, in dimension-
less form, is as follows:

1 p(po) 1
={L) - 1| = =
7 - l|po\p 2

<M02 - '3) (9%)
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Here p,, 0y, and M, are taken for the homogeneous flow field and p,

P, g, and c are local quantities. By use.of the isentropic p - p
relation, equation (94) becomes:

7-1

e (2.)_7— -1 = %E«JO? - (o2 + %2)] (95)

Po

and after substituting p = Py + Ap and expanding in powers of the

relative pressure increment %Q, which is small compared with 1:
o]

AL_i(éP_)z e 1w VP
TP 2\"Po poc02 2<é0002)
= %Eioe - (qaxz + q>y2):| (96)

Upon substituting equations (92) for @x2 and @yz, equation (96)
may be solved in successive approximations. In the first approximation

2
%%—) and second-order quantities in the velocities are neglected.
o

Then:

2
£g>2 = -bM, |m(x) = n&f?] t ¢ Mg kU(L)'(x) (97)

PoCo

PoCo
second-order quentities in the velocities throughout equation (96), the
second approximation yields:

Upon substituting from equation (97) for ( Lg)2> and keeping

1

__92_5 = ePl + bP2 + b2P3 + ebPu + 62P5
3PoCo
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Here

2
Py = 22 M—%- ()" (%)

_ 1 b, ]2(x) i n2(0)
P3 = 2B2 {K?’ - l)MO + a-—s—z— - (7’ + l)MO —-;2— +

[7 - 3)MO )_I_Mo:l m'(x) * (X)] n(x ) ax' +

2(o° - 1)2m2(X) * EZMOH(? +1) - 4m?2 - 11] -—-—_—m(x);(x)}

n(x:]EkU(L) (x) +

By = 507+ 2t - 1) { n(x) :
()
n BX]kU(L)(x)}

b5 = 281*[7 + 1)M0 2 - lﬂ kU(L)'E(x)

m' (x) +

37

> (98)

-~

As shown in appendix B, equations (98) for the pressure distribution
on the airfoil surface can be checked in a limiting case, in which com-
plete agreement of equations (98) with an expression derived by Ferri

(reference 2) is obtained.

Drag Force

In order to obtain the drag force, the component of the pressure
which is parallel to the flight direction x has to be integrated over
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the upper and lower surfaces. Denoting, as in figure 1, by EGU(L) the

angle subtended by the local tangent of the surface with the flight
direction, the drag becomes:

¥y

D =,jFAPU sin € 6 ds; -k/tﬁpL sin ¢ 6. ds; (99)

where dsU and dsL are the line elements of the airfoil surface.

Keeping only terms up to third orders in ¢, equation (99) becomes:

1 1
x Zfo ApUGk_U'(x) ax - zj; ApLsk_L'(x) dx

Hence, the drag coefficient is:

5 1
D/c
CD=___/_0_=EL 22 Ny - [ Vit |ax  (100)
Ep 21 Mb2 lp c 2 lp c 2
5Poto o -|\2%% Jy 2P0% /1,

For (Ap)U and (Ap)L expressions (98) have to be substituted in
equation (100).

In the case of a symmetrical airfoil at zero angle of attack
kU(x) = —kL(x) = k(x). Then:

_ 2 2 2
(CD)EEO = € Dl + beD2 + eer3 + € bDu +‘€3D5
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Here:

1
Dy =§_/; [xr (x]]? ax

o
no
I

&+

1
f m' (x)k(x) dx
0

MO2BE

L, < N
E’)‘ - 3)1-10lL + IIMOQ:L/; P_Eé_) k'(x)[/: n(x') dx.:l -dx .
2(m,2 - 1)° fl m2(x)k" (x) dx}

0

Dy = 1 {Ey—l)Mou+afln—2r(3}2{—)k'(x)dxl
0

L (101)

D), = -ﬁ {Ey + M - b2 - 1):||:2j;1 m(x)k' 2(x) ax +

f m' (x)k(x)k'(x) d.x:|}

0

. X )
D5 = 315{137 F Mt - b, - QIL 1 3(x) dx}

In the case of a symmetrical airfoil at a finite angle of attack €6
the decomposition of Iky'(x) and ky'(x), suggested in the section on
airfoil geometry (appendix C), has to be carried out. In other words:
Replace lg;' in (Ap)U and k.' in (Ap)L by:

—

L
ky' (%) = k(x) - 6
and . (102)
kL'(x) = -k(x) -6
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vhere now k(x) % k(x) is the customary profile function, for which

k'(1) = o.

Then, upon substituting the modified expressions (98) into equa-
tion (100), the following generalizations of the coefficients of Cp .

have to be noted:

52
D! =Dl+h'.%
1
D, =D2+% | a0 ax

D3'=D3 - E:g? {Ky _3)M01" hmoﬂj: m' (x) I:/;X 3(-2—')- d.xil dax +
E_Moh(7+1) - h(Moz‘ 1):] |:/(;1 m(x) Q%_)_ dle} _

1

1
Dy' =D + 93E7+1)M01‘-4(M02-1§I{|}£n—(;—)i'(X)dX+

MoB

1 rl
n'(x) =, n'(x) =
L/;—B—-k(x)xdx-i-j(; Tk(X)d%+

L
EB; m'(x)x dx - 2 ﬁm(x) dx:l}

> (103)
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The physical meaning of the various terms in equationé (101)
or (103) may be readily interpreted: D; (or Dy') is the wave drag

of the airfoil well-known from the Ackeret theory; D5 (or D5') is

the second-order drag known from the Busemann approximation (refer-
ence 3); D2 represents the horizontal buoyancy acting on the airfoil;

D3 may be denoted "second-order buoyancy"; and Dy is the term charac-

terizing the interaction between the airfoil field and the given pres-
sure gradient of the wind tunnel.

Insofar as beD, is concerned, it is to be noted that the integral
is taken over the product of the local volume element ek(x) dx and the
local pressure-gradient coefficient bﬁi m'(x). Since the pressure gra-
dient is varying from point to point, this expression represents, indeed,

the generalization of the classical result which is thus seen to hold not
only for incompressible but also for supersonic flow.

However, the other correction term for the drag, which can be derived
for incompressible flow (see "Introduction"), does no longer appear in
the supersonic range: The simple concept of the "apparent mass" is to be
replaced by more complicated expressions.

Lift Force
In order to obtain the 1ift, the component of the pressure which is

perpendicular to the flight direction has to be integrated over the upper
and lower surfaces of the airfoil. Thus:

L= -J/EA@)U cos € 6 ds; + L/\(Ap)L cos € 6 dsy

which up to and including second orders in ¢ becomes:

Ly -1 ];l (a0} - (20)p ] ax (10%)
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The 1ift coefficient is:

1
op = - = f &p \ [/ L@ ax (105)
v M2 O _]_.pc 2' l._pc 2
0 2070 /yg 200 /L,

For (A@)U and (A@)L expressions (98) have to be substituted in
equation (105).

In the case of a symmetrical airfoil at zero angle of attack
kU(x) = -kL(x) = k(x). Then:

(C )5=o = BL, + boL, + ¢bL,

Here:

o h T ax)
Ll"%j; g

1 > S
o= b {0 - ot [ o] [ o

1
2[(7 + i - 2,2 - @J; n(x) 22 d.x} | (106)

1
L3 =E§B—3{E7+ 1M - (M2 - 15\[22/(; I—‘(Bi)k'(x) ax +

i
0 B

Note that equations (106) vanish for m = n = 0, as they should.

4
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In the case of a symmetrical airfoil at a finite angle of attack ¥,
after making the same modifications as in the case of the drag, the fol-
lowing chaenges in the coefficients 1; have to be made:

Lli

Il
i

!

Iy’ = Ip

feod

Furthermore, a coefficient

L5
' = € —
€Ly € 5

appears.

The coefficients Ly' and 15' represent the 1ift expressions
known from the work of Ackeret and Busemann (see reference 3), Ly

and L2 are vertical forces due mainly to the vertical pressure gradient,
and L3 is the interaction term.

Pitching Moment

The moment about the leading edge is obtained by integrating over
the moments of the differentiasl 1ift forces dL acting at a distance x.
Therefore the moment coefficient becomes:

2 1
M/c VA
Cp = /20 = 12 JF P \x ax
N -

1., 2.
E%%)Z Yo 5%

The integral is to be taken over the upper as well as the lower surface.

Since an upward 1lift which is to be considered positive produces a
negative (diving) moment, the contribution of the upper surface is:

-1 Ap
(CM)U s Jél T 5 x dx
o 5P0%0 U
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The contribution of the lower surface 1s:

1
1 Ap
()= - =5 (1 2)1““
Mo™ 70 \ZPo% /1,

18
1 JAYS Ap ,
°M='—2f ___> (-——)xd.x (108)
%™ Jo '%poco2 U %’poco2 L

In the case of a symmetrical airfoil at zero angle of attack
ky(x) = -k (x) = k(x). Then:

Hence:

(CM)_6.=O' = bMy + b2M2 + €bMg

Here:

_ s [ oa
Ml-——M—O‘/; x—B—-dx

1 '
M2=£%—B'§{E7-3)Moh+lmoﬂ£ m'(X)X[fox-Ii}é—)-GXZ\GX+

]
2[@04(7 +1) - 2(M02 - iE]JC m(x)E'-(-gl b dx;} . (109)

1
My = - iﬁ—?){‘z7 + 1)140lL - u(m 2 - 1‘)] I}”/; E(Bl)—xk'(X) dx +

f E'—gﬂ xk(x) d.x:[} '
0
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In the case of a symmetrical airfoil at a finite angle of attack 6
after making the same replacements as before:

My'o= My ]
Myl = Mp
- X , 1 > (110)
M3' = M3 + MOB3 E'y + 1)My" - M(M? - li] fo xm(x) dx +
1
f x2m* (x) d{l
0

Furthermore, two additional coefficients appear:

'GM)_'_' = -¢ 20
B

and

_ 1
Eng, = &2 % {E’y ED) T (M2 - 11'](2 xk' (x) ax

The coefficients My,' and M5' represent the moments known from
the Ackeret and Busemann calculations, M, and M, are the moment cor-
rections due to the pressure gradients of the wind tunnel, and M3 is

the interaction term.
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Application of Theory

As a simple example of the foregoing general considerations, the
force corrections will be given for a symmetrical airfoil placed at
zero angle of attack into & tunnel field, for which

m(x) = n(x) = x

[
(i.e., for which the pressure gradient bpUm' (x)-ZE is linear in x):

~

1
CD=62§-];1 E{r(xﬂgdx+ebm—t-f k(x) ax +

0]
1
= i (7 + 1% - (2 - 1):]]; [ (7] ax -

ep2 1L @02(37 - 1) + Mt + u]f xk(x) dx -

[:7 s )Mt - 4,2 - I‘f: xk' 2(x) dx

MOB3
> (111)
CL=b-M-§—B-b26—M}B—3E04(57+ 1) - 4(M02- 2H -
1
M(-:-Bh-@ + MY - (2 - I‘j; k(x) dax

Cyq = -b ﬁ + b2 m@oh(57 + 1) - 4(M02 - EH +

1
€b MT?’BEEﬂol‘(y + 1) - h(Mo2 - 11|£ xk(x) dx
J



http://www.abbottaerospace.com/technical-library

NACA TN 289 ) 47

For a doubly symmetric diamond profile of vertex angle ¢ these
formulas reduce to:

Cp = E2-§+ ebi - b é—;‘-EEdOQ(W - 17) + h(Mou + h)] -

b M—iglzdoh(y + 1) - lL(Mo2 - lﬂ

4
o =i - gl 7 v ) - M -2

} (112)

€b —@EEOL‘()' + 1) - lt(Moe - lﬂ

Cy = -b _31%3' + b2 QO%QE‘"#(” + 1) - b, - eﬂJ’

b &?an% +1) - k(w2 - 1)]

Numerical results obtained by means of equations (112) are plotted
in figures 2 to 9 -for representative values of b and €. In figure 2

the components of Cp which are proportional to 62, €b, eeb, and €be
are graphed separately, and in figure 3 the total Cp is shown as a
function of the Mach number M,. Similarly, the components of C; and
Cy which are proportional to b, ¢€b, and b° are plotted separately
in figures 4 and 6, respectively, while the total C;, and Cy are shown

as functions of M, in figures 5 and 7, respectively. For the case of

a finite, small angle of attack €0 +the behavior of the 1ift coefficient
and its components is demonstrated in figures 8 and 9.
Qe
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The relative importance of the various terms may be seen from the
plots; for example, for the drag the first-order horizontal buoyancy is
the major correction to be epplied and is on the order of 25 percent of
the true drag. Next in importance is the interaction term which amounts
to about 10 percent of the wave drag. The second-order buoyancy amounts

to about 1 percent.

The same relative magnitude of the correction terms exists in the
1ift coefficient, if the case of an angle of attack is considered as in

figure 8.

For the 1ift and moment at zero angle of attack the term proportional
to b represents again the largest correction, while the remainder are

small compared with it.

New York University
New York, N. Y., October 17, 1951
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APPENDIX A

COMPUTATION OF PERTURBATION POTENTIAILS
i1, ol3, mp ol
Computation of ¢ll
The details of the computation of the potential ¢11 are given as
follows: .

Upper surface.- For the upper surface the derivatives in eﬁua-
tions (73) are given by:

9L = -—g%e-(w +1)(1 + p2)m(n) AL 4

' M 1
[ +1+ (- 3)52]{111'(5) : E—éﬁjf 21 gy

[nc2) 3%1].11_(;_) )+ B () e
qnnll ) -%Q7 . 1)(1 + g2) m(n)E‘.gQ+ mv(n)-r%g +
n(gi]gill +

B B

' £ '
n_B(ﬂlf En(g') + 2.(_;_).:‘ dg*}) + Py’ () (A1b)

[y+1+ (- 3)52:|{E1(5) +
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Equation (T4) in explicit form is as follows:

Cpgll( £,0) = o (7 + 1)(1 + B2)|m(0) - E(L)] +
8p3 B

ly+2+ (- 3)3’{]@&) s E(;—>:|}n(o> (42)

The constants of integration are found to be:

PI(E) = 2 (y + 1)1+ p2)20 (o) ,
88 g2

- 2lim n'(€) o(n') _,
P+1+ 0 3)&]‘:(§)+ BJf 5 dn} (43)

Pp'(n) = E'L<(7 + 1)(1 + B2) {D;(EO) _m(n)n(n) |

82 B

nEl(n y2in). é“) + o' (n)%{l} +

\ 1 1 '
E+1+(7-3)B2:| _né_n)f El(n')-kn(g)‘]dn'-
m' (Tl) + n'( )jl n("l ) dn }) (All-)



http://www.abbottaerospace.com/technical-library

NACA TN 2849 51

Lower surface.- For the lower surface the derivatives corresponding
to those in equations (73) are:

q)gll = g’—gz-<(7 + 1)(1 + Be)l‘;(g)__n"(sé) + m'(g)E(;'——):ln +

[7+1+(7—3)s?] E“(“)‘n_(ﬂ%—“
1 T .
n_é‘g_)f El(“') ) 9(%1] d"'}) + Pp'(8) (458)
Bt = g%(“ + 1)1+ Bg)m(g)iﬁg-)- +
E+1+(7-3)ng E“(“,) -n—(gl__”l(ﬁ;_g)+

m (q) - n'f;“]fg n(g') ag}) (A5b)

The characteristic condition in explicit form is as follows:

n(0

0, 71(0m) = 25407 + 1) + #2)[al0) + 24

+

[7 + 1+ (7 - 3)B§| El(n) - %]}nw) (46)
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In this case the integration constants come out to be:

Py'(8) = - §°—2<(7 +1)(1 + Be){[(g)n (8) , .(g)n(g)]
[(0) + (5)2@-]}
Frie - 3)82:I{L[(3§—)-f§E(q') 20
E; (®) - n_r(sél]fog % dg’}> (A7)

2
Po'(n) = - -g—:—z- (7 + 1)(1 + 32)[- n—-‘ig—ﬂ +

] 0 T
E+ 1+ (7 - 3)B§]Eﬂ’(n) - -r%”):lf %—)— dE,'} (A8)

]

Computation of @3

The procedure for computing the potential 3 is as follows. For
the upper surface the derivatives in equations (82) are given by:

2
cp§13 = g_;_?((y + 1)(1 + B2)|m(n) + P'(,;]—):IRU'(TI) +

[ +1+ (- 3)52]{@(@) . n'gﬂkU(m .
E(g) + By (n)}) + 3,1 (8) (A98)
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2 1
P13 = %Q)’ + 1)(1 + B2) {En’ (n) + -I%l]ku'(n) +

[ncn) +E(Bl‘l]kU~<n)}g .
[+ 1+ (7 - 3)82] El(s) s E(Bg—ﬂku‘(’\) +
ON El(é') : ig—)zl dg'}> + 30 (aop)

Putting k(0) = k'(0) = 0, equation (A9a), together with equa-
tion (81), yields J;'(&) = O. On the other hand, substituting equa-

tions (A9a) and (A9b) into equation (80) yields:
2
1 (n) = ((7 F 1)1+ 82) {E“ () + 20 )

En(n) + -n(—ﬂnku" (n)} +
Ev +1)(1+ 82 - BBjE(n) ¥ n(nilkU (n) -
| 1
v o9y [ Enw) - Bt )] at' +

li+ 1+ (7 - 3)82 + SL;]kU("‘)E'(") 2 gﬂ) (410)
M,

The lower surface can be treated analogously.
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_ Computation of @l

In computing the potential @14 the upper surface is treated as
follows. Putting in the first of equations (88) x(0) = k'(0) = 0, this
equation, together with differentiated equation (87), yields My (&) = o.

On the other hand, substituting equations (88) into equation (86) yields:

B2 2 M,

5
My (1) = -2 <7+ = lHBi)ku'e(n) = {7y + Lk ()it (n) +

hpt
"

(o]

g () (n) (A11)

The lower surface can be treated analogously.
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APPENDIX B

CHECK OF EQUATIONS (98) FOR PRESSURE

DISTRIBUTION IN A LIMITING CASE

Ferri (reference 2) represents the pressure distribution over an
arbitrary surface, which is exposed to a uniform stream of Mach num-
ber M,, as a power series in terms of the local angle of attack 1.

Thus,

P-p
1. Fan + a2n2 + ... (B1)
p,c.2

171

where a; and a, are given functions of My, p is the local pressure,

and Pqs the free-stream.pressure.l

One may note that Ferri's result corresponds to a limiting case of
the general nonuniform field, namely, to the case in which the basic
flow 1is characterized along the X-axis by an x-component M, + bm and

a y-component bn, where both m and n are constant.

The agreement of the present result with Ferri's can be seen as
follows. BExpressions (24) for QXOI and my01 indicate that if m(x)

and n(x) are constant along the axls, they are also constant in the
whole xy-plane. The same is no longer true in order b2, because the

differential equation for ¢02 is inhomogenecus. However, up to
order b, the basic field may be considered uniform in this limiting
case.

The Mach number of this uniform field is:

c
M; = E% (Mb + bm_)2 + (bn)?2 (B2)
The angle of the flow direction with the local surface is

n = €6 + ﬁ;{giai (B3)

lNote that Ferri's coefficient is here multiplied with Mlz.
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bn )
where €6' and ———— are the angles subtended by the x-axis with

Mb + bm

the local surface and with the stream direction, respectively.

In applying equation (B1l) it should be noted that Ferri's pressure

coefficient is teken with respect to M, while the coefficient %
PoCo
in this report is based upon M,, which is related to My by equa-

tion (B2). The connection between the two pressure coefficients is
given by the relation y

P-DP coefé - Py Py Po = Pp ©1°
R -l e (B%)
per® e &oco S s R

Po - P1
P1e1?
where the Mach numbers are M, &and M;, as well as pOIpl and co/cl

may be obtained by the isentropic energy relation.

where , representing the pressure difference between points

Substituting Ferri's result for p - Pq5 with M; and n ‘taken
from equations (B2) and (B3) and the expression for P, - Py obtained

from the energy relation, equation (BY) may be expanded in powers
of b and yields:

P - Do 6'M,2

2w - efm e ) -

PoCo

12y 2
62%(7+1)M0”-A(M02-1ﬂ -

¢b ::240 (7 + D)M* - L(MOQ - H(m + -El) (B5)

which includes terms of order €, b, ¢b, and €2 but not terms of

order b2.
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On the other hand, equation (BS) can be obtained from equation (98),
if m(x) =m, n(x) =n, and k'(x) = -8' are substituted and the
b2 term is disregarded. Thus, in the limiting case considered, Ferri's
and the present results are identical.
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APPENDIX C

ATRFOIL. GEOMETRY

NACA TN 2849

In order to show that the considerations in the text pertain to
airfoils at both zero and finite angles of attack, the geometry of the

airfoil will be considered in detail.

If the chord of the airfoil is at zero angle of attack, the local

slope is given by

= ¢k'(x) x~ €6

k&

vhere y and k(x)
lower surface (see fig. 1(a)).

&)

= -ek'(x) = €6r

ek'(x) = €6y

TN
£l&
F_/
|

(c1)

are positive on the upper, and negative on the
If the airfoil is symmetrical, then:

r (c2)

-~

Figure 1(b) may illustrate how these relations have to be modified

in case the chord of the airfoil is at a finite angle
the flight direction x.

€0 relative to

Two coordinate systems may be used, one whose x-axis colncides with
the flight direction and another one whose X-axis coincides with the

chord. Then the slope of the profile above the flight direction x is:
dy _ ‘
= = ¢k (x)
= tan ¢(6 - B)
~ €(e - 09)

(c3)



http://www.abbottaerospace.com/technical-library

NACA TN 28L9 59

where tan €60 1is the slope of the profile above the chord. If the
profile function gbove (or below) the chord, ¥ = e¢k(x), is introduced,
then

€0 ~ tan ¢6 = k' (%)

and equation (C3) can be rewritten:

Yy 53 -3 (c¥)

Note that ¥ > O on the upper surface and y < O on the lower surface.
Then, at P in figure 1(d), €6 1is positive because y increases with
increasing X. Fixing the sign of 6 analogously to that of 6, 6 _in

the sketch is positive and larger than 6, so that in equation (C3) -g%
comes out negative, as it should according to the figure.

Now, the barred and unbarred coordinate systems are related (neg-
lecting second orders in ¢€) as follows:

~x - y6

ol

~y+ x6

<l

Then

ek' (X)

ek’ E(l + 62'9'2) - 6 k(%) e‘ﬂ

ek' (x)

2

Therefore, equation (C4) may be written:

%x}:' = ek'(x? = EEE T(x) - 5] (c5)
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Figure 1.- Airfoil geometry.
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Figure 2.- Components of drag coefficlent Cp plotted agalnst Mach
number M, for diemond profile. ¢ = 0.05; b = 0.05.
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Figure 3.~ Total drag coefficient Cp
for diemond profile.

as functlon of Mach number M,
€ = 0.05.
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Figure 4.- Components of 1ift coefficient C;, plotted against Mach
number M, for diemond profile. € = 0.05; b = 0.05.
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Figure 5.- Total 1ift coefficlent C7, &8s function of Mach number M,

for dtemond profile. g = 0.05.
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Figure 6.- Components of pitching-moment coefficlent Cy plotted

against Mach number Mg for dilsmond profile. € = 0.05; b = 0.03.
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Figure 7.~ Total pitching-moment coefficient Cyq as function of Mach

nmumber Mg for diamond profile. € = 0.03.
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Figure 8.- Component of 1lift coefficlent Cp plotted against Mach

mmber Mg for dilamond profile at finite, small angle of
b = 0005.

attack ¢€80.
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Figure 9.~ Total 11ft coefficlent Cp as function of Mach number M,
' for dimmond profile at finite, small angle of attack €6 = 0.05;

§ = 0.05,
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