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By Simon Ostrach

SUMMARY

The natural-convection phencmenon is analyzed and it is found that
the flow and heat transfer, in general, not only are functions of the
Prandtl and Grashof numbers but also depend on a new dimensionless
parameter. If this parameter is not negligibly small, the compression
work and frictional heating may apprecisbly affect this mode of heat
transfer.

Consideration 1s given to the particular case of~fully developed
natural-convectlion flow of fluids with and without heat sources between
two parallel long plane surfaces the temperatures of which are main-
talned constant but not necessarily equal. These plates are oriented
in the direction parallel to the generating body force. Solution of
this problem yields detailed Information on the velocity and tempera-
ture distributions and heat transfer to be expected for such flows
In tall narrow chamnels, on the effect of heat sources in the fluid,
and on the effect of frictional heating on the process. It is found
that the frictional heating and the heat sources increase the velocities
and temperatures wlthin the channel formed by the two surfaces.
Increasing the ratio of the two wall-temperature differences (wall
minus outside ambient) also leads to similar results.

INTRODUCTION

Flows which are generated entirely by the action of body forces
(such as the gravitational force) on fluids with density variations
due to heating are referred to as natural- or free-convection flows.
Tt has previously been pointed out (see reference 1, for example) that
natural-convection flows are of practical importance 1n aeronsutics.
The use of natural-convection flows in hollow passages In turbine rotor
blades for cooling is one of the applications of this phenomenon in
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practice. With the advent of the possibility of nuclear power, the
natural-convectlon process becomes of even greater'importance, because »
this mode of heat transfer appears in some of the many schemes for

extracting the heat energy from an atomic pile. The use of liquid

metals (in which heat may also be generated by heat sources) as the
heat-transfer fluid for such applications is being considered because

of thelr suitable behavior at the high-temperature levels that would

be assoclated with atomic power.

To date the theoretical investigations of natural-convection heat
transfer have been restricted to such simple configurations as the
gingle vertical flat plate and the horizontal cylinder. Further,
the fluid considered in these investigations is usually air. The
work done on more complex configurations, such as the natural-
convection flow in channels or tubes, is for the most part experimental
or semiempirical. An extensive experimental semiempirical study vas
performed by Elenbaas, who in reference 2 analyzed in an approximate
manner the natural-convection heat transfer between two parallel plates
heated to the same temperature and also made measurements for the case
of the flow of air. In reference 3 semiempirical Nusselt numbers are
compared for experiments of air flow in vertical tubes of different
cross section, and in reference 4 (primarily a summary paper)
functional equations for the Nusselt number are obtalned by means of
similarity considerations (that is, essentially by dimensional
analysis). These equations are then rewritten by correlation with
experimental or approximately computed results to yleld semiempirical
formulas for the Nusaselt numbers. More recently, experimental
investigations of natural-convection flows of liquid metals have been
made; the results of such a study on horizontal cylinders are discussed
in reference 5. None of this work on the more complex configurations
yields detailed information on the veloclty and temperature distribu-
tions, and 1t does not apply for flulds contalning internal heat
gources. Further, the results predicted by these memiempirical
formulas deviate in some cases from the exlsting experimental data.

2670

Therefore, in order to answer some of the many pending questions
concerning the natural-convection flow of various flulds 1n enclosures
and to obtaln Information on such flows of fluids containing heat
sources, thls phenomenon is analyzed herein. Particular consideration
will be given to a simplified but representative case; namely, the
natural-convection flow between two long parallel plates at constant
temperatures orlented parallel to the dlrection of the generating
body force. This spealfic problem not only retalns many of the
physical characteristlcs assoclated wlth natural-convection heat ‘
transfer but also leads to a tractable mathematical problem.
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ANATYSTS
General Considerations

In general, the differentlal equations governing the laminar steady
flow of a vliscous, compressible, heat-conducting fluid which is subject
to a body force are, in rectangular Cartesian tensor notation (see
reference 6), ,

du d dUy U 2 3 [ 3\
pUJ?XE—pfi +'a?'j-[p.(ax—3+ 1)]-337{1 (}J. aXJ)-aX.l (2)
Y d o Ui (Uy U 2 [3U4\8
N (3)
p = p(P,T) ‘ (4)
B o= u(T) (5)
and
k = k(T) (6)

(A complete list of the symbols used herein is presented in appendix A.)
Equations (1), (2), and (3) express, respectively, the conservation of
mass, momentum, and energy; equation (4) represents a thermodynamic
equation of state; and equations (5) and (6) represent the viscosity-
temperature and thermal-conductivity - temperature variations. If pu
and k are assumed to be constant and if the coefficient of

volunetric expansion B 1is introduced in the body force term (see
appendix B), equations (2) and (3) becomse

dUy ‘ d (an 3U3 2 0 aUJ dPp
pUJ B_X-J— = -PL1PO + [BXJ aXJ * Xy 3 Xy BXJ - oX3 (2a)
and

°°"”JEJ‘Q‘P&§”W*”[B‘XE =t m) ) |



http://www.abbottaerospace.com/technical-library

4 NACA TN 2863

where Pp =P - Py, 6 =T - Ty, and the subscript s denotes a reference
condition usually taken to be the hydrostatlic conditlon. d

In a manner similar to that of reference 7, equations (2a) and (3a)
(neglecting heat sources) can be written in dimensionless form as

ouy g 1| 3 (O %4\ 2 3 [o\| %@
%ﬁ‘gﬁ+ﬁbxﬁ+ﬂ‘3%3$‘&;m)
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and

1 090%_ 1 3Re* o O3 g |Ouy fOuy duy\ g f3uy\?
7™M &~ Re Sxyom; %ﬁ*ﬁkj%+@"§&§

(3b)

by letting uy =U;/T, 6" = 6/6,, x; = %;/d and p = P/o0%. Here,
U should denote a unique veloclity which characterizes the flow, and
In the case of forced-convection flows this is taken to be the pre-
scribed reference velocity U, (as for example, the free-gtream
velocity). From equations (2b) and (3b) it can then be seen that the
solutions of the dynamic and thermodynamic problems for the forced-
convection flow (at velocity TUs,), taking into account also the body >
force action, are given in terms of four parameters; namely, the
Grashof number Gr, the Reynolds number Re, the Prandtl number Pr,
and the dimensionless temperature number ®. The parameter @ is
defined

U2 R

®=—T—m—)_=2—
Cp Ty - Ty ew

and it is argued that if T2 <<op(L, - Ty) or, equivalently, if
Oy < <6y, then the compression work and frictional dissipation terms

(the last two terms, respectively, in equation (3b)) can be neglected
with respect to the conduction and convection. For the case of pure

natural-convection flows, there exists no unique prescribed character-
istic velocity Uw, so that the parameter @ as well as the Reynolds
number Re becomes meaningless. Equations (1), (2a), and (3a) still
hold, but now instead of using U, &as a reference veloclty to obtain
dimensionless equations, scme group of the physical gquantities (such

as fy, 6y, and B) which are directly connected with the natural-

convection phenomenon must be utilized. Such a group wes found In
references 1, 2, and 8 to be .

2
- fxB6, 4 (7)
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(For convenience, fy 18 here taken to be the negative of the X-component

of the body force per unit mass.) Hence, with this expression for T
as the reference veloclity, the dlmensionless forms of the momentum and
energy squations for the case of natural-convection flow are

aui 6* 1 d 5“1 ou. 2 3 [ou Spp
uJ’é:g=_cr+—ca~|‘5xj 'an* 4 "5“&'{(6‘5%) T ox; (2¢)
and

1, %0 1 et o Pixd oy BfXd[aui(aui au) _g(%;_)z]

it —
Setting Gr —Efi = X, equation (3c) can be written as

1 0% 1 Pe* = %uy g |Ow fouy 2 [ou
7“JaxJ=Prc;raxJaxJ'KP§§'+E ox ij 3 &i)

(3d)

The new dlmensionless group fod/cP which appears here was first

encountered 1in the analysis of reference 9. It does not appear explicitly
In that reference, however, since for the particular case consildered 1%
wag approximated by pgd/P by means of the state equation for a gas,
and this last expression was negligibly small. Thils group was also
obtained in reference S by a formal dimensional analysis, but its
physical significance and function were not discussed. By comparison
of equations (2c) and (3d) with (2b) and (3b) it can be seen that for
the case of pure natural-convection flow the Grashof number is _
analogous to the Reynolds number for forced flows and the factor X

1s analogous to the dimensionless temperature number ©. In fact,

Gr and K are, respectively, simply Re and 6 based on U as
given 1n equation (7). Therefore, for pure natural-convection flows
the influence of the compression work and frictional dissipation terms
in the energy equation should be determined by the parameter K and
not by ©. DPreviously, the effects of the compression work and
frictional heatling had been neglected in the natural-convection
phenomenon on the basis of qualitative arguments showing that © was
always small; in order to do so a guess had to be made of the value of
the reference velocity. Since it has here been demonstrated that K,
and not ©, 1s critical in determining the influence of the compression
work and frictional heating on the flow and heat transfer in the purely
natural-convection process, 1t must be determined whether in actual
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practice K 1is always negligibly small. If K 1is always very small,
then, of course, there would be no need to extend the previous work in
this respect. However, calculations show that even under relatively
mild conditions, moderately large values of K are possible. When it
is further realized that the three prime physical factors in the
natural-convection process, fy, B, and 6., appear in the numerator of

the expression for K and that in the more recent applications these
could eagily be many times those values usually assoclated with this
mode of heat transfer (for example, fy could be as much as 10° g In a

centrifugal field, and P and &, also could be much larger in atomic

energy applications), it becomes clear that in many practical cases the
compresslion work and frictional heating will influence the natural-
convection flow and heat transfer.

2670

An interesting and different characteristic of the nabural-
convection phenomenon becomes evident 1f the compression work and
frictional heating are taken into conslderation. In this case, for
example, the frictlonal heating is added to the physically imposed
heat and should act as a heat source in the fluld and, hence, tend to
increase the flow velocitles.

Specific Problem

To solve the system of equatlons governing the natural-convection .
flow and heat transfer would at best be a formidable task because of
the nonlinearity of the equations and because of the interrelation
of the equations of motion with the energy equation. The consideration
of the compresslon work and frictional heating terms in the energy
equation makes the problem still more complicated. Therefore, in order
to obtain equations which are tractable mathematically, it is necessary
to make some simplifying assumptions. In this report, therefore,
conslderation is given to a simplified configuration which leads to
less complicated equations but which, nevertheless, retains the
essential physical behavior of the natural-convection process. In
this way detalled velocity and temperature distributions can be
computed, and the effects of heat sources and of frictional heat can
be studied.

Fully developed flow between long parallel plates with constant
wall temperaturs. - The simplified configuration to be studied is the
fully developed laminar natural-convection flow between two long
parallel plane surfaces or plates which are oriented in the direction
of the generating body faorce (see fig. 1) and which are open at the
ends to the amblent fluid. The surface temperatures are constant, but
one surface may be at a different temperature from the other. For
such a configuration it is assumed that the veloclty, as in the more “
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famillar Polseuille flow case, and temperature depend only on the trans-
verse coordinate Y. The simultaneous assumption of these two conditions
implies that there 1s always a net heat flow to the walls and also that
the transverse velocity component V vanishes identically. TUnder these
conditions equation (1) is identically satisfied, and the system of
equations (2a) and (3a) becomes

, a‘Y‘é'+ m 6-~a-f—=0 (8)
JP
& -0 (®)
and
%o au\ | q
;;2-+§<ﬁ) +E=O (10)

where now the more familiar notation Uy =T, Up =V, X; =X and
X =Y 1s used. The product Pp in the coefficient BDfX/u in

equation (8) can be written as N for flulds, as is discussed in
appendix B. For gases, the density p can always be combined with
the absolute viscosity p to form the kinematic viscosity v, and

v should be evaluated at some convenlent and representative reference
polnt (as, for example, at the average of the wall temperatures).

By equation (9), Pp 1s seen to be a function of X alone.

Since U and 6 have been assumed to be functions of Y alone, it
is evident from equation (8) that dPD/dX must be a constant. Hence

the pressure gradient dP/dX inside the channel differs from the
hydrostatic pressure gradient by at most a constant, since
agp %Py dPp dP

-_ = + = 8 + conatant
dX ~ 4x aX =~ 4ax

However, the pressure difference required to accelerate the fluid

from the hydrostatic to the fully developed condition and the pressure
difference to decelerate 1t back to the hydrostatic condition must be
finite. Therefore, since the channel is agsumed very long, the
pressure gradient inside the chamnsl becomes equal to the hydrostatic
pressure gradient, and equation (8) may be written as

iy N Pofy
aye H

6 =0 (8a)



http://www.abbottaerospace.com/technical-library

8 NACA TN 2863

At this point several Interesting observations can be made concerning
equations (8a) and (10). First of all, in equation (8a) as in the forced
Poiseuille flow equation, the inertia terms (left side of equation (3c))
vanish, but now the driving (buoyancy) term (second term in equation (8a))
is a function of the transverse coordinate; whereas, in forced
Polseuille flow the driving term (pressure gradients is a function of
the longltudinal coordinate.

If the frictional heating term (second in equation (7)) 1s neglected,
the energy equation is independent of the velocity distribution, but the
equation of motion, which yields the velocity, is dependent on the tempera-
ture. This state of affairs is the opposite of that occurring in the
forced~convection Poiseuille flow. Also, the convection and compression
work terms in the energy equation (3a) now vanish. Although these last
effects are eliminated, the solution of this simplified problem should
not only yield practical results for the natural-convection flows in
tall-narrow channels but should also show the effect of heat sources
in the fluid (last term in equation (10)) and the effect of frictiomal
heating (second term in equation (10)) on the natural-convection
process.

The boundary conditions assoclated with this problem are as
follows: the fluid must adhere to the walls of the channel (the no-slip
condition of viscous fluids) or, mathematically,

U(0) =U(@) =0

and the temperature of the fluld at the plate must equal the plate
temperature, or

9(0)=EEWO—TSEG

Y0
and
6(a) = Ty = Tg = Wby = 6
Let .
C
U = (G/&)u = (k/fgBrda?)u = —E—;—g u
Y=y
and

)
ilo)
o = (kn/fy°p?0%a%)r = =T

2670
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Equations (8a) and (10) become

u'' +1t =0 (ll)
T 4+ (u')2 + K =0 (12)
2 = Pxd
vhere o = Qd /k@wo and K= Pr K= Pr Gr = and the primes denote
D ,

differentiation with respect to y.

The boundary conditions are
u(0) =u(l) =0

T(O) =
and
(1) = mK

where m = 6 .
W1/ 9“0

It is interesting that in this particular problem it is necessary
to have a priorl Information on three temperatures (Ts, TWO’ and

esgentliglly TWl) in order to determine the actual temperature distri-
butlon, and that these appear explicitly only as the ratio of two
temperature differences in-the analysis. Combination of equations (11)
and (12) to eliminate the dependent variable <t yields
WiV w2 =0 - (13)
with the boundary conditions
u(O) =u(l) =0

utt'(0) = K (14)
and

- u”'(l) =

For convenience, the heat-source distribution is taken to be
uniform, so that Q and hence o are constants. The method of
golution to be described is in .no way dependgnt upon.this restriction;
thet 18, @ and o could be functions of the independent variable,
and the same method could be applied in principle. In order to. solve
the given boundary value problem (equations (13) and - (14)) a method
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of successlve approximations is employed. The equatlion for this technique
can be wriltten .

- [4r-1)]% - & =0 (15)

wvhere r =0, 1, . . . denotes the order of the approximation and where
u'! -1 = 0 by definition. It should be noted that r = 0 yields the same

equation as would apply when the frictional heating is neglected. By

elementary quadratures the zeroth-order (r = O) approximation ug is e
[{o]
. ay «
ug =K Z. A (16)
i=1 —°
where
a) =7 (4m + @ + 8)
8p = -1
az = - (m + % - l)
a4 = Qa
and from equation (11) "
4
)¢ a1 1-2)
To = to'" = E 2 gy 7 @D

The next higher approximation (considering now frictional heating) is

uy Ts(m Z oyt (18)

where

& = 35¢% + 320ma + 328a + 792m% + 1392m + 840

-872=0

o)
w
Il

8z = -2(51a® + 444ma + 564a + 1008m® + 2352m + 1680)

&, = 105(4n + « + 8)2

o
-
1
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as = -1008(4m + o + 8)

g = -84(c® + 6ma + 6a + 8m°.+ 8m - 64)

B, = 24(cf + 4ma + 440 + 72n - 72)

gy = 18(3¢% + 12ma - 28a +12m% - 24m + 12)
g =-80a(m+§-1)

a =8CI,2

10 .

Equations (16) and (17) yield the velocity and temperature distributions,
neglecting the frictional heating; and equations (18) and (19) hold for
small but significant values of X and, hence, show the effect of con-
sldering the frictlonal heating to a first approximation. To obtain
solutions for somewhat larger X, it would be necessary to continue
with the iterative procedure described previously to obtain the
higher-order approximations. Such a scheme becomes extremely tedious,
and, furthermore, the convergence of the method can be established by
comparison with a direct numerical solutlon of the complete boundary-
value problem (equations (13) and (14)). Some discussion of these
numerilcal results relative to the solutions given by equations (16)

to (19) will be presented herein, and a more complete and detailed
account of the numerical results together with a detailed account of
the numerical solution procedure used is in progress. Comparison of
these solutions obtained from equations (18) and (19), in which the
frictional heating is considered to a first approximation, to the
numerical solutions, in which the frictional heating i1s completely
accounted for, should Indicate the range of applicabllity and accuracy
of equations (18) and (19).

RESULTS AND DISCUSSION

Velocity and Temperature Distributions
The relations between the actﬁal and dimensionless velocities and
temperatures as determined from the varlious transformations in the
analysis are
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K Pr = ' 20
IIN ; ) u ( )
and
6 _
K 5_; =T (21)

where U and 6 denote the actual, and T and u denote the dimen-
gionless quantities. For a glven heat-transfer fluld and configuration
(as specified through K and m) and for a glven heat-source intensity
(as specified through «) the dimensionless velocity and temperature
distributions in equations (20) and (21) can be computed from eque-
tions (16) to (19). These computations will be accurate within the
limits of the method of solution; that is, for small XK. TFor

larger X, computations of u and T can best be determined by
direct numerical solution of equations (13) and (14). The range of
applicability of the solutions given by edquations (16) to (19) will be
discussed more fully subsequently. Representative veloclty and
temperature distributions were calculated for values of K = 0.5,

3.0, and 10.0.

The particular values of ratio of wall-temperature differences m
chogen for the computations correspond to the following interesting
cases: (1) m = -1, in which the arithmetlic average of the wall
temperatures is equal to the temperature of the ambient fluid (thdt
is, (Ty, + TWO)/Z = Tg); (2) m = 0, in which one wall is at the

reservoir or ambient temperature; (3) m = 1, in which both walls are
at the same temperature, and, hence, the effect of the wall-temperature
difference is eliminated; and (4) m = 2, in which the wall temperatures
are unequal but both are maintained at higher or lower temperatures

than the ambient.

Combinations of K and m used in the computations and the figure
in which the results are plotted are given In the followlng table:

X 0.5| 0.5 0.5] 0.5] 3.0 3.0| 3.0 3.0[10.0[10.0[10.0[10.0
Ratlo of wall-temperature

differences, m -1 0 1 2| -1 0 1 2] -1 0 1 2
Veloclity-profile figure

number 2(a)[2(b)[2(c)]|2(a) |3(a)13(b)|3(c)[3(d)|4(a)|4(b) [4(c)]4(a)
Temperature~profile :

figure number S5(a)5(b)|5(c)|5(a) |6(a) |6 (b)|6(c)|6(d) |[7(a)|7(D)|7(c)|7(a)

2670


http://www.abbottaerospace.com/technical-library

0L92

NACA TN 2863 13

For each K and m combirnation profiles were calculated for o = O,
10, and 100 with frictional heating neglected (glven by equations (16)
and (17) and denoted by ug amd Ty on the figures), with frictional

heating included to a first approximation (given by equations (18)
and (19) and denoted by u; and T,), and, in several specific cases,

with frictional heating completely accounted for (given by the
numerical solution of equations (13) and (14) and denoted by u
and T).

The computed results presented herein pertain specifically to a
confliguration wherein the body force is acting in the negative
X-direction and at least one wall temperature is always greater than
the ambient (that is, T >Tg).

Effect of different wall-temperature configurations (m varying)
and heat sources (o varying)..- Examination of typlcal cases in
figures 2 to 7 shows that, as expected, an lncrease in the heat-source
parameter o or an Increage In the wall-temperature parameter m
results in larger velocitises and higher temperatures. The velocity
profiles change In such a way that the net mass through-flow, as
repregented essentlally by the area under the u-curves, increases
with m and o from zeroat m = -1 and o = 0. The velocity
profiles become more symmetric with increasing o, and for o = O,
negligible frictional heating, and m = 1, the profiles are similar
to the Polseullle profiles. For any given set of conditions, a
decrease 1n the net mass through-flow or even no net mass through-flow
can, of course, be obtained by adjusting the wall-tempsrature ratios
s0 that m +takes on larger negatlve values. It can also be seen
from the temperature distributions that, as previously predicted, in
all cases consldered, elther heat 1s belng transferred to both walls
or heat 1s flowing from one wall out through the other. For the case
of no heat sources in the fluids and neglecting frictional heating;
the temperature distributions, as are to be expected, are Just the
conduction profiles.

Effect of frictional heating. - The effect of frictlional heating
can be seen in figures 2 to 7 by comparing the'curves computed by
neglecting frictional heating (denoted by subscript zero) with those
computed by Including frictional heating as a flrst approximation
(denoted by subscript unity) for a given set of conditions. Numerical
solutions of equations (13) and (14) obtained for several specific
setes of conditions are also included (with no subscripts) for com-
parison with the approximate. solutions. For K= 0.5 and all «
and m consldered, the frictional heating effect is small; that is,
the u; and Ty and u and T curves are not appreclably differ-

ent from the uy and T4 curves, respectively. However, even for

»
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values of K relatively near unity, as is here represented by the case
K = 3, there are conditions of m =and o Iin which the frictional .
heating begins to alter the results appreciaebly. This situation could,
depending on m eand o, also occur for even lower values of X. In
fact there are many combinations of X, m, and a« <for which the
frictional heating becomes importent. For example, the deviation
between the solutions neglecting frictional heating (denoted by subscript
zero) and those including the frictional heating to a first approxi-
mation (denoted by subscript unity) for the case o = 0 first become
marked for K= 10 and m = 1 (see figs. 4(c) and 7(c)). This deviation
is more pronounced the higher the value of K for given m and «. As
was previously stated, moderately large values of K (or K) can be
obtalned under relatively mild conditions. For example, for the natural-
convection flow of air under the influence of gravity at room tempera-
ture, with 6, equal to 1000° R and the Grashof number equal to 107,

K is approximately 12.1 (X = 16.8); Tor the flow of water in a gravi-
tational field with 6y . of 150° R and a Grashof number of 108, K 1is

approximately 26.1 (f = 3.7). From the specific computations made

herein, it can be seen that for o = 10, the deviation mentioned previ-
ously first becomes apparent for K= 3 and m = 2 (see figs. 3(d) and
6(d)); and for « = 100, a large difference exists for K= 3 and m = -1
(figs. 3(a) and 6(a)). Hence, on the basis of the computations presented
herein, it can roughly be stated that the solutions as given by equa-
tions (16) and (17) will be sufficiently accurate up to the limits
previously stated. Beyond these limits the solutions including frictional
heating effects to a first order (equations (18) and (19)) should be used.
It should be kept in mind, however, that more detailed computations are
necessary to define these limits more precisely.

2670

Numerical solutions which completely include the frictional heating
effects and which are denoted by u and T without subscripts are also
presented in the figures only for the cases of (K, m, a) of (3, -1, 0),
(3, 1, 0), (10, -1, 0), (10, 1, 0), (10, 2, O), (3, 1, 10), (3, 1, 100),
and (10, 2, 10) in order to show the relative accuracy of the u; and

“-'l solutions. For most of these cases, these numerical solutions

coincide with the wu; and <T; solutions; but in the higher internal-

heat-generation cases (as given by high X, m, and a), these two sets
of solutions differ (see figs. 3(c), 6(c), 4(d), and 7(d)). A signi-
ficant difference indicates that the ug and Tl solutions, as given

by equations (18) and (19), respectively, are not sufficiently accurate.

For the range of values of K, m, and o computed here, it appears

that equations (18) and (19) could well be used for a= 0 for all

K and m Iin this range, for o« = 10 up to values of K= 10 and m= 2

(figs. 4(d) and 7(d)), and for a=100up to K= 3 and m= 1 -
(figs. 3(c) and 6(c)). Beyond these limits, equations (18) and (19)

lose thelir accuracy, and the complete numerical solutions of egquations (13)

and (14) should be used.
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The conslderation of frictional heating not only changes the shape
of the temperature profiles but also leads to flows with increased
velocitles, as was expected. This change of temperature profile
appreclably alters the temperature gradients at the walls and hence
the heat transfer.

In additlon to these trends, the consideration of frictional heating
leads to other Interesting results. These results, which were obtained
in camputing the numerical solutions which campletely take info account
the frictional effects, are that two solutions exist for a given set
of conditions and that there exists a critical set of conditions beyond
which no solutions exist. Physically, the presence of two solutiona
predicte the existence of two heat-transfer and flow states for a glven
set of conditlions, which appears to be a situation analogous to that
in a Taval nozzle. The existence of critical conditions appears to be
gimilar to the thermal-choking phenomenon. One of the two flow states
mentioned (the one encountered first physically)} corresponds , 88 1s
seen In the figures, to the u; and T3 solutions (or, more accurately,

the u and T solutions); but the other, computed here only for the
case of K= 10, m = 2, and « = O, denoted by the curves labeled u(z)

and < 2) on figures 4(d) and 7(d), represents velocities and tempera-
tures many times larger than the others at the same conditions. These :
results are being further investigated.

Actual values of the velocities and temperatures can be computed
from equations (20) and (21) and figures 2 to 7. Since so many factors
appear in those expressions, it is clear that there is considerable
freedom in choosing the £luid and the physical conditions to obtain
almost any given flow and heat transfer. For example, if Gr = 2)(106,
£y = 6g, and 6, = 100° R for air at standard room conditions

(T, = 500° R), a maximum velocity of 382 feet per second and a maximum
8 ’ (

temperature of almost 700° R would be obtained with both walls at the
same temperature (that is, m = 1). These conditions conld very easily
be obtained in an extremely mild centrifugal force field.

For such computations to have quantitative significance, it should
be kept in mind that this analysis pertains only to laminar flows. It
is not possible to state under what conditions the transition from
laminar to turbulent flow willl occur, because no general stability
theory exists for natural-convection flows. The only available natural-
convectlion stablility information is the experimental result indicated
in reference 10 that transition on a single vertical plate occurs at a
Grashof number of a'pproximately 109, (All values of Gr used in the.
numerical examples herein were less than 109.) There is, in fact,
relatively little gemeral stability information for forced-convaction
channel flow with heat tramsfer, so that it is nobt even possible to
obtain a rough transition criterion by relating the present problem to
an equivalent forced-convection problem.
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Although computations are presented herein only for a particular
configuration, the analysis itself and the approximate solutions glven
by equations (16) to (19) are in no way limited to a single configura-
tion. A change only in the body force direction (sign) merely alters
the flow dirsction; that 1s, the sign of the velocity changes, or, in
mathematical terminology, the velocity is an odd function of the body
force. If there are no heat sources in the fluld and the effects of
frictional heating are negligible, a change in the surface thermal
condition (say, fram . T,>Ty; to T, <T,) would also result in a

change in flow direction. However, when elther heat sources are
present or frictlonal heating is not negligible, or both, the anti-
symetry with respect to QW‘ 1s disrupted. For the case TW>'TS, the

internal heat (due to heat sources or friction) increases the flow in

a given direction as 1s shown in figures 2 to 4; but for Ty <Tg, this
heat tends to retard the flow In a given direction and, 1f large enough,
can change the flow direction. These effects can be seen 1n figure 8,
where the velocity distributlions are presented for a representative
cage (K =10, m = 2, a = 0, 10, 100) where T,;<Tg. The assoclated

temperature profiles are given In figure 9. ZFrictional heating is
appreciable for o = O and 100 but not for « = 10; and although for
o = 100 the flow is again in the same direction as for the same case
for Ty > Ty (fig. 4(d)), the velocities are smaller for T, < Tg.

Unfortunately, there are no experimental results available with
which to compare the results predicted herein. The experiments of
Elenbaas (reference 2) were made with short plates; and, consequently,
there were varlatlions of. velocliy and temperature profiles with the
longitudinal distance. Such.variations were not considered in this
analysis. ‘

Heat Transfer
The heat-transfer coefficlents for the natural-convection process
considered here can be expressed in terms of Nusselt numbers. For the
case where the walls are not at the same temperature (that is, m.% 1),

n ()

a
@Jo,a (T, - Twp)

where the double subscript O0,d signifies that the temperature gradient
is to be evaluated at-either Y =0 or Y = d, depending on which wall
is under consideration. By means of the various transformations In the
analysis this sxpression can be written : ’
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(@)
m-1)K d.y O,l

By use of equation (19), the Nusselt number for the wall at y =0 1is

1 @
Nuo—mEﬂ.+§-l+

X 2 2
1803550 (510% + 444ma + 564c + 1008m* + 2352m + 1680)]

and for the wall at y =1
1 a
Nul—ml:m-'g-l-
15 5520 (510 + 564mo + 4440 + 1680m° + 2352m + 1008)]4

The Nusselt numbers were computed from these expressions over & range of
velues of X for m= -1, O, and 2, and o = 0, 10, and 100, and are
presented In figures 10 and 11l. In general, the Nusselt numbers increase
with increasing K, m, and . Comparison of flgures 10 and 11 shows that

,for m = -1 the Nusselt numbers for the wall at y = 1 are larger than

for the wall at y = 0. However, as m Increases to 2, this result 1s
reversed.

When the walls are at the same temperature (m = 1) the Nusselt
number can be written as

and from the transformations in the analysis, thls equation becomes
M =L (4T
K \dy 0

Again from equation (19)

o K
Nu = [:E + I57s535y (5102 + 1008a + 5040)]

The Nusselt numbers computed for thls case are presented 1n figure 12.
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CONCLUSIONS

An analysis of the natural-convectlon phencmenon shows that the
flow and heat transfer not only are functions of the Prandtl and _
Grashof numbers_but also depend upon & new dimensionless factor, K.

For values of K which are not negligible, the frictlonal heating and
campression work may appreclably alter the results. Conslderatlion was
given to the partlcular simplified case of the fully developed natural-
convection flow of flulds wlth and without heat sources between two long
parallel surfaces orlented ln the direction parallel to the generating
body force. These surfaces were teken to have comstant but not
necessarily equal temperatures. The veloclty and temperature distribu-
tions for this special case were determined, and 1t was observed that
increasing the wall-temperature ratlio increased the flow velocitles,

the net mass through-flow, and the temperatures. The effect of the
heat sources was also found to increase velocities, temperatures, and
mass flows. The frictionel heating appreciably altered the veloclity
and temperature profiles in some cases, showlng that the velocltles
were Increaged and the heat transfer at the walls was greatly changed
by this -effect. Conslderation of the frictlonal heating also led to
the prediction of two flow and heat-transfer states for a glven set of
conditions and to a critical set of conditions beyond which no solutions
existed. These last two results are being more completely Investigated.

Lewls Flight Propulsion Laboratory
National Advisory Committee for Aerconautlcs
Cleveland, Ohlo, October 6, 1952
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APPENDIX A
SIMBOLS
The following notation is used in this report:

as, &84 coefficients in successlve approximation solutions

19

Cp specific heat at constant pressure
Cy gpecific heat at constant volume
d characteristic length (specifically distance between plates)
£y components of body force per unlit mass, 1 =1, 2, 3, . ..
fx negative of X-component of body force per unit mass
Gr Grashof number, Ef;?gii
g gravitational force per unit mass (or acceleration due to
gravity) '
h heat-transfer coefficient
X dlmensionless paramster, Pr Gr EEEE
. °p
K dimensionless parameter, K/Pr
k thermal-conductivity coefficient
m ratio of wall-temperature differences, Tyry = TS/Two - T
N a constant
Nu Nusselt number
P pressure
Py P - Py
P hydrostatic pressure.
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Prandtl number

dimensionless pressure

heat added by heat sources
Reynolds number

temperature

longitudinal velocity component
characteristic reference velocity

veloclty components, i =1, 2, 3, . . .

prescribed reference velocity in forced-convection flow
dimensionless longitudlnal velocity component

dimensionless velocity components, 1 =1, 2, 3, . . .

transverse velocity component

rectangular Carteslan coordinates, i =1, 2, 3, . . .
dimensionless coordinates, 1 =1, 2, 3, . . .

coordinate
dimensionless coordinate

dimensionless heat-gource parameter, de/kew

coefficient of volumetric expansion, p[? L pi]

ratio of specific heats

P

dimensionless temperature number, U'wz/cpew

T - T

dimensionless temperature dlfference, G/GW

2670
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B absolute viscosity coefficient

v kinematic viscosity coefficient

p denslty

T dimensionlegs temperature

Subscripts:

a denotes adiasbatlic condition

i, ] rectangular Cartesian’ tensor and summatlon subscrilpts

r successgive approximation subscript

B denotes a reference condition (usually taken as the
hydrostatic condition)

W denotes wall cond;tions

o denotes condition at y =0

Wq denotes condltion at y =1

Superscripts:

(2)

denotes second flow and heat-transfer state
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APPENDIX B
DERTVATION OF BUOYANCY TERM

It is often convenlent in natural-convectlon studies to express

the body force term (first term on right side of equation (2)) as a
buoyancy term. To thils end, the case is consldered in which the sur-
face (specifically here, the channel) and the fluid are at the same
temperature and there is no Plow. IEquation (2) then becomes

T Ly 0 (B1)

[o] - =
s-1 Sf;

where the subscript s indicateg the hydrostatic condition, and
equation (Bl) then expresses the fact that under this conditlon the
body force 1s In equillbrium with the hydrostatic pressure gradient.
This equilibrium is, of course, upset 1f there is & temperature
variation in the flow fleld, and the unbalanced force, which is the
buoyancy force, causes a flow to be established. In order to intro-
duce the buoyancy term into the equation, the body force and pressure
terms in equation (2)

oty -%

can be written
EES a]ED

where Pp =P - Ps'

Hence, in view of equation (Bl), these terms becoms

aPy)
(p -~ pglEy - X (B2)

The pressure gradlent In the preceding expression appears in just that
form in equation (2a), but now the buoyancy term is to be expressed

In terms of a temperature difference. It is first assumed that the
density is a function of temperature alone, so that equation (4) can
be written

p = p(T) (83)

In the case of a liquid, this assumption 1s evident; whereas, in the
cage of a gas, it Implies that the pressure changes are small as com-
pared with the absolute pressure. If the coefficlent of volumetric
expansion B 1s introduced, equation (B3) can be written

2670
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dp = - ppdT (B4)

The writing of the density difference in expression (B2) in terms of
a temperature difference can now be effected in one of several ways,
depending on the specific problem.

Most of the theoretical work done to date applies only for the case
of small temperature differences. Hence, for that case the differentials
in equation (B4) are replaced by differences to yield

B = l._ (P'ps)
o]

(T5-T)
The buoyancy term in equation (B2) then becomes
(p-pg)fy = - pfyB(T-T,) (B5)
ag it appears in equation (2a).

If the analysis 1s not to be limited to the case of emall tempera-
ture differences, equation (BS) can be obtained in either of the
following ways, depending on whether the fluld is a liquid or a gas.
For liquids, it 1s assumed that PBp = N where N 18 a constant., A
numerical check of thls assumption shows that it 1s reasonable under
commonly encountered conditions for most fluids; in particular, if
the constant 1s evaluated at the ambient condition, the variation of
Bp over a large range of temperature is small. (For unusually large
temperature ranges N could be evaluated at scme other approprisate
condition.) As a result of this assumption a linear density-
temperature variation is obtained from equation (B4), and then by
direct substitution equation (B5) 1s obtained. For gases, the
equation of state 1s

P = PRT (B8)
where R 1s the gas constant.

Substitution into the buoyancy term ylelds
P
P s T
(P-pg)fy =55 |1 - 5 —Ts:l £y

It need now only be assumed that the difference between P and Pg
1s everywhere small; therefore

(p-pa)es = ot (1-m) ®7)
g
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By definition, B = 1/T for gases, so that the final desired form
(p-pg)fs = - PEyPg(T-Tg)

is obtained. In this case, B 1s evaluated at the hydrostatic condi-
tion. An equivalent form could also be obtalned where the density
would be evaluated at that candltion and B could be variable.
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Figure 7. - Dimensionless temperature distributions for varilous heat-
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Curves for o = 100 are plotted for
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