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REFLECTION OF WEAK SHOCK WAVE FROM A
BOUNDARY LAYER ALONG A FLAT PLATE. IT - INTERACTION
OF OBLIQUE SHOCK WAVE WITH A LAMTNAR BOUNDARY LAYER

ANATYZED BY DIFFERENTTAI-EQUATION METHOD

By Yung-Hual Kuo
SUMMARY

By analogy with the boundary-layer concept, the flow produced by
the interaction between a shock wave and a laminar boundary layer is
subdivided into a viscous layer and a potential field. The assumptions
that the compressibility effect in the inner layer is negligible and
that the original flow in the outer layer is uniform lead to simple
analytic solutions for the perturbed flow. The joining conditions at
the interface between the layers determline an eigenvalue which gives
the rate of decay and the character of the disturbances both upstream
and downstresm of the point of incidence. The final conclusions are
in agreement with experiments.

INTRODUCTION

The present investigation is an independent study of the inter-
action of an oblique shock with a laminar boundary layer in a compress-
ible supersonic stream. In reference 1, where interaction of weak shock
waves with both laminar and turbulent boundary layers was treated, the
integrated momehtum across the boundary layer was considered, rather
than the balance among various dynamic effects at each point. This
momentum-integral method is simple and, in certaln respects, powerful
and capable of yielding useful qualitative information such as the
upstream pressure influence, pressure distribution, and the growth of
boundary-~layer thickness due to the presence of a shock, but it fails
in regard to what actually happens inside the boundary layer. In the
present report a different approach has been adopted, with the inten-
tion of filling the gap left by the previous investigation. The pur-
pose will, on -the whole, be complementary, so as to provide a physical
plcture for the understanding of this complex phenomenon. ‘
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Contrary to reference 1, the differentiesl-equation method is :
employed here. According to available experimental observation, when
an oblique shock is incident upon a laminar boundary layer the result- .
ant flow bears no resemblance to the flow predicted by potential theory.
For if the viscous flow is absent the flow ghead of the shock will not
be affected. Because of the presence of the boundary layer in which
there is & subsonic layer, however, a sudden decrease of pressure at a
point will immediately be transmitted forward by the inability of the
subsonic layer to support an excess pressure rise. VWhen the pressure
is transmitted, the flow in the boundary layer will be retarded and the
streamlines distorted. Since the outer field is supersonic, this change
occurring in the viscous layer will affect the whole potential field.
This is actuslly observed. TFor stronger shocks, the flow in the bound-
ary layer generally will separate and will have backflow under the
influence of an adverse pressure gradient. An adequate theory that is
able to account for the observed effects cannot be formulated unless
the boundary-layer hypothesis is abandoned entirely. One therefore is
faced by a much more difficult mathematical problem.

To restrict the scope and complexity of this study, let it be
assumed flrst of all that the boundary is an insulated flat plate, end,
secondly, that the incident shock is weak and its angle of incidence is
such that regular reflection would be possible, were the flow friction-
less, and, lastly, that the free-stream Mach number is not large. Under
these assumptions, the angle of deflection of the flow in passing through
the shock wave will be small, and the temperature variation between the
free-stream condition and that of the plate will not be large. In fact,
the study of a laminar boundary layer indicates that, for moderate Mach
number, the temperature as well as the compresslbility effects are unim-
portant (reference 2). This must remain true even if the flow is not
boundary-layer flow. Therefore, without loss of generality, it will be
assumed that the viscosity and thermal conductivity of the gas will be
taken as constant and the Prandtl number is unity.

In order to bring the interaction problem within the scope of prac-
tical mathematical anelysis, these simplifying hypotheses have to be
made in the absence of a proper method of approximation, such as the
boundary-layer theory. Broadly speaking, examination of schlieren
photographs of the flow produced by the interaction between a shock and
a laminar boundary layer will reveal that two characteristically dif-
ferent outer and inner regions exist for sufficiently high Reymolds
number. The outer fileld 1s characterized by its strong potential char-
acter, whereas the reglon close to the wall is predominantly wviscous, a ;
which is quite reminiscent of the boundary-layer flow. It appears
natural, therefore, to assume a priori that the viscous effect is con-
fined to a thin layer in the vicinity of the boundary and the outer main
flow 1s potential. These two different flows are then in dynamical
equilibrium. If one is disturbed, the other will be affected. Since
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the outer field is supersonic, any local change will be felt in a much
larger region than that in a subsonic field.

After the flow field is separated into two regions, specific assump-
tlons regarding the structure of the viscous layer can be made. It is
important to note that in the case of a compression incident wave, the
overvhelming effect taking place in the viscous layer is the sudden
decrease of the velocity or even reversal of flow (backflow). If back-
flow sets in, the flow speed in the subsonic region will be very much
reduced. As a result of this, the streamlines will be pushed outward
and the flow compressed. On account of the displacement of streamlines,
the subsonic region will become thicker, and the thickening of the sub-
sonlc region is a decisive factor that distinguishes the strong from
weak interactions. The importance of this dimension (the thickness of
the subsonic layer) has already been established by Tsien and Finston
(reference 3) in the case of inviscid theory.

The viscous lgyer, thus, must have two distinet sublayers, each
displaying a different character. In the supersonic layer, the flow is
characterized by large veloclties and is not unlike that of an unsepa-
rated boundary layer. Therefore, for this layer both viscous and inertia
forces-are important. On the other hand, in the subsonic layer, espe-
clally with backflow, the average speed will be very small. In this
case, because of slow motion and moderate temperature change, the change
of density is always a lower-order effect. 1In fact, the contribution
due to compressibility is proportional to the square of Mach number,
end, if the average Mach number in the subsonic region is small, the
compressibility effect is, indeed, negligible. Because of this physical
fact, the subsonic layer will be taken as incompressible.

With these assumptions, the problem is finally solved by pertur-
bation of weak incident waves. As a test of these agsumptions, a simple
flow with broken-line velocity profile is taken as the basic flow: In
the incompressible layer, the velocity is a linear function of the dis-
tance from the plate; in the compressible layer, it is constant. The
density in the basic flow is constant in each layer but takes different
values. Thus, at the interface where the two flows joln, the velocity
is continuous but density is discontinuous. TFor this case, a first-order
solution consistent with these assumptions is completely determined.

In the case of weak shock, excellent agreement with experiments has
been achieved for the pressure distribution on the plate. It confirms
the conjecture that separation of the flow as well as backflow always
occur. Because of the occurrence of backflow, transition downstream of
the point of incidence is unavoidable in the viscous layer. There are
strong experimental evidences but detailed Investigations are yet to
be conducted. In the outer field, on the other hand, it is predicted
that in the place of the regularly reflected shock there is a strong
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expansion, and farther downstream & train of strong compression waves
must exist, eventually forming an.envelope. Therefore, downstream of
the point of incidence a second shock must occur. This deduction is
also confirmed by experiments.

Lastly, the importance of nonlinear effect is discussed.

This study was conducted at the Graduate School of Aeronautical
Engineering, Cornell University, under the sponsorship and with the
financial assistance of the National Advigory Committee for Aeronautics.
The guthor wishes to acknowledge the efficient assistance of Mr. Nelson

H. Kemp.

SYMBOLS
A constant
a' speed of sound
Cl’CZ’C3:ChJCS’C6 constants
D constant
a constant
d/at convective derivative
F,G scalar functions
£1,8 defined by equations (43) and (41), respectively
H nondimensional enthalpy

3/2
I1/3<%n ) Bessel function of first kind with imaginary argument

Ji/3 Bessel function of first kind with real argument

leKé:Ké:Kh constants
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3/2 .
K1/3(%q ) Bessel function of second kind with imaginary argument

(r - 1)M2/RZE. + (% - )-"Rﬁ:|

k =
k = [:1+%(7 - l)b'—i—{|/(l+§%>'
L length of plate from leading edge to point of incidence
M Mach number
n dilatation
P pressure
Pl’ PZ’ P3 constants
P nondimensional pressure (p'/gmqwz)
p' pressure
R Reynolds number (ILOL/VOO)I/ 2
r - £(1/3)/5/3
T nondimensional tempersture
T temperature
8,t defined by equations (Bl)
U velocity
Cu,v nondimensional velocity components
u',v!' veloclty components
U(l), V(l) constants
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nondimensional Carteslian coordinates
coordinates

defined by equation (Ch)

defined by equation (30) |

defined by equation (43)

defined by equation (C15)

ganma function

ratio of specific heats
Laplacian operator

deflection of flow (equation (B6))
flow-deflection angle

defined by equation (31)
defined by equation (C6)
defined by equation (C5)
elgenvalue

free-gtream kinemstic viscosity
nondimensional density

density
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Subscripts:
C

c

density at y = 0

defined by equation (CT)
nondimensional velocity potential

stream function

angle between velocity and shock

complementary

solution in compressible layer
solution in incompressible layer
value on plate

particular

due to step wave

at separation point

due to transmitted wave

partial derivative with respect to x
partial derivative with respect o ¥
in region 1, before ‘shock (see fig. 1)
in region 4, behind shock (see fig. 1)
in region 3 (see fig. 1) )

free stream ,
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|| parallel to obligque shock wave

_L perpendicular to oblique shock wave
Superscripts:

(0) zeroth order

(1) first order

(2) second order

(3) third order

STATEMENT OF PROBLEM AND BASIC ASSUMPTIONS

Iet there be & laminar boundary layer in a compressible viscous
fluid along an insulated flat plate immersed in a steady uniform super-
sonic stream, and let an oblique shock be incident upon the plate. When
the steady condition is established, the flow in the neighborhood exhibits
a character which is entirely different from the original flow.

From all indications, this flow does not obey the boundary-layer
approximation; nevertheless, for simplicity for future analysis, the
concept of boundary layer, or viscous layer, will be retained. Namely,
the whole flow field is visualized as consisting of inviscid and viscous
flow in equilibrium with each other. The possibility of existence of
such a demercation line will be assumed at this moment. The solutlons
obtained are consistent with the assumption, as will be seen later, so
that the theory is self-consistent at least. Naturally, its further
justification rests upon experimental evidence.

The mein feature in the viscous lsyer is that, in the case of a
compression wave in the inviscid outer flow, backflow generally exists.
For this reason, terms in the equations of motion which are unimportant
according to boundary-layer approximation become decisive as the sup-
posed large-order terms vanish. Therefore, the pressure gradients along
both directions have to be considered. To simplify the mathematical
process, some minor effects, such as the variation of the viscosity
coefficient and thermal conductivity with temperature, will be neg-
lected and the Prandtl number will be teken equal to 1. For moderate
Mach numbers, less than 3, say, this neglect, according to boundary-
layer investigations, will have little effect on the major character-
istics. of the flow.

The inviscid flow generally is rotational, as it involves shocks.
This is particulasrly true in the case of a local supersonic zone over
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a curved surface. TFor a purely supersonic flow, if the shock is
slightly curved, the vorticity generated behind the shock is of high
order and can be neglected. The perturbed flow in the outer region can
then be regarded as irrotational.

As the region vwhich is influenced by the presence of the shock,
according to experimental observations, is confined to an area about
the point of incidence, with a dimension only a fraction of the length
of the plate, a point which lies at a distance about the length of the
Plate from the point of incidence will be considered as at infinity.
Consequently, the boundary-layer flow will be replaced by & “shear flow"
extending to both positive and negative infinities. This approximation
1s justified if the derivative along the flow is much larger in the
perturbed flow than that in the original flow. TFor large Reynolds num-
ber, this condition can always be satisfied.

METHOD OF SOLUTION

The flow 1s supposed to be two dimensional and steady and the fiuid
is compressible. If the flow field can be subdivided into viscous and
nonviscous regions, the flow in the viscous layer satisfies in dimension-
less varilgbles the system:

o %% = -py + %é&u + % nx>v (1)
p%=-Py+%(Av+%ny) (2)
(pu)x + (pv)y =0 (3)

aH 1 (y - 1M |/au v 2 2
oG mgem e ), + (), - Smk - By ()

and in the case of perfect gas

p = (n@) or (5)
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Here the subscripts denote partial differentiations with respect to the
Cartesian coordinate x or y Indicated; the Laplacian operator A,
the convective derlvative d/dt, the nondimensional enthalpy H, and
the dilatation n are defined by

2 2
A
i:ui-[-vé_
dat x oy N (6)
B=r e L2022 4 v2)
n=u, + vy

Furthermore, the velocity components u' and v', the pressure p',
the density p', the temperature T', and the coordinates x' and ¥y°'
are nondimensionalized as follows:

u =l
Uco
I
Ueo
1
p=-L—
1
i \ 1)
©0
X = X'
VoL
Uoo
1
g =X
VI
U J
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where U,, p,, and v, are free-stream velocity, density, and kinematic
viscosity, and I is the length of the plate from the leading edge to y
1/2

UL
the point of incidence. Finally, the parsmeters ¥, M, and R = (V—_>
o]

stand for, respectively, the ratio of specific heats, the free-stream
Mach number, and the Reynolds number.
On the other hand, the inviscid flow in the outer region is assumed

to be irrotational and, consequently, is determined by a nondimensional
velocity potential ¢(x,y) satisfying the equation

Ea')z - (u')"]cpxx - 2urvig,y + [(w)z - (v')ﬂqayy =0 (8)

where the sound speed a' is given in terms of the velocity components
u' and v' by the relation

(2') = (2 - 1= 1Eu'>z + (1) - Ua?] (9)

By the assumption that these two different flows are in equilibrium with
each other, the flow determined from equaetion (9) mist join smoothly with
that given by the system of equations (1) to (5) subject to the boundary
conditions \

uw=v=0
when y = 0O and
u = @,
vV =0y
when y = .

As the disturbances are initisted by the incident shock, it is
expected that they are small if the incident wave is weak. From experi-
ence, this is at least the case in the field upstream of the point of
incidence. If the shock strength is characterized by the flow-deflectlon
angle ¢, then for small values of ¢ the solutions are expanded in
powers of ¢&:

7
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u=ul® 4 @) 4 2y(2) 4, . .A
v=v0) 4 (1) 4 2e(2) | |,
D= p(o) + ep(l) + ezp(z) .. > (10)

p = p(o) + ep(l) + ezp(z) + ...

T = T(O) + eT(l) + EZT(Z) + . .

~s

By substituting the quantities defined in equations (10) into the system
of equations (1) to (5), there results the following system of equations,
according to the powers of ¢; namely, for the zero order,

~

(0)_(0) B T
»(0) E_a_:__ - _Px(o) N %fu(O) . % nx(o)_
(0)_(0) N
p®)£?%_=€%®)+%fm)+%%mi

(6003400)) 4 (5(0)5(®) - o
* v > (11)

dat R dt dat
X Y

20 a0 1 oy, O -Rl)mz [(d(o)u(o)) , <d(°)v<0>) )

X

2(,(0),(0)) _ 2(,(0),(0))
2(,00©)__ 2,0, )J

p(0) = (;u2) 1, (0)p(0)
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where
a® _ (3, (03 )
dt x dy
H(o) T(o) + 7; 1 Mz(u(o)2 + v(o).z) .
2(0) .y ), (©) )
for the first order,
p(o)<d(0)u(l) ) d(l)u(O)) w2 gy
dt dt at X
%(Au(l) . % nx(1))
p(O)(d(o)v(l) + d(l)v(0)> + p(l) d(o)v(o) = -p (1) +
at dat dt Y

(AV(:L) +1 ny(1))

=l

(6(00a3) 4+ p@Wa(@)_ 4 (504 0) 4 5(1)50) - o

,(0) %ﬁl . (pu)-%:_) 4 5(0) %}B)Hm) - L),

(0),(1) 41,00\ (400 (1) (1) (0)
+ +

(7 - InE

13

(1z)

> (13)

‘ )

200 4 W@1(0), _ 2((0)a2) , v(1)11(0))4

R dt at dt dt

1) = (n2) " (o(0)e1) 4 (1)5(0))

)
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where

W wa, s
ax

dt
21 o), (- 1y (0, (0) (1) [

and for the second order,

) (0)(4(0)11(2) ARG )u(l)) . p(1)((1(0)11(1) . dL(1)11(0)) \ o2 a©),0)
dt . dt dt dt dt dt

2, @) 4 %(AH(Z) + % ,,x(z))

p(o)(a@)v(z) , a@ d(ﬂv(l)) .. (1)(d<°>v<l) . d(1),,(0)) @) 2%
dt at at dt dt at

O ;(Av(z) sl (2 ))

R 3

(slod(@) 4 p1),() p@0(0))_+ (p(0)(2) 4 p1)() p(z),,(o))y -0

5(0) <1‘°T’g‘23 . (p(o) % . o) %‘;”)H(l) . (p(o) % v o) % 3 o(2) %)H(o) .

dt at at

i ), & -Rl)Mz Kﬂ.(o)u(z) L atk@ d(zxu(o)) .

X

(d(o)v(z) , 2@ d(z)v(o)) JE(pl0(2) , (),() , (2))
at at & /y 3 x

g(,,ro)n(z) » 7)o@ )n(o))J

@) u (a2) (o)) , A1), (2)y(0))

(1k)

(15)
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where
a® _ @2, ,@2 A
at ox ay'
2 2
H(2) - T(2) + (y - l)Mz<;(o)u(g) . v(o)v(z) . u(l) ; v(l) ) } (16)
a(®) - 5, (@) 4 4 (@) )

In the case of the potential flow, if the velocity potential is
expanded as ’

QP =x+ ap(l) + GZQ(Z) + . . (17)

there will occur, similarly, equations for the first- and second-order
quantities. These are: For the firsgt order

2 () __ @ _, (18)

and for the second order

2, (2)

0 @) = 21+ L2 0d)g (g (), q,yu)q,yy(lﬂ (29)

where B = JM? - 1.

FIRST-ORDER SOLUTION - UPSTREAM, x <O

Iet the point of incldence be chosen as the origin of the Cartesian
coordinates. Then, negative x will be called upstream, and positive x,
downstream, of the point of incidence. The varlous regions will be mum-
bered by 1, 2, and 3 as shown in figure 1 in which O0S indiecates shock
and OM, the limiting Mach line of reglon 2.

e e e e e e e S
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As it has been assumed that the basic flow is a laminar boundary-
layer flow of a Blasius type, such as considered by Von Kérmén and Tsien
(reference 2) and by Emmons and Brainerd (references 4 and 5), system (11)
simply reduces to the well-known Prandtl boundary-lasyer equations, whose.
solution has already been found in these references.

Since the basic flow is a boundary-layer flow with constant pres-

sure p(o), system (13) can be simplified. From experiments it has been
established that the space variation of the perturbed quaentities is much
more rapid than that of the unperturbed quantities. By the boundary-
layer approximation, the ratio of the partial derivatives O/dx:9/dy

is 1:R. For large Reynolds number, the x-derivatives of the basic

flow, as well as v(o), which is of the order R"l, can be neglected in

comparison with the y-derivatives. That is, u(o) and p(o) are func-
tions of y only. This approximation is confirmed by experiments and,
as a matter of fact, it is customarily used in the pressure measurements,
because the wave is shifted forward and back relative to a fixed pressure
orifice to measure the pressure distribution before and behind the wave.

In the case of unit Prandtl number, H(O) is a constant. Then, by
dropping terms such as v(o)uy(l) and ux(o)u(l), system'(l3) becomes

p©)(w@, (1) 4 u 1)) = 5 () 4 L) 15,0))
p(0)(0) (1) = o (1), (Ava) ny(l))

0(0)n (1) 4 4(0), (1) + v(1)p (0) =0
f (20)

o0}, (1) - 1 anla) <_7_-R_llbf_Ku<o>ux<1> v, ©))

¥

(u©)y, () _%(u(o)nu))J

pM) = () (,002(1) | ,(1)5(0))
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Incompressible Layer

It is noted that the coefficients of system (20) depend on the

basic veloeity profile u(o)(y). Since u(o)(y) cannot be expressed

by simple functlons, in order to simplify the analytical work further
simplifications are necessary.

First of all, in the case of insulated plate, the temperature and,
hence, the density in the baslec flow willl have a vanishing gradient on
the plate. This makes the variation of the density in the viscous layer
much smaller than that of the velocity. When the flow is subject to an
adverse pressure gradient, the flow will be further retarded. When the
backflow occurs, the average speed will be very low and, consequently,
the repregentative average Mach number will be small. Under this condi-
tlon, the change of density is less important than that of the pressure.
A layer where this approximstion is valid is called an "incompressible
layer" and the dominant effects will be pressure and frictional forces.

Of course, 1t 1s difficult to define the thickness of thils layer
beforehand. Generally, it would correspond to the subsonic portion of
the viscous layer. In the basic flow, the sonic boundary can be exactly
calculated. When the flow is perturbed, it is unknown, but certainly
will be thicker, for the flow 1s subject to an adverse pressure gra-
dient. Owing to this fact and also for mathematical expediency, the
thickness will be taken in accordance with the way the velocity profile

u(o)(Y) is represented. Thls will become clear below and the thickness
defined turns out to be nearly half the original boundery-layer thickness.

Because of the assumption that density is constant and assumes the
value po(o) on the plate, system (20) simplifies to

~
po(o)(u(o)ux(l) + uy(o)‘,(l)) = 2, (1) + L ()
0, (@) (1) = p (1) 4 L pp(D)

g‘ (21)

n(l) =0

o, (0%a(0)g (1) = 1 an(@) 4 ?_(J_'f{_}ﬁ uy (O (1)

9
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Thus, the velocities, pressure, and temperature can be dealt with inde~
pendently. For the velocitles, the first three equations yield by

elimination of p(l):

0o, (1) _ v (1)) 4 @)y (00p(1) = L A, (1) - 4, (1))
(22)
n(l) = 0

After the velocities are known, the temperature will be given by the
energy equation. In the present problem, however, temperature is not
an interesting quentity and will subsequently not be mentioned. To

solve equations (22), let a stream function ¢(l)(x,y) be introduced
by the relations

w() =y, (1)

(1) -y @)

v
From equations (22) w(l) then satisfies the equation
o, (O)u(0)ny, (1) - 1a ay () 4 g (0dy Oy, (1) (23)

By neglecting the compressibility effect in the immer layer, the

basic velocity profile u(o)(y) becomes the Blasius profile. The vari-
able coefficients of equation (23), for small values of ¥y, will be
povwer series in y. However, 1t has been recognized that in the case

of Blasiug profile the veloclty atteins the free-stream value fairly
rapldly and the initiasl portion is nearly linear. Consequently, it will
not involve serious error to replace the continuous profile by a broken-
line one, so that the initial part is proportional to y and the
remeining part, constant with the free-stream value unity. If the skin
friction agrees with the exact value, the velocity profile can then be
deflned as

u(o)(y) = qy when Og_‘ Y§ yl
(24)

u(o)(y) =1 wvhen y;< ¥y<ow
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If the velocity is continuous at y = Y1, then ¥, = o™l which is about
half the boundary-layer thickness, namely Yy~ 3. If the Incompressible

layer is defined as the interval o Sy S ¥1, then equation (23) becomes

’&'y Mx(l) A Aﬂ/(l) . (25)

where q = po(o)aR.

To solve equation (25), it is natural to assume the form

v ) o gy )erx
(26)
A>0

for region 1 where x < 0. This assumes & special form of compression
waves induced in the potential field; that is, the solution of equa-
tion (18)

o) - % Mx-BY) - (27)

wvhere A 18 a constent to be determined. This 18 entlirely in agreement
with the conclusions reached in reference 1. Substituting equations (26)
in equation (25) and similtaneously putting

v a8y = 2(y) (28)
there results
z' o+ ()ﬁy - xz)z =0 (29)

The general solution of this equation is

M8 w3/7) + opntPry(2 %) 50)
3

= C
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where
n= )3y - wl) (31)

C;, and C, are constants, and I-_.L(% 73/ 2) and &(%— 1]3/2) denote the

Bessel functions of the first and second ki;ad. with imaginary argument.
With =z known, the solution of equation (28) is
b

- L)

1F=C3cosTn+C,+sinT'q+

in n ‘ 1
= - T"f (cos 1q)z(n) dn - co: T"f (sin tq)z(n) dq  (28a)
n Mo

with T = x()ﬁ,‘)"l/:';. On the plate y =0 and u(l) = v(l) = 0; hence

¥(0) = ¥'(0) = 0. For large Reynolds number and small values of A,
¥y = O corresponds approximately to n = 0. The boundary conditions
thus require C3 = Cy = 0. Moreover, at y = Yio 0 wlll be large,

n cos
and since 77 = Ay;<1, the integrals f 1]1/2 ™ I;I; (3 1]3/2) dn
0 sin J 5 \3

2 .3/2
1] =
will diverge like f e3 K dn as 1 approaches infinity. Therefore,
0

C2 = 0. The solution in the incompressible lsyer can then be read as
follows

1) _ %Ll(gin wn) [ 2/2 s 7o)k (2 n3/2) ay -
] == |(s nfon(conlf%(3n)n

1
cos TT]]; ql/z(sin 'rn)K_]:@- 1]3/2) dnfeM (32)
3
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Thereby the velocity components are

u®) o C:l_(&k,)l/3 ﬁcos Tn)/;n nl/z(cos Tn)Kl(% n3/2) dn +7
3

‘ 3
| }:{ ] > (33)
3

(sin ) j;ﬂ _1\].]7‘/2(sin_1'q)Kl<-§- 1]3/2> d{le)‘x

(cos Tq) Ln ql/z(sin Tq)K;(% 113/2> d,]ekx
3

-~/

On the other hand, the pressure can be obtained by integration of
the first of equations (21) and 1s, by the form of solution,

O(O)uy(o)v(l)
3

p(2) = o (0)y(0)y(1) _ 2 . %R-;(w(l) . sz')em

where the constant of integration vanishes by the condition at negative

infinity. Substituting u(l) and v(l) from equation (33) and making
use of equation (28), a straightforward reduction yilelds

(0o y
P(l) = T — l{-’rTIK%(% 113/2)'+ (sin"rﬂ) _/; Tll/z(cos -rn)K%(% n3/2) dn -

(cos TT])/? 'ql/z(sin -rn)K%(% 713/2) dg -

) ﬁcos Tn)j;n nl/Z(cos Tn)K_l;(% ﬂ3/2> dn +
3

(Bin Tn)Ln .,-ll/z(sin TT])K;(% 1-13/2) dﬁ eXX (3)4-)
3
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On the plate y =n = 0 this reduces to

p(1)(x,0) = -po(o)@Cl nK_g@ n3/ 2) e?x (3ka)
3

Compressible Layer

In the compressible layer, because of the forward momentum of the
potential flow outside, the velocity is everywhere positive and differs
from the basic flow by a small amount in order to support the pressure
rise. As the velocity is high, both compressibility and viscous effects
will become importent. Under this condition, the problem is considerably

simplified by taking a uniform basic flow, namely ul®) = p(0) = 1, &g
discussed sbove. Accordingly, equations (20) reduce to

N

@ - 5@ 4 1@, 1)
vk(l) = -py(l) + %é&v(l) + %-ny)
n(l) + px(l) =0 ; ? (35)

n W 1), O -lez o )

) = (n) @) 4 o)
where

AU CO BN VR

The elimination of p(l) from the first two equations gives

(5,3 - %, @) - L A, ) - Vx(1)) (36)
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After differentiating the first snd the second of equations (35) with
respect to x and Yy, respectively, an addition yields

(1)

—nx(l) . 3_1% An(1)

moreover, by definition
£, = s @) 4 (- 1pfu, @) 4 n @)

A substitution of Hxx(l) end AHx(l) in the energy equation leads to

a (1) (1) 4 g(mx‘l) r @) = Lan @) kv 0),

&%gi x(l) + (7 - l)M?(uy(l) - vk(l)>xy (37)

Equations (36) and (37) form a system of linear partial differentisl

equations for u(l) and v(l) with constant coefficients. The solu-
tions, if carried out, are expressible in terms of trigonometric and
exponential functions. According to the arguments of -these functions,
they fall into two groups: One varies slowly and is "potential-like";
while the other varies rapldly and, therefore, is "boundary-layer-like."
The latter group consists of two exponentials whose arguments differ by

a term of o(%). Hence, for large Reynolds number, the latter two expo-

nentials will degenerate into one. It was found that this form of solu-
tion can be obtained by solving a much simpler problem, namely, by

assuning H(l) = 0. This assumption appears to be néthing but a method
of approximating the solution of equations (36) and (37) in the case of
large Reynolds mumber.

It H(l) is taken to be zero, then instead of equation (37) there
is In its place

a(1) 4 0, (1) - ZEM?.(M(U + 10, () (38)
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by elimination of p(l) and T(l). To solve the system (36) and (38),
two scalar functions F(l) and G(l) are Introduced through the

relations
u@) - p (1), Gy(1) )
ORI
The equivalent system, then, is as follows:
ag, () = L4 AG('l) )
| > (40) .
D, oafe (1) uymz e, L 2 O |

According to the form of the potentlal solution, it will again be
assumed that ,

& (1)

gl(y)eu .

1 (y)eM

By the corndition that G(l) 1s finite at infinity, the solution is shown
to be

g = C3 ecos Ay + Ch sin Ay + ;% e” Y (k1)

where G, C3, and Cj are constants of integration and

0% = AR - A2 (42)
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By substituting g, from equation (41) in the second of equations (LO)
the solution for :f‘l wag found to be

By

By +

fi= C3 sin Ay - Ch cos Ay + C5e~ + C6e

(7 - l)Mz / GCZ e-o‘y | (h'3)
L A
B2 4 (_31 - >xM2R

where

B,” = (Bz - h;f*)/ <1 * E_Z;Z—k>

The velocity components for y > ¥q» by equation (39) , are given by

o) - JI:XCSE-BIX(y-yi) . aC 6e51’“(y‘y1) N

(r - l)Mz 1 che—o(y—yl) oMK (4k)
RE +
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by redefining the constents C. It is noticed that the first group of
exponentials varies with both x and y with a slope proportional

to A, which, according to experimental evidence for this type of flow,
is a small number; that is, the variation with x is relatively slow.
On the other hand, the second exponential varies with y with deriva-

tive proportional to o, which is of O(VX_R) For large Reynolds num-
ber, it appears that o could be thousands of times larger than 2.
Therefore, in the case of large Reynolds number where the viscous layer
is thin, the first group of terms changes only slightly while the second
exponential drops to zero. Applying the boundary-layer concept, the
potential-like terms will be taken as constant and equal to the boundary
value of the potential solution. Consequently, the solution can be
written as

-

u(l) = |A + (k - %)Ucze-o(y-yli‘lem

.

> (4he )

V(l) = |-BA - (_k%z_ + %—_)Cze_c(y-yl) erX

— <

=00l (-

It is seen that when o'(y - yl) becomes large, this solution Joins the

potential solution at ' y = O and the constents Cg and C6 will be
considered as eliminated. By means of this spproximate solutiorn the
pressure p(l) is shown to be

with

P(l) - ‘EA _ ]%._- Cze“o'(y'Yl) el.x (45)
where
k = l+%(7-l)% (l+§%)1>
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Eigenvalues A

at

In the last two sections, the velocity and pressure have been cal-
culated by entirely different methods of approximation in two different

layers.

For the incompressible layer, the nonslip conditions are sat-

isfied on the plate, whereas in the compressible layer, the velocity

agrees with the potential flow at infinity.

then left with three undetermined constants

an arbltrary parameter A.

The complete solution is
Cyy Cp, and A and with

To determine these constants, it is assumed

thet the two solutions (33) and (34) and (4k) and (45) must join at the

interface y = yl.

Now, because of the simplification made in connection

with equation (4k), the conditions at the interface are to be stated as

follows for y = ¥y

-
0, ) -y @)
vo(1) = v, (1) 5 (46)
o (1) o p ()

where the subscripts ¢ and 1 i1ndicate, respectively, solutions of

compregsible and incompressible layers.
will have a digcontinuity in slope.

The u veloclty profile thus
This could be improved by dropping

the assumption H(l) = Q0. However, as pressure depends only on the
velocity and its second derivatives, an error in shear can produce only

minor contributions and can be ignored.

By substituting the solutions

in equations (46), there results the following system of equations:

A+ (k - %)002 - U(l)(ql)Cl

-pA - 6553 + %>Cz + V(l)(

—?EA-F%CZCZ'-P

(l)(nl)Cl =

-

0
)Cl=0

(¥7)

0]
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where U, v ang (1) are defined by

) - 3] con vy [ 1H2(c0n 1, @
U (@) (cos nﬁA 1/ %(cos T % N+

1
(sin Tnl)j; nl/z(sin ™ )K; dan
3

V(l) - (&)1/3 (Sin Tnl)/(')nl -ql/z(cos TT])K; dn -
3

T
(cos TT]l)L/; 1 -ql/z(sin 'r'q)K_]__ dn
3

@) _ 2%k

"T"igg(% 03/2) ¢ @) - (@) )

In order that linear system (47) will admit a nontrivial solution for
C1, Cop, and A, it is both necessary and sufficient that the determinant

1 (x-Lo u(1)

B <-]5§—2+%> v oo (48)

X 1 yg p(1)
3

I * - nt -y
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vanlish. This equation serves to determine all proper values of A.
After )\ has been determined, the constants Cl and. Cz corresponding

to this A can be solved for in terms of A, namely

-
N - ¢ %)
B (O
3 (49)
: o () _ y(1)
TR

where the constant A remains to be determined.

To solve determinantal equation (48) analytically even for this
simplest case does not seem to be possible. The procedure from here on
is essentially numerical. For the present purpose, the mumerical sclu-
tion will be carried out, based on the approximation that T will be

taken mathematically as infinity and Tnl, small. Accordingly, the

integrals in U), v(1) ana P(1) 4111 have an infinite upper limit
and cos Ty ® 1l and sin 79 ® A\yy. Furthermore, for large values

3/2)  -3/4 -2q,3/2
(%’"1 / ) ] “1 / e 3 nl will be

very small and can, therefore, be neglected. Equation (48) is finally
expressed explicitly in terms of the parameters R, B, and a. To

of =n, the Bessel function Kj

retain terms up to the order o(R—5/6), the determinantal equation
becomes

’Bylxz - &;/3rylxh/3 + a4+ po(o)aB =0 (50)

where r = F(%)/g2/3.

For M=2, R= 774, and a = 0.332, there are two pairs of posi-
tive and negative roots. The negative roots would make the perturbation
infinite at negative infinity, which is contrary to assumption. Therefore,
negative roots are not admitted. For the palr of positive roots, one
is roughly 20 times the other which is 0.0467. TFor large Reynolds num-

_-3/2.1/2 b 1/h
ber, these would correspond to. Xxq = B 3/ R / and Ay ® 33/ R / .
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In region 1, x 18 negative. The disturbance with a logarithmic rate
of decay Ay will quickly disappear. The observed disturbance must

have a decay rate equal to As.

According to this solution, the dependence of the distance influ-
enced by pressure disturbance on the Mach number and Reynolds number can
be discussed. By the form of the first-order solution, the pressure
decays exponentially from the point of incidence. For a given value
of ¢, when -ApX =4, 4 being a constant, the pressure disturbance

would have dropped to a certain fraction of its initial value. Thus,
X = d/kz would serve as a measure of the distance reached by the pres-

sure. Therefore, by varying M and R, the distance X'/L will change

according to the law 5—3/hR-3/h. Namely, by increasing both Mach num-
ber and Reynolds number, the distance reached by pressure disturbances
will decrease. This result is quantitatively different from that arrived

at in reference 1, which is B-l/zR-l/z. By comparison there is an
increase of both compressibility and viscous effects in the new result.
This shows how gross an error can be made if the boundary-lsyer approxi-
mation is applied. Tt is surprising also that the upstream pressure
propagation depends only on M and R but, to the first order at least,
is independent of the shock strength. This seems to be in agreement with
experiment (reference 6).

It can be shown from equetions (33) and (3%) that for arbitrary
values of A +the pressure p(l)(xsep,o) at the point of separation

vhere u, = 0 1is proportional to B-l/zR—l/z.
FIRST-ORDER SOLUTION - DOWNSTREAM x > O

As in the upstream first-order solution, one must start with the
potential solution. In order to determine the flow in region 2, the

interaction between the incoming wave 19(1) and the shock must be

considered.
Potential Solution

In equation (27) the incoming wave is given by

1‘P(l) _ % Mx-By)
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When this train of waves hits the shock, the shock will be slightly
modified according to Rankine-Hugoniot conditions. The velocity poten-
tial in reglon 2 with these conditions satisfied is shown to be (appen-
dixes A and B)

(1)

p0 = %(x s py) + & ME-BY) (51)

'i

That is, to the first order, the flow in region 2 is simply a super-
position of a step wave upon the transmitted wave. Since the conditions
are prescribed on the shock O0S, they are uniquely defined in region 2,
terminated only by the extreme Mach line OM.

To continue this solution into region 3, two possibilities present
themgelves. It may be either continuous or discontinuous there. If it
were contimuous on OM, there would be a discontinuity in pressure at
the point of incidence. 1In the case of inviseid flow, this, of course,
would be admissible. But, by the condition that the viscous layer will
Join smoothly with the potential field, this would make the velocity

u(l)(x,y) discontinuous at the origin x = 0. Hence, the first possi-
bility must be discarded. If the solution is discontinuous at OM, and

the pressure as well as the velocity u(l) are continuous at the origin,
then the discontinuity must correspond to an expansion. This, of course,
is what has been observed.

Assuming that the pressure returns to the value Just In front of the
shock, a simple calculation shows that the turn of the flow through a
Prandtl-Meyer expansion has to be

-eﬁ(lu(l)(o) - zu(l)(O))

where lu(l)(o) and zu(l)(o) are, respectively, the velocity w(1)

just before and after the shock. By means of solutions (27) and (51),
the turn required is €. Now the direction of the flow before the expan-
sion is €(1 - BA); therefore the total inclination of the velocity
vector at OM 1is

e(2 - BA)

A solution in reglon 3 subject to these conditions is found to be
(eppendix B):

(1)

1 1 A M(x-By)
3(P\ —-B-(X'FBY)-E'(X‘BY)'*'xe

(52)
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The velocity in region 3 can then be given by

3u(1) = peM(x-By)
3v(l) =2 - BAeX(X-BY)

Were the perturbation velocity to remain finite at infinity, A would
have to be negative in region 3, as x - By 2 O.

Viscous Solutions

As potential solution (52) in region 3 is a superposition of two
different types of waves, namely, step waves and transmitted waves, 1t
is expected that the viscous solution will also be composed of two dif-
ferent parts, each assoclated with a special wave in the external field.
Since the origin and character of the disturbances are different, they
can best be discussed separately as the following:

In view of the fact that the step waves are opposite in sign, they
do not change the pressure but give rise to a uniform vertical velocity
in the potential field. The flow in the viscous layer due to this uni-
form deflection may very rapidly in the y-direction but certainly not
in the x-direction because of the constancy of pressure. The main
effect of the step waves, first of all, then, is to produce a constant
deflection along the edge of the viscous layer. If the velocities due

to step waves are us(l) and vs(l), the problem should be solved
subJect to the boundary conditions:

us(l) = vs(l) =0 when y=0 h
us(l) = 0, vs(l) = 2 at outer edge of viscous layer > (53)
us(l) =0 when x = 0, y20

It must be borne in mind that generally the flow in region 1 has
been separated, with a considerable region of backflow in the neighbor-
hood of the point of incidence; the resultant flow in the incompressible

layer must be small. If us(l) and vs(l) are considered as additional
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perturbations due to the step waves, the problem can then be simplified

by neglectling the inertia forces 1in the,neighborhood of the plate.
perturbation stream function Ws(l) then satisfies

in the incompressible layer

Ag the obJective here is to demonstrate approximately the effect
of the step waves on the vliscous layer, only simple solutions will be
A gimple solution that satisfies both the first and third
of conditions (53) is clearly

considered.

for y in O s y s ¥y where D is & constant. The velocitles are

thereby

aay Moo
B

oSysy

The

(54)

(55)

(56)

Accordingly, the pressure, or the pressure gradients, in the incompress-
ible layer due to the step waves is of the order R™1 and for the pres-

ent approximation will be neglected.

In the compressible layer where the viscous effect is not as impor-
tant as the compressibility effect, a flow that does not associate with
a8 pressure rise can elther be & uniform field or the one with a vertical

velocity varying linearly as Y.

layer:

According to equation (37), the fol-
lowing, with the second of equations (53) satisfied, is & solution for
yl £y < Yor g being defined as the outer edge of the compressible
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@

w0 xg)

-~

> (57)

The fact that equation (57) is a solution shows the importance of both
the compressibility and the viscosity in this layer, which allow the

independent variation of p(l) and T(l). The Joining condition at
the interface gives the constant D a value -6y1/&2.

Thus, it is seen that the deflection of the flow due to step-waves,
though it contributes no pressure, induces a forward velocity in the
incompressible layer. Since it increases linearly with x, the back-
flow should be expected to be reduced in the downstream direction. OFf
course, the possibility exists that an additional pressure might also
enter if the inertia forces, though smell, were not neglected. Never-
theless, it can be safely stated that the pressure is always of the
gecondary importance in this case and hence the above conclusions will
remain valid.

On the other hand, the perturbation velocities ut(l) and vt(l)

due to the transmitted wave, according to equation (52), are subject to
boundary conditions

ut(l) = vt(l) =0 wvhen y =0 )
ut(l) AeMX vt(l) = -paeM® vhen y = L (58)
ut(l) = uFl) when x =0, ¥y 20

J

1

To solve this problem, the viscéous layer is again subdivided Into incom-
pressible and compressible layers. Since the boundary conditions and

the differential equations are the same, ut(l) and vt(l) will have

the same forms as those given in equations (33) and (4ht), with eigen-
value A satisfylng equation (48). Now if the perturbation is required
to vanish at positive infinity, A\ should be negative. Butf were A
negative, solutions (33) and (44) would be highly oscillatory, as the
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arguments of both Bessel and the exponentisl functions involve a fac-
tor VAR. That is, the solution of the incompressible layer would

. 3/2
involve Jl(%‘/po(o JarR y3/ ) and that of the compressible layer would
3

have cos Viﬁ y and sin JXﬁ y. TFor large Reynolds number, these types
of solutions for a steady laminar flow must be rejected as impossible.
By the same reason, complex roots are excluded. The only alternative is
to accept the positive A.

If 2 1is positive, it follows that the velocity ut(l) and pres-

sure pt(l) will continue to increase untlil the process of linearization

breaks down. This would imply that in the potential field the train of
compression waves, immediately following the expansion, will grow expo-
nentially with =x. The flow directlon as well as the curvature of the
streamlines will also increase sharply. For such a flow, it is well-
known that the Mach waves will converge and form an envelope. There-
fore, in region 3 a shock eventually must be developed. On the other

hand, in the viscous field, as ut(l) + us(l) for any constant y will

increase with x, backflow, though slightly reduced by the step waves,
will become stronger in the downstream direction. Now, it has been well-
established that the laminar velocity profile with a point of inflection
is highly unsteble. As the pressure continues to grow at a Reynolds num-
ber generally above the critical value, transition must occur after a
critical pressure gradient is reached. The flow from there on cannot

be theoretically studied without considering unsteady flow.

It is therefore concluded that in the case of an incident compres-
sion shock, laminar flow is not possible for the whole viscous layer
and transition always occurs. This appears to be in complete agreement
with the present available experimental observations.

Character of Flow After Transition

Although the flow from a certain point on is unknown, the inter-
esting fact is, however, that the flow up to the point of transition 1s
very ingensitive to what happens beyond the point of transition. In
the previous sections, the problem has been reduced to depend only on
one constent A on which the quantitative behavior, but not the char-
acter of the flow, depends. A qulte similar conclusion has also been
reached in reference 1 and seems to be an experimental fact (refer-
ence 7). In one of his experiments, Liepmann introduced an expansion
wave immediately after the incident shock, and the observed upstream
flow field was practically unchanged. Therefore, in order to account
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for the observed pressure distribution, say it is sufficient Just to
take approximately the effect of the flow downstream of the point of
transition.

Assume that the second shock starts at the edge of the wviscous
layer and, by linear theory, has the same strength €. Inasmuch as the
direction of the flow on OM is constant and equal to ¢(2 - BA), if
the flow after the shock TR (fig. 2) is parallel to the plate, the
direction in front of the shock at large distance must be €. This con-

dition gives A = B—l. Moreover, as the veloclty vector is turning away
from the plate, the pressure continues to rise end will be stopped only
by transition. In that event, the sudden increase of shear of the vis-
cous layer will thicken the viscous layer. This thickening will make
the flow expand and consequently a drop of pressure will ensue. After
this, the streamlines will gradually level off and the reattachment of
the partially turbulent layer, if not yet accomplished prior to the
transition point, will be certain to follow. If the point of transition
s chosen to coincide with the point where v = O along the boundary
streamline, the location is then determined by Ix; = log,2.

For values of x greater than Xx,, the flow in the immediate

neighborhood of transition would have a greater influence than that far
downstream where the flow is more uniform. Since the flow In the tran-
sition region is of a boundary-layer type, namely, the backflow ceases
to be a factor, it can again be approximately represented by the inte-
grated effects, such as the momentum and pressure. If the flows before
and after the point of transition have the same pressure and total
momentum, the dynamical equilibrium can then be maintained. According
to the solution given in reference 1, the pressure distribution in the
transition region is approximately

Aqx X
%+Klel +K2€X2
where Aq and A, are negative constants, being functions of M
and R and Ky and K, are integration constants. By the conditions
that at x = x; the pressure and its derivative are contimuous, Xj

and Ké can then be determined.

It must be emphasized again that the conditions stated in this sec-
tion are tentative. No obvious reasons beyond the ones outlined at the
beginning of the section can be given at this moment.
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NUMERICAL EXAMPIES

As a numerical example, the case of M =2 and R = 774 is pre-
sented. First, the determinantal equation (50) is solved numerically
for only one Mach number 2 but at different Reynolds numbers. The
results are shown in figure 3. At this Reynolds number, )\ 1s 0.0467.
The velocity u(x,y) and the surface pressure p(x,0) for this A are
calculated. It is seen that for the shock strength of ¢ = -1°, the
boundary layer first separates at X o, = 1.1206 (fig. 4(a)) and, subse-

quently, backflow sets in. When the shock strength is increased to
€ = -39, say, the separation occurs at a much earlier station, namely

at Xgep = -22.4. The region of backflow is proportionally wider

(fig. 4(b)). However, if the step waves are taken into account, then
in the case of € = -1° there would be no separation (dashed curve in
fig. 4(a) for y; =3 and y, = 9); whereas in the case of ¢ = -3°

the flow at the same location remains separated but the backflow has
been very much reduced (dashed curve in fig. 4(b)). These results show
quite the same characteristics as the experimental messurements by
Ackeret, Feldman, and Rott (reference 8) of the velocity distribution
over a curved plate.

The pressure distributions over the plate for these cases are shown
in figure 5. For the weaker shock ¢ = -1°, surprisingly good agreement
with experiment (reference 6) is obtained. This very fact seems to
Justify the present assumptions regerding the structure of the viscous
layer. In the case of stronger shock, for example, ¢ = -39, there is,
however, a distinct difference between theory and experiment. Theoreti-
cally, the pressure would still decay exponentially upstream but would
begin with a larger amplitude. Experimentally, it was found, strangely
enough, that, over a considerable range of the upstream disturbed region,
the pressure first decreases very slowly and then decays more or less
exponentially. This "pressure bump! seems to be characteristic of the
pressure distribution in the case of interaction between stronger shocks
and the laminar boundary layer. This bumpy character in the pressure
distribution, by all evidences, must be attributed to the nonlinear
effect of the flow. This will be exhibited in the following section.

APPRATSAL OF HIGHER-ORDER EFFECTS

It has been shown that, if there is no backflow in region 1, the
pressure disturbances will decay exponentially.” When the shock strength
increases, however, the pressure in the disturbed region becomes much
higher and drops much more slowly than that predicted by the theory.
This appears to be due to the fact that when backflow develops, there
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will be an underestimate of the perturbed velocity and, consequently,
a much lower pressure.

To estimate the effect due to higher-order terms, a second-order
solution is found and is glven in appendix C. According to the second-
order solution, the correction terms for wall pressure would be

Ax AX

Plg + Pze2

In view of the fact that there is an overestimation of the first-order

pressure by the condition A = B-l, the correction term is expected to
be negative for small values of x and positive far upstream. Then

P, >0 and Py < 0. Since eZXx increases faster than x2 and elx,

when x 1is positive, the correction would be negatively large far down-
stream. It has been pointed out previously that the iteration process
falls for positive values of x; this solution shows further that it
diverges oscillatorily. In order that the solution will behave properly,
it will have to be carried to an odd order, such as one or three. To
third order, the correction for wall pressure would be

AX 22 3xx
Plg + Pze + P3e

If Py =0.75, Py = -1.83, and P3 = 1, the wall-pressure distribution

for € = -3° would resemble the curve as shown in figure 6, which does
exhibit the same character as measured by experiments. This, of course,
cannot be considered as conclusive evidence, but at least it shows that
higher-order terms such as given above do have the possibility of
accounting for the observed behavior of the wall-pressure distribution.
It is very important that this step be carried out.

DISCUSSION

This study being intended as an exploratory study, the numerical
results obtained are not expected to be exact, but only accurate enocugh
to insure the conclusions. As far as the first-order solution is con-
cerned, the entire problem depends on the determination of one param-
eter )\, which was calculated on the basis of two main approximations:

[>]
(a) the contribution of the integral ql/le(% qB/Z)dn is negligible
N4 3
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and (b) Ay, is small such that terms of order (Ayi)z and higher can

be neglected. The subsequent solution for A satisfies this criterion.
The question remains, however, whether Nyl =n(l) is also a solution

n
or mot. If Ay, = n(l), the integrals f 1 nt/2 {j‘i’z Tq} Kl(-g- 1]3/2)611]
0 3

would require g more elaborate evaluation. The possibility exists and
is worth testing.

As from the outset the boundary-layer approximetion 1s rejected,
it is of interest to examine the character of the perturbed flow in the

light of boundary-layer theory. According to the boundary-layer approxi-
-1
mation, if the velocity u' = o(U ) and Ofox' = O(L ), then the

=]

velocity v' = O(UwR"l) and /3 = o(L"IR). Now, from the character
of the solution for perturbed flow in the present theory, a/ax' = O(L'1R3/h)

and J/dy' = O(L'le/h). By comparison, the derivatives for the perturbed
flow sare much larger than the corresponding derivatives of boundary-layer
theory. Moreover, from the equation of continuity the ratlo v(lX/u(l)

of the perturbed velocities is O(R"/2). As in the vieinity of the

wall u(l) s u(o), v(l) is much larger than the vertical component in

the boundary layer. Since in this case J/Xx' < d/dy’' and v(1) < (1),
a set of equations analogous to those for the boundary-layer flow can be
deduced as long as backflow does not take place. Therefore, for expan-
sion and even weak compression Incident waves, a mich simpler problem
would be feasible.

Finally, it might also be noted that, owing to the assumption that
the flow far away from the plate is inviscid and irrotational, there is
introduced a sharp discontinuity in higher derivatives at the demarcation
line between the two flow fields. Because of the presence of shock, how-
ever, a first-order discontinuity is also expected, because, by the
assumption of frictionless flow at large distance, a smooth transition
from smrll shock thickness at large distance to a larger one at the
vicinity of the wall is precluded. The viscous-layer concept then
idealizes the situation by taking the shock as a discontinuity in the
outer field but continuous in the viscous flow. The effect of this 1s
exhibited in a discontinuity in slope of the streamlines. This picture
is entirely in agreement with the observed flow patterns.

According to the numerical example, the step waves tend to weaken
the backflow downstream of the point of incidence but are uneble to make
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the flow reattach if the separation has occurred upstream of the point
of incidence. This mey very well be due to the poor approximation
inherent in the Stokes flow which may underestimate the rate of change
in the y-direction. If a more exact solution is given, reattachment of
the separated flow might be accomplished in the laminar regime. This
point should be considered as open.

CONCLUSIONS

The following conclusions are drawn from an analysis by the
differential-equation method of the interaction of an oblique shock
wave with a laminar boundary layer along a flat plate: '

1. The pressure perturbation decays exponentially forward of the
point of incidence and the distance of pressure propagation varies with

different Mach and Reynolds numbers as B-3/hR—3/h (where B 1is Me - 1,
M is Mach number, and R is Reynolds number) and very slowly with the
shock strength.

2. If the shock strength is strong enough, separation of the flow
always occurs. For given Mach and Reynolds nmumbers, the separation point
depends strongly on the shock strength.

3. The pressure at the point of separation varies with Mach and
Reynolds numbers as B-l/gR_l/z.

k. In the viscous layer, leminar flow is not possible everywhere,
no matter whether the incident shock is strong or week. In the distance
of about two or three boundary-lsyer thicknesses, transition would occur.

5. The curvature of the streamlines after the shock is positive and
the Mach waves in the potential field must coalesce to form a shock which
approaches asymptotically the regularly reflected shock in the inviscid
flnid. As its position depends on the point of transition, the exact
location cannot be predicted by the present theory.

6. From the calculated pressure distribution over the wall, it is
definitely proved that the observed overcompression of the wall pres-
sure is a consequence of the positive curvature of the streamlines and
the expansion is associated with transition.

7. The observed "bump" in the pressure distribution in region 1 for
strong shocks is definitely a nonlinear effect and is an indirect conse-
quence of separation. .

Cornell University
ITthaca, N. Y., January 11, 1652
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APPENDTX A
PERTURBATION OF AN OBLIQUE SHOCK

Let w19y
and normal velocities with respect to an oblique shock, the pressure
and density in front of the shock, and, by replacing 1 by 2, the corre-

sponding quantities behind the shock. These variables are related to
each other by the Rankine-Hugoniot conditions:

Pq> and Py denote, respectively, the parallel

Py 1%y T P2 2%y A
% T 2%
+ u 2 + u 2 & (Al)
Pyt Py g TPy TPy oY
P D
vy -1p 2 7y -1 Py 22

If the flow in front of shock is given, equations (Al) yield the fol-
lowing solutions:

7
- 2 ( 2 _ 2)
Pp =P T o7 TR
_ 7y + 1
Pp = Py .\
7-1+z(—111> s (a2)
1L
w. = y-1, 2 81
271 1y 31 41 %42
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where aj 1s the speed of sound .in front of the shock. If a_  and U
are the speed of sound and veloclty at infinity, then a; can be
expressed in terms of velocities by the relation:

o0

2, y-1_2

2 ,2- l(ulz + le) =8, + 5 U,

ay

Furthermore, if ® 1is the angle between the velocity (ul,vl) and the

shock, it 1s easy to show that the Cartesian cémponents before and after
the shock are related by

~
2
upy = uy + (u sinza)+V sincncoscn)-——f-]—‘-——-—l
17y +1ve = qzsinzcn
1
> (83)
2 8%
V2=Vl- l(ul coswsina)—vl sinzw) 21 2 -1
7+ q;" sin o
q

2_,2 2
with g% = w? + V2

In the case of weak shock, the shock angle ® can be expanded in
terms of iie deflection angle €. Then cos @ and s8in ® are shown
to be

2
cosa)=% l+7h:;3lM26 -
(7+i)M2 (7+1)MZ(2M2+1)—162+.'. .
4B 8g? :
? (k)

sinu)=£ l.—7+lM2€+
M LB
(7+1) 2| G+ 0 (2 )

- 1feZ &+ . ..
12 8p2



http://www.abbottaerospace.com/technical-library

NACA TN 2869 43

Now since the velocity components u; and vy can be expanded:
1+ Gul(l) + 6'2111(2) +

o) 1 (@)

uy

V1
If o has the expansion:

0)

o= o0 + eal) 4 B(3)

and a)(o) is defined by equations (AL), then a straightforward reduction
gives

1), 2,.@),

l+€uz + €Muy

o§

e = gvz(l) + GZVZ(Z) ... (a5)

where

Wl 4 (r-1 (1), 1p20(1)
* E 7+l<2 -M§|u1 la|E+(7+1)M2

1)
7

(l)
@ o[y fr-1, 1Y, (@, 1], 1%® ( @) _ )
" l} 7+1(2 +MZ5J‘1 +B|E+(7+1)m2 g/t
Z53. 1) ((C) R EH) L S S O ) @, @,
7+1 v/ L 1 7+1 2 ldraul

; L(y;l& ] 1) 02 -2) ), we® 202 - 2)( W)
g (r + 12 (7 + 18

- (46)

v, (@) ﬂ%(z?_l_ # S @) 4 (@) 4 2B 1(’ -1, %)Eula))z ; (vl(l))ﬂ-

if . 1p2n(1) (1+7-1Mz)u ®, 1, 1%0(1) (1)
B\ (r+1pf 2 t Bl o+ 1)}12

(7 -1, (Ly (1) , |: W + 2 (1), 48%®) , 2801+ Mz)( (1))]
ry+1

2 (r+ 12 (y+ 108



http://www.abbottaerospace.com/technical-library

APPENDIX B

POTENTTAL FLOW IN REGION 2

NACA TN 2869

If the flow in reglon 2 is irrotational, there exists a poten-
tial 2Cp(x,y) and, if the shock conditions are satisfied, it must

possess the expsnsion:

- Q) ; 2 o2)
2¢ X + € z@ + € ZQ(

(B1)

For the first-order solution of the shock conditions, namely, on a line

X+ By =0,

w

ZCPx(l) = |1 - —1—L—<7 -t L> ul(l) + i(1 +

(1) _
Py TV

Now on the shock

1
v. (1) = -BAeZX

1

If the perturbed shock angle is
(1) = geMx-pY)

the solution qu(l) must be

ch(l) = %(x + By) + te)‘(x'ﬁy)

tha)(l) >

(7 + l)M?
</

=~

(y + l)M?

hﬁzw(l)

(B3)
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Substituting o(t) and

yield uniquely

45

2¢(l) in equation (B2), the two equationms

~

>

I
|

(3
2 M2 3

(Bl )

The solution in region 2 is thus a superposition of the trensmitted

waves ex(x-By) and a uniform step wave x + By introduced by external

agency.

Since this solution will terminate on the Mach line OM, the solu-
tion in region 3 will be found by the condition that on x - By = 0O,

3u(l) = lu(l)

(B5)

By this condition, the Prandtl-Meyer flow requires & deflection

Solution (A3) gives

= —ep u0) - (o)

flow in region 3, to the first order, is

v(l)(O) + 89 = (2 - BA)e

(B6)

= €. Consequently, the initial direction of the

(BT7)
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APPENDIX C

SECOND-ORDER SOLUTION

Potential Fleld

If the first-order potential is of the form:

(1) - A M(x-By)

? A

it can be shown that the second-order equation (19) admits a solution
which reduces, at the edge of viscous layer y = 0, to

w(B) o pedx . gehx h
> (c1)
2
JB) L e lo, O 1§Mﬂ 2
Lp
-/

(y + 1)1:11‘,&2 23x
where B and C are arbltrary constants and the term -———nn——e

Lg
+ 1)M2AZ
is derived from the particular integral -Sz;—z—l———— yeZK(x-By). The
B
22X Ax
reason that both e and e are included in the complementary part

of the solution 1s that the solution in region 2, according to equa-
tion (A6), contains both solutions.

Incompressible ILayer

Assuming that, to the second order, the density in the inmer layer
remains constant, the system of equations (15) simplifies to

A mp(z) - ay A\!fx(z) = R(\Lfy(l)wx(l) - wx(l)Awy(l)) (c2)
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where the second-order stream function V(%) 1is defined as

a®) g (2)

S2) -y (2)

By substituting W(l) into the right-hand side of equation (c2), the
particular integral can be found; this is

in ¥H 'ﬁ ~r ~
1kp(z) _ __s_lf (cos T1)2(F) 47 -
#(2an)?/3 70
o
(2 )2/3 70

vwhere the function 2Z(%) stands for

20 = £ #eny (2 9/2)| [ ! /% (2 /7)) & | -

3 3
somefe )| [T ow ] o
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with

2
y
A(n) = -i-(z&x)h/ . ;—C—:(LE)—; ot/ ZK%(% n3/ 2) [}cos ™) /; /2 (cos )K% dn +

(sin TU)L/;n ql/z(sin Tq)Kl d{] -
3

n

(cos Tﬂ)h/;n ql/z(sin Tn)Kl,dE] (c5)
3

and the varisbles:

§= @Y 3(y - ?) ' (c6)

(o4

¥ = 2x /(203 (c7)

The general solution, consequently, cen be written as’

Ilr(2) _ WC(E) + Wp(z) (c8)

where the complementary integral WC(Z); by the first-order solution,
will be given by

) = cgp e + oy (e (c9)
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T
Since the form of W(l)(q) is known, and, furthermore, W(l)(O) = W(l) (0) = 0,
the solution W(z) 18 determined with two arbitrary constants C3 and Cy.

With W(z) determined, the second-order pressure p(z)(x,o) on the
plate can be written, similarly, as

p(z)(x,o) = P1¢Xx + Pzez."‘x + PPeZXx (c10)

where

()32 fw 12

> @m0 | K%(%n?’/z)lx(n) ¥

and Pl and P, take the same form as the symbol P <for the first-order

pressure p(l).

Compressible Layer

In the compressgible layer, p(o) = u(o) = T(O) = 1. Again, if

(2)

(w, ) - vx(z))x L1 AQey,®) v @) (@) W)
v(1)Ac;y(1) - u(1)A],~y(1)

o (2) _ o(2) .g{f.éu@) . nx(z)> IR CORICOIR

= 0, equations (15) become

~
+

> (c11)

Eaﬁz (1 + ﬂdzilu(l)vy(l) - zx(l + 7—%—1 M2>(u(l))2 +

ME(y - 1)(v@)% _ %(vy(l))z S Loy @)
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Similarly, by introducing F(z) and G(z) through the relations

u(z) = FX(Z) + G}'(Z)

@) .5 @) g @)

v

- Gy
there result the following equations:

26, ®) -1 a @ 3@, (W),

g ) _ (g (1)

(2) (2) (2) _ 22|, [ (2) , o (2) (2
R (LT RN N
(24 )y () l:zﬁz (14 7M,?,ﬂu(l)vy(l) i

SYCRE A Y. WO PN SR MY D NG CD

M A vy J

The solutions F(z) and G(z) can be written 1n an analogous
manner. That is:

#(2) _ Fc(2) . FP(Z)
(c13)

a(2) _ o Gp
Here FC(Z) and GC(Z) are known from the first-order solution and
Fp(z) and Gp(z) are glven as follows:

Fp(z) = (Kl + Kze'Oy + K3e-20y)ezxx

Gp

(2) _ Khe-oy+2)\x ()
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vwhere the constants K are defined by

1+ 52/Blz) E""(7 1)3’2:|ﬁ1 +(7-l)142+2+2;a:L 2.

8).
o) S
1- (ﬁz/alz) I:ZBZ - (- 1)312]&12 +2 4 (7 - 18 2
2
™ g

=

_1-(p/m) . I} hxz+(xpl-u)"i|x
" i) m{"‘“' o

(:28,% - oz)&gf CxL gl + R’l)x'1]
&2(1 - 2r71) + (28, - o) + 2(2 - mr) - om0, - o)“

+

8y(1 + »f) -1?{”2(7 -1pf 4+ 312[2 + (7 - 108 - ﬂﬂ}+

(%‘R-)(wl(ﬂlz";ﬁz*m‘z+2)+°{1+7"2+512E7'1)’@‘Bz:l}):l x

Cph
().al + cr)2 - hxzﬁzz

2+ (8/m) <’(”’1 e pef 2 0no? s (o - (%7 - Pl S -1 - Bxs n-lﬂ )
(1 '3 ﬁ) 82(1 - 2) + 2008, + 0)(1 - ) - 0B o8y + o)

ﬂ1(1+7ua) 512[+(y 1)142-5:|+h+2(7 1)142}

(G- w oo @ v 2 e 5) 2 gdao il - 20 - ]}>

CoA
(21 + ")z - 1Ppy?
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KR |, 2

-1
'Lf—x) (r - 1) I)—E—gi-fl"l>-~[2+(7—l)Mz

w| oo

K3= -'<l+

(81" - )2+ B/Bl)Et e %ﬂmz

K,_'_ = +
szhz(l - 2aRL) + 2(ap; + 0)2(1 - ML) - OR)L(nBy + o)ﬂ
2.2 2 @ -1 Byo 1
(x B - ¢ )(1 - B/Bl)l} i R + T(K + ﬁE]ACZ
2|81 - 287h) + 2(a8, - o 2(1 - mr) - or)? N
- 17 9) - - (M - 0)
end the constants K and Bz stand for
Me
= (r - 1) T S
L
62 _ 8 P,
8 2 _ 3 R
? 8 M (c15)
1+
3 R

The second-order solution now involves six arbitrary comnstants and, by
the conditions at the interface, all but one can be determined.

5
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Flgure 1.- Diagram of flow field.
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Laminar Region ~»<—Transition and turbulent region

Figure 2.- Sketch of flow field according to first-order theory. .
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Figure 5.- Pressure distribution on plate for ¢ = -3° and e = -1°.
M =2; R = T7h. Experimental values were taken from reference 6.
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Figure 6.- Pressure distribution on plate for third- and first-order
terms for ¢ = -3°. M = 2; R = TTh.
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