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By I. E. Garrick and C. E. Watkins
SUMMARY

The .sound -pressure field of a rotating propeller in forward flight
in free space is analyzed by replacing the normal-pressure distribution
over the propeller assoclated with thrust and torque by a distribution
of acoustic pressure doublets acting at the propeller disk and subject
to uniform rectilinear motion. The baslc element used to synthesize the
field i1s the pressure field of & concentrated force moving uniformly at
subsonic speeds, for which an expression generalizing one of Horace ILamb's
for the fixed concentrated force is given. This result is presented both
for the moving and for the fixed observer. The strength of the doublet
distribution 1s releted to the thrust and torgue distribution in a con-
venlent but approximate way. The sound field is expressed by integration
over the propeller disk, and also by integration over an effective ring,
and is given both for the near pressure field and, in a simpler form,
for the far fleld. Known results for the zero-forward-speed case present
themselves in the special case of Mach number M = 0. Some illustrative
examples are calculated and discussed.

INTRODUCTION

The rotating propeller is the source of an intense sound-pressure
field which can be associated with the periocdic reactions on the medium

arising from the distribution of pressure rotating along with the blades.

This pressure distribution conslists in part of a distribution due to
thickness of the blades, whose resultant force in subsonic potential flow
is zero, and in part a distribution due to angle of attack and camber

of the blades whose integreated effect includes the Induced drag and corre-
sponds elmost wholly to the thrust and torque distribution over the blade,
Another source of propeller nolse may be associated with flow separation
and with friction or shear due to the boundary layer; both effects lead
to vorticlty shed Into the wake and hence the designation vortex noise.
The vortex noise and the noise due to thickness (where wave drag is not

a large factor) are, however, for actual propellers normally of a consid-
erably smaller magnitude than the rotational sound due to torque and
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thrust; hence only the latter effect will be considered in the present
work. ’

A large number of investigetors have studied various phases of the
determination of the sound or noise field of rotating propellers. In
addition to the references cited, a bibliography is included of repre-
sentative work on this subject. A simplification that has frequently
been made in propeller-noise investigatlions is to limit the consider-
ations to the static or standing propeller. The work of Gutin in 1936
(ref. 1) represents a development—of this type that mekes possible a
gatisfactory prediction of the amplitude of sound pressure due to thrust
and torque of a propeller rotating on & stand in still air. Although
Gutin's theory is applicable to the near oscillating-pressure field of
the propeller, his results in reference 1 are limited to the determi-
nation of the fundamental and the first few harmonics at & distance far
from the propeller, that is, several diameters away. The determination
of the near pressure field, however, has been of concern both from struc-
tural and physiological considerations. Hubbard and Regier (ref. 2)
extended the application of Gutin's work to describe the osclllating
pressure field and to determine the emplitude of noise at points near
the propeller, in some cases within a blade chord length from the tip.
They investigated analytically the effect of several of the parameters
that enter in the theory and also gave comparisons with experiment which
were quite satisfactory.

The existing theoretical work has found useful application for
static conditions and for conditions of low forward speed, for example,
near take-off. For conditions of high forward speeds, however, many
pertinent questions have arisen ag to the possible effects of the forward
speed on the oscillating pressure field of the propeller. A few investi-
gators have examined phases of this problem; Bryan, Hart, Shirokov,
Blokhintzev, and perticularly Kuessner and Billings (see bibliography )
mey be mentioned, but most of this work seems incomplete or difficult to
apply. It appeared desirsble, especially for aspplications, to reexamine
the theoretical problem for the propeller at forward speed so as to have
it arise as a straightforward generalization of existing work for the
zero-forward-speed case. The purpose of the present paper is therefore
to extend the theory of Gutin (ref. 1) and the work of Hubbard snd
Regler (ref. 2) so as to include the effect of subsonic Fforward speed
of the propeller on the near and the far oscillating sound-pressure
field caused by torque and thrust of the propeller.

This paper includes the following materiel: (a) The sound-pressure
field associated with a uniformly moving concentrated force is given with
detalls of the explicit development contained in the eppendix. This
result serves as a basic element for synthesizing the total pressure
field. It is expressed both for the case of the observer or field point
consldered to be moving along rectilinearly and uniformly with the pro-
peller in free space and for the case of the observer considered fixed
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and the propeller in uniform flight. (b) The disturbance forces associ-
ated with the pressure distribution acting on the medium in the plane of
the propeller disk ere presented in the manner similsr to that of Gutin.
(c) The sound-pressure field resulting from the combined use of (a) and
(b) is shown in the form requiring integrations over the propeller disk
and in the simpler form making use of an effective propeller radius.
Approximations valld for the far field, which reduce to Gutin's results
for the case of zero forward speed, are also given. (d) Some numerical
examples are caslculated and discussed. (e) Remarks on the usefulness
and limitations of the ansalysis.

SYMBOLS
A(r) chordwise distribution of thrust acting on a radial element
of a propeller blade
B number of propeller blades
b(r) width of propeller blades
c veloeity of sound
Cp power coefficient, P/pn3D5
Cp thrust coefficient, T /m2D
3] propeller diameter
F(r) chordwise distribution of forces perpendicular to the thrust

of a propeller blade and giving rise to the torque

F,, Fy components of force vector F

X "y
k=28
c
JImB Besgel function of first kind with index mB
M Mach number, V/c
m order of harmonic

n propeller rotational speed, rps
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P power

js) pressure

|p| pressure magnitude

pQ pressure due to torgque

P pressure due to thrust

Prms root-mean-square pressure

Q torque _
R length of propeller blades

Re effective length of propeller bledes
T radlus to & blade element

r, 6 polar coordinates in yz-plsne

S=J(x -xl)2+ 132 (y -yl)2+ (z - zl)2:|
so= VB B2 | } .

R R

Bg = an + y2

8oy @ polar coordinates in xy-plane
T thrust

t time

v forward velocity

X, ¥, 2 Cartesisn coordinates
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B=V1-M

Br blade angle
M propeller efficiency
o) £luid density

M(x - xl) + S
g =

32

b
T = e

rQ
To pariod, 2x/BQ
1] angular velocity
w frequency of mth harmoniec, mBQ
wy fundemental frequency, BQ

ANATYSIS
Extension of a Formula in Iemb's "Hydrodynemics" for the
Sound-Pressure Field of a Fixed Concentrated Force
to That of a Moving Force
On the basis of acoustic considerations of the classical hydrodynamic

equations, Lamb (ref. 3) gives the pressure at any field point x, y, 2

assoclated with an external periodic force Aeiwt acting in the x-direc-

tion and concentrated at the location xy, y,, 27 as

| to(s-8)

- Aoe
P= hx Xx 8 )

where

= f(x - P (v - v)P+ (2 - m)P (2)
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The concentrated force may be regarded as stemming from the limlt of a
distribution of an increasing pressure difference over a decreasing

area, whose product in the limit of zero area is equal to the force.

For an arbitrary concentrated force of components Fy, F,, F, the result

X’ -y
generalizes as ILeamb indicates to

1o Bt -8) a H(-8) 5 m(:-3) )

P = il 8 dy 8 Sz 8

This formule shows that the pressure Tield obtained from the concentrated

force has the character of a doublet or a dipolel; in its pericdic form
it has played a central role in the development of the noise and pressure
fields of propellers due to the propeller torque and thrust. However,
the formula refers to a concentrated force and to coordinates fixed in
space., To treat the case involving effects of forward speed, it 1s expe-
dient to obtain the required extension of the preceding formuls.

The extension of equation (3) required for the case of a uniformly
moving concentrated force is given in equation (4), which follows.
Detalls for its derivation are supplied in the esppendix. Iet the con-
centrated force have components Fy, F&, F,3 let it be moving uniformly

with velocity V 1in the direction of the positive x-axisg; and let the
coordinate system also move uniformly with the same velocity. Then,

with x, y, z now denoting the field point referred to this coordinate
system and with x7, yy, 27 denoting the coordinates of the concentrated

moving force . —

1o B(t-9) aR(t-2) 5 m(r-3)
T sty s tE s ()

where . - N ) .

s =l - m P+ Py - 3P+ (= - )

M(x - x3) + 8 . (5)
52

B=1\1-M

lSince the acoustical pressure is p = -p %%, the dipole 1s an accel-
eration doublet or the time rate of chenge of & flow doublet.

</



http://www.abbottaerospace.com/technical-library

NACA TN 3018 7

Figure 1 illustrates the geometric meening of the quantities s, S,
and o©. The force located at O(xl,yl,zl and the field point at

Q(x,y,z) are both in uniform motion with veloecity V in the x-direc-
tion. The distance 0Q = s. The influence at Q at time t stems

from the action of the force_when it was at position P, where P 1is
obtained from the relation 0P/6§ = M, the forward-speed Mach number.

The distance PQ gives then directly the phase radius o. The perpen-
dicular dropped from O onto PQ determines QR, which i1s equal to the
amplitude radius S. For M= 0 both 8 and o reduce to the ordinary
radius s. Comparison of equations (3) and (4) shows that the effect of
the forward speed leads to replacement of s by S in the amplitude and
by ¢ 1n the phase.

The force varisgtion of main concern herein is that of a harmonically
periodic force F having components Fy, Fy, F, varying in time as elwt,
Equation (4) becomes

YA > 3\e-iko
P = E.;(Fx gx— + Fy g + FZ —a;)——s (6)

where k = w/c. Equation (6) i1s the basic relation to be made use of in
the subsequent analysis.

Disturbance Forces in the Propeller Plane

Consider as does Gutin (ref. 1) a propeller disk oriented so that
the axis passing through the center of the disk colncides with the x-axis
and let the propeller be assumed to rotate, as in figure 2, in the
yz-plane (x = O) with positive values of x corresponding to points
ahead of (and negative values of x corresponding to points behind) the
propeller disk. The propeller is consldered to move uniformly with
velocity V 1n the positive x-direction. Polnts in the propeller disk
are designated by (O,yl,zl), or, in polar coordinates (as shown in

fig. 2), by

¥y r cos 6

(7)

A r sin ©

1

For definiteness, let the propeller be rotating counterclockwise as seen
by an observer looking into the propeller toward the slipstream.
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Each element of the propeller is acted on by the surface pressure
distribution and this distribution may be resolved into a thrust force
in the direction of the axis of rotation (the x-axis) and into & force
assoclated with the torque which acts about the axis of rotation opposing
the rotation. Equal and opposite reaction forces to these are exerted on
the medium. The points of application of these forces are imagined to
act in a single plane designated as the plene of rotation or as the pro-
peller disk. ’ ' T ’

The reaction of the surface pressure distribution of the rotating
propeller on the medium at any instant is to be replaced by fixed
periodic forces acting at the propeller disk. The propeller disk itself
willl be considered covered with the necessary singularities in the pres-
sure or acoustic radiators of proper strength and harmonic content to
correspond to this normal-pressure distribution. These singularities
will be seen to be acceleration sources (acoustic radiastor of zero order)
for those forces which act symmetrically on both sides of the blade, that
is, whose net force over each element of the blade is zero, and to be
acceleration doublets (acoustic radistor of order one) for those forces
acting antisymmetrically, that is, whose net force over each element of
the blade corresponds to the difference in pressure over both sides of
the blade. The doublet distribution 1s that which 1s needed to repre-
sent the thrust and torque distribution, in particular that part of the
thrust and torque distribution associated with pressures actlng normal
to the blade surface. This part is practicelly ell of it, except that
arising from skin friction. (The effect of blade thickness may be tsken
into account by introducing either flow sources or acceleration sources:
the flow sources would lead to the sound-pressure field due to thickness
by the classical "piston" effect of the moving blede on the flow field;
the acceleration sources would deal directly with the assumed or known
contribution to the pressure distribution over the blade due to thickness.)

Consider an element of the propeller at dlstance r from the axis;
Jet dr De its radial length and b 1ts width measured in the projec-
tion onto the plane of rotation. Let the forces acting on the propeller
element on each blade be A(r)dr in the axial flight direction and
F(r)ir in the direction opposed to the direction of rotation. Equal
reaction forces acting opposite to the flight direction and in the direc-
tion of rotation, respectively, are exerted on the medium. These quanti-
tles are related to thrust T and torque @Q by the relations

%= BA(r)

(8a)
% = BrF(r)
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or

H
n

BfOR Alr)ar

R
BL/; rF(r)dr

-~

> (8b)

DH
n

where B 1s the number of blades and R the length of each blade.

The periodic impulse or reaction experienced at any element of the
disk may be expanded in & Fourier series. For simpliclty let the element
considered first be located on the radial line 6 = O (the y-axis) and
afterwards be located arbitrarily. To stert with, assume that the forces
are uniformly distributed over the projected width b of the blade
element, that is, that the distribution of pressure difference over the
blade chord is rectangulsr. Then in the area element r dr 46 of the

plane of rotation, the forces A(r)dr = 49 ana F(r)dr = 49 gct on the

medium during the time interval in which this element is eclipsed by the
projection of the propeller element. If the overlapping of the element
sterts at t =0, it will end at t =T = E% and the overlappling of the
r
element will start again by the next blade at t = 7145 = %%, wvhere Q 1s
the angular velocity of the propeller. The rectangular-type forces
experienced at the element of the disk located at © = O by its periodic
eclipse by the blade may be developed in a Fourier series:

N A(r) rbde dr for O< t< T
Fi (%) =
0 for T< t< T9
* [+1]
Fp (t) = g + > A, cos(mBOt - ep) (9)
m=1
and similarly
% F(r) & a8 ar for O<t<T
Fp (t) = b
0 for T< t< T,
[=-]
FoX(%) = Bg + > By cos(uBRt - 1) (10)
m=1
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where
~
2 r T
= — A(r) = sin mx — dr d6
2 r T
B, == F(r) = sin mmx — dr 48 /> 11
Bm - ()bs To ( )
T mBQT
L _

The constants Ay and By which correspond to the instantsneous average

thrust and torque over the blade element and to the associated momentum
shed into the slipstream do not give rise to sound and need not be
expressed. The phase angles €, &and 70,, which are small for the lower

harmonics, are needed to preserve generality of discussion since Ay cos €p
corresponds to the coefficients of pure cosine terms and Ay sin ¢, to

coefficients of pure sine terms in the Fourler series. For the assumed
rectangular distribution, ¢, and 17, may be observed 1o be equal to

zero if the origin of time is chosen at the overlapping of the center
line of the blade by the y-axis since then only a pure cosine series
suffices to express the dilistribution.

The general formulation of interest, where the disk element r dr 46
is located at an angle 6, may be expressed directly from these results,
for, on a second area element r dr d6 shifted with respect to the first
by the angle @ 1in the rotational direction, there act periodic forces of
the same megnitude, bubt retarded by the time e/a. The corresponding
Fourier developments are o ’

F(t) = Fl*<t - %) = Ag + z;; An cos (mBOt - ;;9 - €q)
m= .
> (12)
Fo(t) = F2*<t - %) = By +--§ By cos(mBQt - mB6 - 7 )
The quantity

mrT _ mBOT _ mBb
To 2 2r

(13)
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is small for the lower harmonics, especlally for blade elements not near
the hub. Blade elements near the hub, where r 1is small, are eliminsated
from consideration since they contribute very little to the air forces.

One may then replace in equation (11) sin gﬂz by ?EI so that, noting
o

)
the relations in equations (8a),

B aT
=~ — A(r)dr 46 = — dr 4e
by = = A(r)
(1%)
1dQ
By ~=F(r)dr 40 ~ = == dar d8

This epproximation, which welghts the harmonic content of all the har-
monics equally, may be observed to correspond to the case of the thrust
end torque distributed over a zero blade width (that is, to the mathe-
matical pulse sometimes termed the Dirac delta function). This approxi-

mation becomes relatively less valid when %EZ exceeds gbout %
o]
(sin % = 0.70T7; E-= O.785> or when Im $; exceeds about unity; that is,
o

when the order of the harmonic exceeds %% or, roughly, l/solidity.

Moreover, the assumption of a uniform rectangular distribution of
the forces across the blade has been made for convenience, and other
distributions may be treated 1f desired. Some of the possible errors in
the assumption leading to equation (14) are discussed briefly by Gutin
in reference 1 and are shown to be generally negligible for the lower
harmonics. Regier and Hubbard (ref. 4) also discuss this assumption in
an illuminating memmer. Figure 3, which is taken from reference k4,
shows the relastive harmonic content of different assumed distributions

of the same total load for: (a) the methematical sharp pulse, (b) a
triangular "hat" pulse 55; = 0.03, (¢) a rectangular pulse L 0.03,
T

and, (d) a rectangular pulse 55;-= 0.06. Blasde widths of actual pro-

pellers tend to be between cases (c) and (d) for the most effective parts
of the propeller disk. The sharp-pulse assumption generally tends +to
overestimate the magnitude of the higher harmonies. When the proper
distribution 1s known, asppropriate correction factors for the required
harmonic mey, of course, be spplied to the magnitude of the results given
by the pulse solution.
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The formulation in equation (12) need not be limited to the one in
which the propeller force distribution is uniform throughout the pro-
peller cycle. If interest should be attached to a nonuniform distribu-
tion, as occurs for the propeller yawed or pitched with respect to the
flight path or for one experiencing interference effects, it is readily
possible to allow for these effects by permitting the amplitude of the
distribution to become & function of 6.

The Sound-Pressure Fleld

The general expressions for the resolution of the forces associated
with the thrust-and torque on a radial blade element (for example,
egs. (12)) may be put in the usual convenient complex form (whose real
part may correspond to the formulation of interest):

Fy = Ag + i Amei(w‘bT-mBG—em) A
m=1
- (15)
T = 5o+ D Byet (P60 m)
m=1

-/

where » = mBQ and where for the special case of the rectangular pulse
distribution the coefficients are given as in equation (11).

With the use of the approximations for A, and B, glven in equa-

tion (14%), the periodic forces acting on the medium at the element r dr 46
of the disk can be expressed for any glven harmonic in the forms

14T _4(wt-mBo) )
Fx’m = -; E e dr 4o
__114dq i (wt-mB8 )
Fym=-=Zg-5in @ dr 48 > (16)
p, 1188 . g i{ot-mBe)y 44
2, 5 r dr S

In the derivation of equation (16), the phase engles e, &and 7,, which

can generally be neglected for the lower harmonics, have been put equal
to zero, a value which corresponds in the case considered (as has been
mentioned) to the choice of 8 = 0 +to correspond to the overlapping of
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the center line of one of the blades at the time "t = O. The index m
indicates the order of the harmonic considered. As discussed in the
preceding sectlon, appropriate factors depending on the harmonic num-

ber m, functions of the radius, and, for unsymmetrical loading, func-
tions also of © may (if known) be applied to the terms in equation (16).

Pressure relstions involving integrations over the propeller 4disk.-
The pressure at any point in the free-space field produced by these com-

ponents of the uniformly moving perlodic forces Fy, Fy, F, 1is given in

equation (6). With the use of the components of force given in equa-
tion (16) and by integration over the propeller disk, the total oscil-
lating pressure p for any given harmonic m (the index m will be
hereinafter dropped) is obtained from equation (6) as & sum of the pres-
sure due to thrust Pp and that due to torque Pq as follows:

P = Pq + Pq (17)

where

R nox —iko
Dy =...3;.Jf aT i(wt-mBO) O e 4 gq (18)
y2Jo Jo dr cx
R nox ) -1k
pQ=-L2f f 14 i(wt-mB8) 1 O e dr 46 (19)
2o Jo T AT rog S

and where, in the expression for p the operation ;-ji has been used
7 Q’ T 09
" for convenience to replace the equivalent operation sin © é% - cos © é%.

The indicated differentiations with respect to x and ©6 can be carried
out by use of the expressions for o and S given in equations (5)

_é e'ikc - e'ikc __ikM _ ikx _X h
ax S S

82  plg g2

% (20)

-iko -iko 2
13 S (—EE - E—)(y gin 8 - z cos 8)
r

-
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Hence,
2n
iwt\/“ b/‘ 4T o-1mBo & ikd/ikM 1kx )dr a6 (21)
s \g2 Es i
and
it R n2n -iko 2
P = e . \jp U/\ 1 %% o—1mBO e < + E—)(y gsin 6 - z cos B)dr de
Yy ovo % 5 \8 52 -
(22)

Another somevhat simpler expression for PQ can be obtained from equa-
tion (19) by integration by parts with respect to ©

iwt -iko
e 1l 4Q ~imB6 e
Z2e S —— imB dar a8 (23)

Pressure relations involving effective ring approximetion.- Appreci-
able simplification may be achieved for calculation purposes by making
use of the approximations inherent in the assumption of an effective pro-
peller radius Ry so that the integration with respect to r 1s avoided.

Equations (21) and (23) then reduce to

iwt p2n -1 (mBe+ko)
PT=e2f T(}_kl{.kﬁ.,_.x_i___de (24 )
W2 Jo g2 g2s g2 S

and

ae (25)

enwtk/~2n Q 5 o~1(mBo+ko)
O R

PQ=_
knz e2 S

where, in both S8 and o, the points ¥q and zq have the values

¥y = Re cos 6, 27 =R, sin 6. In effect, equations (24) and (25) imply

that the propeller disk has been replaced by an annuler ring in which
the entire thrust and torque are concentrated. The effective radius of
this ring varles somewhat, as calculation shows, with the load distri-
bution and with the order of the harmonic. Deming (ref. 5) has shown by
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calculation in special cases for the static propeller that the ring
epproximation is & reasonably good one. An effective radius of the order
of 0.8R is considered reasonsble for adoption in initial calculations.

The magnitude of the root-mean-square pressure Prms is of interest,

since most sound-recording instruments are calibrated in terms of it. The
contribution of the harmonic of order m +to the root-mean-square pres-
sure 1s

V2,

rree = e+ 3
or
Prms = ‘\E—g(“@ + B2)H/2 (26)
8x
where
2 [ e k x mB ao
A=f X cos(mBe + ko) + T-—<M+—)-Q,——sin(m]36+kcr)—

2n ’
B=f ~IX sin(uBe + ko) + T£(M+ 5>-Q£Bl-cos(mBe+kc)d—e
0 g2 82 s R . s

When rotational symmetry exists as for the condition of symmetrical
loading, it is convenlent in masking the numerical calculations to let
the field point be in the xy-plane, an arrangement which can always be
attained by suitable choice of the line 6 = O.

Pressure relastlons- for the far field.- A further simplification in
the results can be reached if the distance s from the propeller disk
(O,yl,zl) to the field point (x,y,0) is large. Then from

2

S =x2+(y—yl)2+ Z12

there is obtained

8 ~ 5y - —— (27)
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where s, ='0x2 + y2 (the distance from the field point‘t6 the center
of the propeller disk). It also follows from

82 = X2 +—[32(y - yl)2 + 52212

that

B2y,

So

S i SO - (28)

where
Bg = sz + Bzya

If terms of order l/s2 are neglected in comparison with terms of
order l/S, the sound pressure due to thrust is obtained from equa-
tion (24) by use of equations (5) and (28):

eLwt

Yx2

k.
L _i?<so+Mx) " N 21 -imBe+ikI-Rocoso
Pp~T o g e 205, © So o
o B So/Y 0

From the known integral relation

21 :
JF olNcosB-1n8 34 _ 2winJﬁ(K) (30)

0

1t follows that

15
0 up 182 (Sotx) 11;(M L X ) JmB<kyRe)
So

P =T e b (31)

T 2nS g2 So

Similarly, from equation (25),
k
-1 (8 o+ Mx )

_q elot mpi1 2\ o (¥yRe

Pq =73 2 2x5, 1 mBe ImB| 5= (52)
e
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Observe that the argument of the Bessel function may be replaced by

kyRe

So

= mBM,.o+, g—o (33)

QR
where M., ¢ = ce’ the Mach number corresponding to the rotational speed

at the effective radius. (The far-field approximation and the effective-
radius approximation made use of in arriving at egs. (31) and (32) need
not, of course, be made simultaneously, since the required integration
of the Bessel functions with respect to the radius may be carrled out,

at least numerically, without difficulty. )

Introduce the fundamentel frequency denoted by w; = BQ, so that
@ = mBQ = ke = mwy

The pressure magnitude for any harmonic m is then given by

2| = |pp + 2
my x\1 Be kyRg
= L= - J,
2ncs, T(M * so)ﬁa @ wyR2 mB( So ) (34)

This result may be compared with that for the case of zero forward speed
(M = 0) gilven in reference 1:

oy
2nesg

T X Q Be

8
© W Re

2| = 5 JmB<kyRe> (35)

8o

It can be noted that the forward-speed Mach number affects the

torque term containing Q only in the replacing of 84 = an + y2 (the
distance from the field point to the propeller hub) by the smaller dis-

tance S, = Vxe + Bzyz. This substitution occurs both in the argument
of the Bessel function and in the outside factor 1/So' The thrust term

containing T 1is more strongly affected, since, in addition to this

change, the field effect ahead of and behind the propeller disk is influ-
X
So
and also by an increase because of the factor l/Ba.

corresponding to a backward shift by X =M

enced by the term M + 3
o
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APPLICATION TO A SPECIFIC PROPELIER

In order to give some indication of the effect of forward-speed
Mach number on the sound pressure of a propeller, calculations based on
equation (26) for the near field and on equation (34) for the far Tield
have been made. Tor this purpose, a two-blade research propeller having
a 10-foot dilameter and operating under the various conditions summarized
in table I was chosen, As may be noted from this {able, the propeller
is assumed to operate at constant power; that is, the-power coeffi-
cilent Cp and the torque Q sare held constant. As the forward-speed
Mach number is changed, the blede angle By and consequently the -

thrust T are changed according to the propeller charts of reference 6
s0 as to make the assumed conditlions consistent with actual test oper-
ating conditions. Only the fundemental, the first harmonic m =1, 1s
considered in these examples and the value chosen for the effective
radius R, 1s 0.8R or 4 feet. It should be pointed out that the sound
pressure computed from the data of table I would be obtained in pounds
per square foot, since these data are glven in English units. These
velues have been converted to dynes per square centimeter in the results
given in the figures by multiplication by the approximate conversion
factor 480.

Calculations for the near fileld.- Celculations of the root-mean-

square pressure (Prms = !élpl) based on equation (26) are made for

various values of x in the range from -0.5D to O. SD along the line

y = 0.6D (6 feet), that is, along & line 1/5 of the propeller radius from
the tip and extending a distance of 1 radius behind to 1 radius ahead of
the plane of rotation. These results are shown plotted as a function of
x/D for several Mach numbers in figure 4. It can be noted in this fig-
ure that, for each Mach number, two peaks generally appear, one shead of
and one behind the plane of rotation. For the set—of condltions under
consideration (see table I), the highest peak amplitudes of pressure
occur Jjust behind the propeller plane at values of x/D in the range
from -0.15 to -0.075. As the Mach number is incressed from O to 0.4,

the peak amplitudes decrease in magnitude, but as the Mach number is
‘increased from 0.4 to 0.9 this trend is reversed and the peak amplitudes
increase in magnitude, the pesk for M = 0.9 being about 1. 4 times that
for M= 0. Also, as M increases from O to 0.9, the point at which
the highest peak pressure occurs moves somewhat nearer the propeller
plane, Thus, the generally severe sound-pressure conditions at take-off
(M =~ 0) tend to be alleviated in flight at the lower Mach numbers but may
be reached again and even exceeded at the higher flight Masch numbers.

The calculations for low Mach numbers presented in figure 4, 1t should
be noted, are in substantial agreement with both calculated and measured
results of reference 2. The hlgh peak pressures obtained for the highest
Mach numbers indicate that, with propeller-driven alrplanes, the sound
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pressures generated near the tips of the propellers are of significance
and of possible concern with regard to both structural considerations
and passenger comfort.

Calculations for the far field.- Calculations of the root-mean-
square pressures based on equation (34) for various values of x along
the line y = 2D (20 feet) are shown plotted in figure 5. The trend with
regard to Mech number in this figure is about the same as was noted in
figure 4 for y = 0.6D, but the relative effect of the forward Mach num-
ber sppears greater at a distance. However, because of the greater dis-
tances in figure 5 than in figure 4, the peak amplitudes are considerably
less.

Directional characteristics of the sound field.,- For some purposes,
egpecially with regard to calculations for the far field, it is desirable
to consider the character of the sound pressure in terms of polar coordi-
nates. For this purpose, substitutions can be made in equation (34)

(end eq. (26)) as follows:
o sin @ s, = |x2 + y2 (36)

The quantities x/S, and y/S, in equation (34) (and eq. (26))
may then be written as

cos & y =8

X=So

X _ cos & h
So V1 - MPsins
f (37)
Y _ sin &
S Vl - M?sin2¢
-

With these substitutions, equation (34 ) becomes

kR, sin ¢
Is| = mayy 1T e cos @ -q Be 5 35 e
eres V1 - M2sin®e |p2 Vi - M2s1n2e aRe 1 - M2sinZp
(38)

Calculations based on equation (38) for the Mach numbers of O and
0.8 for a constant value of 8 = 2D are shown plotted as dashed curves
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in figure 6. The solid curves in this figure represent results of calcu-

lations along the line y = 2D obtained by replacing s, by iy 3
gin -

with y = 2D in equation (30) for the various Mach numbers considered
in figures 4 and 5. A comparison of results of calculations along the
line y = 2D with those along the circle 85 =2D for M= 0 and

M = 0.8 1indicates that; for high Mach numbers (of the order of M = 0.8),
the peak pressures calculated along & line ¥y = Constant— are about the
same as those calculated along the circle with radius equal to the con-
stant value of y. Observe the second pressure pesk which has developed
in the forwerd location at M = 0.9.

Separate components due to torque and to thrust of the sound field.-
In order to glve some indication as to the nature and proportion of
sound pressure assoclated with each of the quantities, thrust T and
torque Q, the root=mean-square pressures associated with_each of these
quantities for M= 0 and M= 0.8 are plotted for y = 0.6D (6 feet) in
figure 7. These plots show, as do equations (26) and (34), that the root-
mean-square pressures essocilated with the propeller torque are symmetri-
cally dlstributed with respect to the plane of the propeller for all Mach
numbers, whereas the root-mean-square pressures assoclated with the
thrust are symmetrical with respect to this plene only for M = 0. For
the particular propeller and operating conditions under consideration,
the amplitudes of pressure associated with thrust for low Mach numbers
are higher than those associated with torgue, but-for high Mech numbers, 2
the opposite 1s true. In the interpretation of figure 7, it should be
recalled that the results depend on the assumed operating conditions and
that the torque Q is the same (2,680 ft-1b) in both parts of the figure;
whereas ‘the thrust is 1,850 pounds at M = 0 and 310 pounds at M = 0.8.
Plots of this type can be used to obtain the sound pressure for various
thrust and torque coefficients for a given propeller, since these coef-
ficients appear as factors in equations (26) and (34) and hence can be
normalized,

It is of particular interest to note in the plot for M = 0.8 that
the pesk pressures assoclated with both thrust and torque are-consider-
ably greater than the peak pressure associated with the sum of these
quantities., This result indicates that the phase relationship between
the two components is, in this case, such that each has a canceling
effect on the other. Also in this case, the pressure assoclated with
thrust may have its greatest value shead of the plane of the propeller;
whereas the total pressure has its greatest value behind the plane of
the propeller. )

The discussion of. the figures based on the specific examples illu-
strates the fact that the results do depend markedly on the assumed
operating conditions. Moreover, only the fundeamental harmonic (m = 1) .
for the specific two-blade. propeller has been illustrated. Trend studies
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on effects of higher harmonics, number of blades, and different oper-
ating conditions would be of conslderable interest. Some preliminary
calculations on the sound pressures associated with the fundamental of
a six-blade propeller have shown a greater relative effect of the
forward-speed Mach number.

CONCLUDING REMARKS

Expressions have been given for the sound-pressure field due to the
distribution of thrust and torque for any given harmonic of a rotating
propeller in uniform subsonic flight. The general expressions (egs. (17)
to (23)) involve integrations over the propeller disk; approximate
expressions for the near field (egs. (24) to (26)) and for the far field
(eas. (31), (32), and (34)) involve integrations over a ring with an
effective radius. The numerical examples have 1llustrated some free-
space sound-pressure results for the fundamental of a specific two-blade
propeller under various operating conditions at various forward speeds.

It is pertinent to remark again on some of the limitations of the
analysis. The analysis presented utilizes the torque and the thrust
distributions, which mey be given empirically or theoretically, in such
a way as to require that they arise purely from pressures acting normal
to the surface of the blades. Empirical values of the thrust and torque
include a contribution, gererally small, due to skin friction and to
separated flow. Some caution is then needed in the use of the results.
For example, the empirical torque term is somewhat larger than the torgue
due purely to normal pressures and, hence, the associated sound result
due to torque may be overestimated slightly; similarly, the empirical
thrust term mey slightly underestimate the sound due to thrust. At high
tip speeds there may be significant contributions to the noise due to
wave drag assoclated with the thickness. These contributions are mainly
taken into account by the effects of the wave drag on the torque. (Other
sound effects of the thickness should be separately calculated and
included but these effects have not been explicitly presented herein. )

Another way of looking at the approximation, and perhaps a generally
more convenient one for the study of trends, is to consider that the
assumed torque and thrust distributions are actual theoretical ones,
obtained 1f necessary by adjustment of the blades of the propeller in a
potential flow; and hence the sound-pressure field is that corresponding
to the chosen thrust and torque, but in potential flow. Although the
sound-pressure field and the serodynamic velocity field have been con-
sidered as separate, i1t is of interest and of significance that the same
concepts leading to the calculation of the sound field (made use of in
the form of the acceleration potentisl) can lead to the linearized aero-
dynamics of the propeller in compressible flow, including the represen-
tation of the vorticity left behind in the wake as a result of spanwise:
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variation of loading. The theoretical induced drag and the theoretical
wave drag (which is & form of acoustic loss) are inherently included in
the representation employed.

It may be worthy of repetition that the pressure formulas as given
tend to overestimate the contribution of the higher harmonles and that
appropriate factors hased on chordwise loading can be devised and may
be required. Moreover, because of the theoretical (as well as the
empirical) change in aerodynsmic loading along the blade radially with
increasing tip Mach number and forwerd-speed Mach number, the appropriate
factors will change. In addition, the effective radius will be altered
with the loading. Thus, although 0.8 blade radius may be suitable as an
effective radius for normal loading, a smeller value for the effective
radius may be more suitable for conditions where unloading of the tip
occurs. -

A calculation study of trends under different assumed condltions,
the effect of unsymmetrical loading, or of dual propellers, effects of
obstacles or boundaries on the free-space results, and experimental
confirmations for the in-flight propeller are interesting matters for
further investigation.

Langley Aeronesutical ILaboratory,
National Advisory Committee for Aeronasutics,
Langley Field, Va., August 31, 1953.


http://www.abbottaerospace.com/technical-library

NACA TN 3018 25

APPENDTX

THE SOUND-PRESSURE FIELD ASSOCIATED WITH
A UNIFORMLY MOVING FORCE
Derivation of Equations (&) and (6)
Lamb (ref. 3, p. 502) derives from hydrodynemical principles the

differential equation satisfied by the pressure condensation s¥% in the
acoustic fleld associated with arbitrarily verying fixed forces acting

on the medium
2 2 2
L F L FE 1 FEN\,
axa ay2 az2 02 a_ba

525*

lfx, oY, &2
c2<8x+ by+ 8z> (A1)

where Lamb's X, Y, Z are actually the extraneous forces per unit volume
divided by the density p. (In effect, lamb is dealing here with the

acceleration potential.) In terms of the perturbastion pressure p = pcas*
the equation 1s

Dapzdivf
_wy ® )
"> ohdr

where F 1s the arbitrary force per unit volume having components

Fys Fy, F,. Lamb shows that if the periodic force Aelwt ¢ imagined

concentrated on an infinitely small space at (xl,yl, zl) and to be in the

direction of x, the pressure at the field point (x,y,z) (the distance s
from the location of the force) is given by

in{t -—=
AA%E_(__E (4%)

where

8 = J(x - xl)2 + (y - yl)a + (z - 21)2
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so that the concentrated force is equivalent to a double source or
scceleration doublet whose axis is in the direction of the force. Tor
a general harmonically periodic force F having components Fx, Fy, Fz

verying in time as el®b i

e
8

1 ,=
P—E(F'V)

-1k
=—]-'-(Fx—a—+F %+F —a—)e : (Ak)

where Kk = %.

For an arbitrary time-dependent concentrated force f(t) located
at (&,m,¢), the pressure at field point (x,y,z) can be expressed as

o = E}; v F(g:"'l:gs:t - %)
Cafam{t-8) s w(e-8) s F(s-3) (15) .
"= sy = % s 2

where the differentistions affect the result only through the variasble s.

The extension to a moving concentrated force msy, within the frame-
work of small-perturbation theory, be made in several ways - for example,
as mentioned in reference 7. One formal procedure utilized by Kissner,
for example, mekes use of the invariance properties of the wave equatilon
and utilizes combined Gelileen and lLorentz transformations. The following
direct procedure given briefly in reference 7 is belleved to be of
intrinsic interest; as it represents a simplification in Prandtl's pro-
cedure (ref. 8) for the case of moving constant-source distributions, a
procedure which consists of scheduling a succession of fixed sources in
a path to act consecutively one after the other so as to represent in
effect the desired source moving along its path. ILet the arbitrary con-
centrated force act only as an impulse during an infinltesimsl interval
at time +t = T. The impulse mey be written as

F(£)8(t - T) (a6)

-
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where the impulse function &(t) = O for T # O and is characterized
for 7 =0 as having unit area with respect to T. The useful property
of the impulse function of "sifting or selecting" a value of a function
is exhibited by the following relation (see, for example, ref. 9, p. 61):

fw f(r)8(o - T)ar

-0

fm (o - T)8(T)dT

f(o) (A7)

Let a succession of such impulses act, one following the other, in a path,
points along which are glven in space-fixed coordinates by

£ = &(T) 1= 1(r) & =t(r)

The effect at time +t of all such impulses which act before the time %
is then given from Lamb's result (eq. (45)) as

D ﬁ divﬂigr—)8<t -7 - %)d'r (A8)

where, as has been defined, there is a nonzero contribution to the
integral only for velues of T defined by the characteristic relation

t—T=%=%\/E{-§(TDa+B’-n(Tﬂ2+ E-E(Tﬂa (A9)

which expresses the distance between the source point and the field point
in terms of the time of travel of the outgoing waves.

The integral in equation (A8) corresponds to & summation of temporary
fixed sources. To represent the case of uniform rectilinear motion with
veloclty V in the positive x-direction, let the sources be located on
the E-axis and flow consecutively one after the other at the positions

E = Vr 1 =20 t =0 (a10)

so that for T = -» the source 1s located at & = -» and for T =0
the source is located at the origin. It follows that the distance
between source point and field point is

8 = d(x - V'-r)2 + 72 + 22 (A11)
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Replace in eguation (A8) the variable T by 6 where

t-T-==29 (A12)

oln
I

By the sifting property of the d-function (eq. (A7)) the integral will
have a value only for 8 = O and equation (A8) becomes

p=idiv[§(—”d—ﬂ (a13)

Ly s 46
9=0

where the quantity within the bracket is now to be evaluated. Equa-
tions (A1l) and (Al2) give a quadratic equation for T which, on choice
of the solutlon that leads to v< t and with 08 = 0, glves

T=i<t_V_X-§) (A1)
[32 02 C
where
s =V(x - v&)2 + p2(y2 + z2)
B =Vl - M
M=V
(o]

Equations (All) and (Al2) also give

c
es - V(x - V1)

@ |}
palp-
o4

where replacing s by its characteristic value c(t - T) from eque-
tion (A9) and replacing T by its value glven in equation (Alh) yields,
for 6 = 0, )

ar - i
FrR (A15)

vhere S 1s defined in equation (Allk). Equation (Al3) becomes

1 E;Ei i i%‘x j %)é%] (Al6)
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This result 1s referred to space-fixed coordinates; it is finally
desired also to express this result in terms of a field point (xo,yo,zo)

of & coordinate system moving uniformly along with the source located at
X1, Y1, 23 so that one may put

x -Vt =x9 - x3 y=Y0 -¥1 z =29 - 23

After this substitution is made, the zero subscripts mesy be dropped to
vield as the end result corresponding to equation (AS5) for the source
and the coordinate system in uniform rectilinear motion:

'ﬁ(t - 3)
-1 N e/
P = div 3 (A1T)
where
8 = V(x - xl)2 + B2Ky - yl)2 + (z - zl)zj
M(x - xl) + S
g =

o2
g=\1-1P

Equation (Al7) corresponds to the result given in equation (k) of

the analysis, For the periodic harmonic force F varying as eiwt, it
mey be expressed in the form
- -iko
p==(F-v)&
lexe S

(A18)

which is equivalent to equation (6) of the analysis. Equations (Al7)
and (A18) are the sought-for generalizations of equations (A5) and (Al)
of the appendix, for the case where the disturbance and the field point
are in uniform rectilinear motion. Comparison of these equations shows
at once that & 18 replasced by S 1in the amplitude and by o in the
phase. A geometric interpretation of these quantities is shown in fig-
ure 1 and discussed in the analysis following equation (5).
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Remarks On the Case of the Moving Disturbance
eand the Fixed Cbserver

A few remarks are in order on the significance of equation (Al6).
In this equation, the field point gx,y,z) is given in space-fixed coordi-
nates while the disturbance force (or propeller) is in the in-flight
condition moving with veloecity V 1n the positive x-direction. Its
location is given by x7 = Vt, y; = 0, 23 = 0 so that at—t =0 it is

located at the origin. It may be observed that the distance between
disturbance and field point S 1s numerilcally the same whether given
by the relation in equation (Al6) or (Al7). Hence, the pressure magni-
tude at any observer location for a sound-radiating element of the
in-flight propeller is the same as that for the observer moving along
with the propeller, provided the proper instantaneous distance between
observer and propeller is used. However, there will be a difference in
the frequency perceived by the observer. This fregquency will be that
for the case of the uniformly moving observer modifiled by the Doppler
effect; thus, the frequency of-each harmonic is modified by c/(c + Vr),

where V. 1s the component of the propeller.forward speed (with proper

sign: minus, for approaching, plus for receding from, the observer)

in the acoustical direction from the observer to, say, for the far
approximation, the hub of the propeller. The acoustical direction is
not guite that from the observer to the propeller location; it actually
points from the observer to the location of the propeller when the sound
which reaches the observer was emitted (direction QP rather than QO
in fig. 1). The Doppler frequency factor c/(c + Vr) is given geomet-

rically in figure 1 by the ratio of %% =

alw
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TABIE I
SEA-LEVEL OPERATING CONDITIONS FOR A 10-FOOT-DIAMETER

TWO-BLADE PROPELLER (DATA FROM REFERENCE 6)

[% = 815 hp; Cp = 0.10; Q = 2,680 1b-ft; k = 0.296851

M V/ nD il:g o pegéent fliI:lilb
0 0 2k 0.11 0 1,850
.1 L2 26 .11 T 1,850
.2 .84 28 . 09k ¥ip) 1,600

3 1.26 33 . 065 85 1,090
4 1.68 37 . 052 87 875
5 2.10 4o LO4L 86 690
.6 2.52° - L7 . 032 80 580
T 2.9 50 . 025 70 L20
8 5.36 53 . 0185 62 310
9 3.78 56 .0122 L& 205
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Figure 1.~ Geometric representation of s, S, and o.
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Figure 2.~ Propeller disk and coordinate system.


http://www.abbottaerospace.com/technical-library

NACA TN 3018 35

Relative amplitude of harmonics
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Order of the harmonic, mB .HE:

() Sharp pulse.

(b) Trisngular pulse. L2 _ - 0.03.
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(¢c) Rectangular pulse. —2— = 0.03.-
2nr

(4) Rectangular pulse. % = 0.06.

Figure 3.- Effect of impulse shape on the relative amplitudes
of the harmonics.
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Figure L4.- Distribution of the root-mean-square pressures for the
fundemental (m = 1) of a two-blade 10-foot-diameter propeller at
several forward-speed Mach numbers. Cp = 0.10; k = 0.29686;

y = 6 feet. (Operating conditions of propeller given in table I.)
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Figure 5.~ Distribution of the root-mean-square pressures for the
fundemental (m = 1) of a two-blade 10-foot-diameter propeller at
several forward-speed Mach numbers. Cp = 0.10; k = 0.29686;

Y = 20 feet.

(Operating conditions of propeller given in table I.)
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Figure 6.- Polar diagrams of the root-mean-square pressures calculated
along & line y = 20 feet and along a circle s, = 20 feet for a

two-blade, 1l0-foot-diameter propeller at several forward-speed Mach
numbers. Cp = 0.10; m = 1; k = 0.29686. (Operating conditions of

propeller given in teable I.)
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(a) M =0; T = 1850 1b. (b} M =0.8 T =310 lb.

Figure 7.- Distribution of the root-mean-square total pressures apd the root-mean-square pres-
sures associated with thrust and torque for a two-blade, 10-foot-diesmeter propeller at forward-
speed Mach mmbers of 0 and 0.8. Cp = 0.10; m = 1; k = 0.29686; y = 6 feet. (Operating con-
ditions of propeller given in table I.)
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