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SUMMARY

Approximate solutions are obtained describing msinstream flows con-
fined to regions of small angle variation over flat surfaces for three-
dimensional, laminar, incompressible, thin boundary-lsyer flows having
similarity with respect to stationary polar coordinate systems. The solu-
tions, summarized in a table, include accelerating or decelerating flows
and stagnation-point, spiral, or circular flows. An experimental compari-
son of limiting overturning at the wall showed good agreement for the
first 10° of turning of circular mainstream flow.

INTRODUCTION

In eddition to providing an insight into secondery-flow behavior
assoclated with laminar boundary-layer flows, the experimental investlga-
tions of references 1 to 3 demonstrate that the information thus obtained
for laminar flows can be used to interpret and to correlate flow measure-
ments taken in turbomachines at operational conditions. These experimental
investigations thereby provide an important link between applied turbo-
machine research and the similarity-type boundary-layer analyses developed
in references 4 to 12. The link is further strengthened by the combined
theoretical and experimental investigastion of reference 13. 1In reference
13, boundary-layer similarity solutions are obtained for main flows con-
sisting of streamline translates (i.e., the entire streamline pattern can
be obtained by translating any particular streamline parallel to the
leading edge), and the theoretical predictions of boundary-layer over-
turning (more than mainstream turning) nesr the surface are in close
agreement with experimental results obtained by tracing the boundary-
layer streamlines with smoke flow-visualizatlon techniques.
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Using a generalized similarity variable 1, reference 14 extends
these results anslytically tov obtain all possible flows wlith boundary
layers having classical similarity with respect to stationary rectangular
coordinates. ' The dimensionless boundary-layer velocity components in the
plane of the surface gre assumed to have similarjty with respect to their
respective coordinates. This similarity 1s expressed by means of two
sultably defined functions of the simllarity variable. The boundary-layer
equations are then transformed to equations involving the mainstream flow
components, their derivatives, the similarity functions, and their deriva-
tives. All the mainstream flows are then determined for which the trans-
formed boundary-layer equations reduce to ordinery differential equations
in the similarity functions and their derivatives. Pour distinct fami-
lies of such mainstream flows are obtaihed in reference 14, including
cases of accelerating or decelerating flows for quite general streamline
paths. The main-flow streamlines are not required to be translates, nor
are they restricted ta reglons of small turning in reference 14.

In reference 15, solutions are-obtained for the mainstream flowse

whose boundary-layer velocity components in the plane of the surface have

slmilarity with respect to the corresponding polar coordinates. Thus,
exact solutions are obtained for spiral, circuler, and stagnation-point
flow configurations with no restrictions on mainstream turning. For the

golutlions thus obtalned, however, a proper leading edge cannot be defined.

(A proper leading edge, which corresponds theoretically to a real physical
leading edge, would be a line or curve of zero boundary-layer thickness
on the surface, downstream of which the boundary layer develops. )

The present investigation extends the analysis of reference 15 by
considering the flows in a sector-region of small central angle 6. The
purpose of this investigation is to determine mainstream flow solutions
for which the transformed boundary-layer equetions reduce to ordinary
differential equations. Solutions are obtained for four new families of
meinstream flows with boundary layérs having similarity with respect to
the polar coordinates in the plane of the surface. Included here are
cages for flows over well-defined leading edges. It 1s important to note
that experimental investigatlions (refs. 1 to 3 and 13) indicate that in
typical turbomechine configurations a large portion of the end-wall
boundary layer at the Inlet to a passage hes completely crossed from the
pressure to the suction side of the passage when the mainstream has been
turned less than 30°. Thus, in describing physical flow, it—appears not
unreasonsble to restrict the analysis to small central-angle sectors.

The regions where this assumption might be considered reasonable are
established by a theoretlcal and experimental comparison of the boundary-
layer limiting flow deflection (ref. 13) in a circulasr two-dimensional

channel.

—~——
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u,V,w

W,W(r,0)

T

n

v
Subscripts:
i=1,2,3, .

Superscripts:

SYMBOLS
constants
function of similarity parameter, u = UF'(7n)
function of similarity parameter, eq. (45)
arbitrary functions of r
arbitrary function of r and 6

functlon of similarity perameter, w = WG'(n) for W £ O,
= W'(n) for W=0

function of coordinates r and 6
function of @

constants

cylindrical coordinates

constant

mainstream velocity components in 6 and r direc-
tions, respectively

boundary-layer veloclty components in 6, y, r direc-
tilons, respectively

function of coordinates r and 6, w E'WG‘(n) for
W=20

boundary-layer deflection at surface
similarity varisble n = yg(r,0)/A/N

coefficient of kinematic viscosity

index nunbers

Primes denote dlfferentiation
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ANALYSIS
Boundary-Layer Equations in Stationary'Cylindrical Coordinates
The three-dimensional laminar incompressibletthin boundary-layer

equations in cylindrical coordinate form for flows over flat (or nearly
flat) surfaces with stationsry coordinate axes as shown here

are given by

uw , u ou du ou % uw
T+;3§+W$+V5§-Va—y§=—;

12%%7%
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in the tangential directlon and

2 2
u u ow ow ow Q%w U2 U W oW
'——r"'?Fe*'wE_r"""-E_y'v_ay -t Gt VS (1b)

in the radisl direction, where u, w, and v are the boundary-layer
velocity components in the 6, r, and y directions, respectively. Con-
sistent with the restriction to thin boundary-layer flows over flat (or
nearly flat) surfaces as required for the formulation of the boundary-
layer equations (eq. (1)), the mainstream velocity components are

U = U(r,8) (2a)

W= Wr,o) (2b)

The equation of continulty for the boundary-layer flow is

1du , 0w , w OV
THrTE TR0 (e)
The appropriate boundary conditions are
u=w=vs=0 for Y=O (ld)
u=>U
as y > o (1e)
w>W

Similarity with Respect to Stationery Polar Coordinates

The boundary-layer egquations may be transformed by the use of a
generalized space variable

n = % g(r,0) (3)

and by defining
u = UF'(n) (42)
w s wet(n) (4p)

to & new system of coordinstes r, 8, and 1. The definitions (4a) and
{4b) are the requirements for similerity of the boundary-layer velocity
components in the plane of the surface with respect to their corresponding
polar coordinates.


http://www.abbottaerospace.com/technical-library

9] : — NACA TN 3880

The choice of polar coordinates (as in ref. 15) requires an additional

precaution beyond those needed for similarity with respect to rectangular
coordinates. In rectangular coordinates when either U or W is zero
(see ref. 14), the mainstresm flows are straight, there is no secondary-
flow overturning in the boundary layer, and complete similarity solutions
have been obtalined for the equations of the resulting two-dimensional .
boundary-layer flows (refs. 4 and 5). In the present case, however, when
the mainstream radiesl component W = O, there is curvature of the main-
stream flow, U # 0, and three-dimensional boundary-leyer .overturning
results (i.e., w # 0, for W= 0). Under these conditions, equation (4b)
does not apply. Instead, a new function W(r,8) is defined for

TJG'(TI)) W% 0 (40)

w

Accordingly, 1t is convenient to treat W %.0 flows separately from
W=0, W# O flows. )

W f Q. - When the mainstream flow has both U and W components,
the corresponding boundary-layer velocity components are defined by
equations (4a) and (4b) as functions of the similarity parameter 7.
Corresponding to the conditions of no flow at the surface (eq. (1d)), the
boundary conditions on F' and G' are . _ L

F'(0) = G*(0) = O (5a)

Corresponding to the condition (le) that the u and w boundary-layer
components merge smoothly into main-flow components U and W,
respectively,

lim F'(q) = 1
n—)oo
(5p)
lim G'(n) =1
T]—)m

Now Vv mey be determined by integration of the continuity egquation
using (4a) and (4b):

- 130 UQ 1n oW dIng , W
V=%E[<;a—e-;—sé—§>F+(§;'W—sr+;){]-
% é-%%-ﬂ yF' - w-é—%g—ﬁ ya' + f(r,8) (6)

where J(r,0) is an arbitrary function erising from integration.

yeey
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In order that v =0 for y = 0 as required, it is possible with-

out loss of generality to set the boundary conditions
F(0) = G(0) = 0, and f(r,8) =0 (5¢)

(See appendix C, ref. 14, for a discussion of the necessary and sufficient
boundary conditiouns.)

Upon substitution of equations (4a), (4b), and (6), equation (1la)
becomes (for W £ 0)

¥ (Fet - GF" - 1) +laU (F'2 - FF" - 1) + wé—al—;iﬁ (FtG* - 1) +
Ualng FF" + Walngz 11 oW 1] 2mtn
= e 5 53— GF' - <= GF' - g°F" = 0 (7)

and equation (1b) becomes

2
Y oa-r2)+ 22 W ipg 1) Mgz gen - 1) - 2 W e o
2
zralnS.FG_u _l__‘é_\r_a_%_;i feTerl -_%IGG" - ng"'=O (8)

As in references 14 and 15, the purpose of this Investigaetion is to
determine mainstream flow solutlions for which the transformed equations
(7) and (8) reduce to ordinary differential equations. As an extension
of reference 15; the present analysis conslders flows restricted to a
sector-region of small central angle 6. The mainstream flow conditilons
are sought which make the coefficients of the functions of 7
proportional.

The most general approach would be to rewrite (7) and (8), grouping
the coefficients of like terms in G,F and their derivatives, and then
to require proportionality of these grouped coefficients. It can be
shown, however, that no cases arise beyond those obtalned more simply by
requiring proportionality of the individual coefficients in (7) and (8).
Under these ordinary differential equation conditions (a@bbreviated to
o.d.e. conditions), the common varisble terms in the equations may be
divided out, leaving ordinary differential equations for F and G. The
actual numerical solutions of the ordinary differential equations are not
attempted herein.
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For convenience, the coefficients for the functions of 1 1in equa-
tions (7) and (8) are presented here in the order of their appearance.
With W £ O, they are

@ 2 ® &
@%%% @ &
ovigt  @F
®£2EE @Y

The o.d.e:. condltions require these nine coefficients to be pro-
portional to each other.

W=0. - When W = 0, the corresponding boundery-layer equations
(1a) and (1b) become

uw . u ou Su ou 3%a U 3U
T trtVese Tt Vay "V S;E =Tr 38 (s2)

2 2 2

u u ow ow ow %W U
STty tTVYESE Y 3y ~ VY S;E =T = (sb)

The equation of continuity for the boundary-layer flow remains unchanged:

1 3%  ow w  Oov

T®tatrtay - o] (1c)
The boundary condltions now are
u=w=v=0 for y=0
u->7U
as y -+ = (9¢c)

w >0

144
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For main flows such that W = O, define

u = UF'(q) (4a)
w = WS (n) (ge)
where W = W(r,0) # O. The boundary conditions on F' and G' reguired

to satisfy boundary conditions on u and +w in equations (9) (W= O,
W(xr,0) # 0) are

F1(0) = G} (0) =0 (102)
lim F'(q) = 1
1'1 -

(10v)
1im G'{(n) =0
'rl -> o

The expression for v obtained by integration of the continulty
equation {(lc) is the same as (B8), with W being replaced by W:

QZ Klau_galzg)F+(a;ﬁ_ﬁ31:g+'§)({l_

Udlne ypm - 5210 E 5ot 4 f(x,0) (11)

r

As before, the boundary conditions chosen as sufficient to provide
that v =0 for y =0 are

F(0) =a(0) =0
{10c)
S(r,0) =0
Substitution of equations (4) and (11) into (9a) and (9b) produces
‘;‘T(F*G'-GF')+%%3(F‘2-FF'-1)+W—Bl—n—U-F=G=+
U dlng . WO In g® e OW nmer Do _
2 2 FF" + 5 S B oF" - 57 0F - g% =0 (12)
2 — —
U 2 Ud InW oW 2 19U
7;(1-F‘)+;—E-6——F‘G' +3?(G' - GG") - £ 55 F&" +
Ualngz 1 T/_falnz u__ﬁ 1 e Dant
= S5 E mt + S8 ae" - 6" - gfem =0 (13)

1
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The argument concerning determination of the o.d.e. conditions by
means of relations between the coefficients of the functions of 7 in
(12) and (13) remains unchanged. These coefficients, it may be noted, are
the same as the coefficients for equations (7) and (8), respectively, with
W replaced by W. )

Solutions for Small Vaeriation of 6
As the flow is considered restricted to regions of small variation
of 6 (i.e., regions that are nerrow sectors having small central angles ),
coefficlents will be neglected that are of second and higher order in 6
relative to the other coefficients. In order to do this, it is assumed
that U(r,8), W(r,0), and W(r,8) are expressible as

U(r,8) = f{(r)hl(e)

W(r,@)

£ (x )8y (0), W# O

W(r,6) fg(r)hz(e), W=0

and that, in the region of interest chosen for convenience about 6 = O,
hi(8) and hp(9) are adequately represented by

hy(6) = ad®
ho(8) » bo™

Hence, U, W, and W in the neighborhood of 8 = O are considered to be
defined by ' Co

U(r,0) = £;(r)et
W(r,0) = f5(r)6™ (14)
W(r,0) = fo(r)e™

As will be seen later, in some cases this assumption further results in
solutlons that have properly defined leading '‘edges. Bolutions ere ob-
tained for the main flows in the following manner.

HCPP
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By substitution, the coefficients of the functions of F and G
in equations (7) and (8) for W # O or in equations (12) and (13) for
W =0 Dbecome

\
fo(r) oo

t

= £(r)et1

fo(r)

t Vi)
7 1t

2r 08

fo(r) 2
£3(x)6"

gZ

O 66 ® ©® O O

(£1(x))2 ..
l'%zz r ) 621: §

@= 2t

As before (refs. 14 and 15), the objective is to find conditions
(o.d.e. conditions) that make these coefficients proportional to one
another. Then the common r and 6 <factors may be divided out, and the
transformed equations reduce to ordinary differentisl equatlons. EHere,
however, with € small, it is assumed that terms of second and higher
order in 6 relative to the rest are negligible.

The procedure will be to establish the relations between constants
m and t (the powers of 6 involved) or the assumptions concerning
f1(r) or £5(r) that will lead to proportionality among the terms. The

following possibilities are suggested.
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m=1t-1. - When m=t -1, 6% is a common factor of all the
coefficients listed in (15) except— @ and may be divided out, ylelding -

fo
@+

—~ N ——

(18)

® ul J

Coefficient (7) 1s the coefficient—of the F" and G™ terms in the
transformed boundary-leyer equations. It must not be permitted to vanish,
for that would reduce the order of the transformed equations, and the
number of boundary conditions on F and G would then exceed the order
of the equations. Consequently, @ 1s made proportional to @ s with
the result that

g2 = a,£L6% . (17)
Coefficient @ is therefore-independent of 8. Coefficient is of

second order in 6 relative to the rest and is therefore neglected.
From o.d.e. conditions on @) and (@),
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and, from (O and (&),
8
f2 = 8.51' 4 (19)

Therefore, combining (14), (17), (18), and (19) and redefining the
constants 8y for convenience results in

U = arnem-'l'l
W=1brle®, w40 (20)

g2 = cr?-le®

The corresponding ordinary differential equations ere obtained by
substitution in equations (7) asnd (8):

b(n+1)(F1at - 1) -ﬂ%"ﬁ GF' + a(m+1) |—_(F')2 - 1]-—(——)-& ZXE) FF" - oF" = 0
(21)
am(F‘G' - l) + bn EG‘)Z - ]] - P_(HT"':'Z). ce" - f_ﬁ%z_l Q" - cG™ = O

(22)

with equation (5) giving the boundary conditions. When W = O,

W =br™ £ 0; and substitution into equatioms (12) and (13) yields

b(n+ l) FI1G! —M G +a(m+ _‘]_) [(Fl )2 - ]] - a£m2+ 22 FE" - cF" = O

2

(23)

am(F'G*) + bn(G!)2 - ﬂizi}_l ae" - Ei?%ﬂ FG" - cG" =0 (24)

with equation (10) giving the boundary conditions. It is important to
note that the boundary conditions on G' are different for W # 0O in
equations (21) and (22) from those for W= 0, W# O in equations (23)
and (24). While a more general case appears to be

m=t -k, k=1,2,3
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only the case discussed here, k = 1, has any practical significance-for
this analysis. When k > 2, then, for small &, U is negligible when
compared with W, and the resultant flows are cases of U = O.

m=+t+21 - When m =1t + 1, substituting into (15) and dividing
all terms by 6% 2 give

2 —g——a 1n g% o2 & (25)

Q@ ® ® ® ©® 6 6

@
H
NHJ

@I—;fl' Y

From the o.d.e. conditions on @ and it can be seen than gz
has the form o

b
2 "1 - 2
g% = 110 . (28)

Yo
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Coefficient () is therefore independent of 6 and so
(® are considered negligibly small.

wriltten

@ o

®
H
t
I._l
Hy
|_-I

®@ @ @O ® @

®)

HIB

H
|_l

J

15

C), (:), C), and

The modified coefficients are now

(27)

From the o.d.e. conditions and @ it can be seen that

and no further restrictions on the form of fl or fz

all coefficlents are proportional. Then using (14), (26), and (28), U,

W, and gz

are written

U

W

f1 = bpfy

af(r)e® L

bF(r)e™, W#£ O

and equations (7) and (8) become

a(m - 1) [(F')2 - 1] - S FF - cF"=0

(28)

are required, as

(29)

(30)
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2
- = [(F')z - 1] + am(F'G' - 1) - 5 FG" - ™ = O (31)
The-boundary conditlons are given by equation (5).

When W = 0, W = bf(r)é™ # O, substitution info equations (12) and
(13) produces ' : - .

a(m - 1) [(F')Z-l___l-%’ilFF'-cF"'=o (32)
- %E I:(F')z - 1] + am(F'G*) - 529 FG" - cG™ = 0 (33)

Again, while - C. S oo
m=t+%k, k=1,2,3

appears more general, only k = 1 actually applies here. When k 2 2,
W = 0 under the present~assumptions, and the resulting flow is equiva-

lent to taking b = O in equations (20) or (29).

m= 0. - When m = 0, from o.d.e. conditions @ and and the as-
sumption that terms of second or higher order in 6. relative to other
terms may be neglected, t = 1, -1, or O. The case- t = 1 corresponds
to the case of equation (20) and t = -1 to the case of equation (29).
If t=0, U=U(r), f; 1is proportional to fg, and therefore

U = ar?

W (or W) = br? (34)

gz = cr

n-1

This case and the resulting ordinary differential equatlons are the same
as were obtained by taking U = U(r), m = O in the exact solutions
(ref. 15). ' -

t = 0. - Waen t = O, examination of the o.d.ei conditlons discloses
no cases not already obtained by the analysis. '

f1(r) = a or fs(r) ="b. - Where f;(r) is taken to be a constant;—
a, U= U(O) alone and the coefficients in (15) become

12337
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©Ze

® _z_et-l

® o

© F21BE o
® fz-a-—%-"i-g—zem ? (35)
® 36"

@ &

1 2tm

I‘fz

@ % gt-1 . J

Just as before, two signiflicant possibilities occur, m =t - 1 &and
=t+ 1. When m=%t - 1, equation (18) applies and £, 1is a constant.

This corresponds, of course, to n = 0 (eq. (20)). When m =t + 1, the
analysis leading to equation (28) applies, and the resultant flows cor-
respond to f(r) constant in equation (29).

When fo(r) is constant, the same results are cbtained and £1(r)
must likewise be constant.

RESULTS AND DISCUSSION

The analysls of three-dimensionsl, laminar, incompressible boundary-
layer flows having similarity with respect to polar coordinates has led
to two different categories of solutions. In the first are the solutions
for mainstream flows described in reference 15. In the second category
are perturbation-type solutions obtained here whose validity 1s restricted
to regions of small veriation of angle 6. The malnstream flows for the
latter category are described by equations (20), (29), and (34).
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The flows represented by equation (34) are actually a special case i
of the exact solutions of reference 15 and wlll not be discussed further. ~
As & result of these analyses, table I has been prepared, which summerizes
the four new cases obtained here of mainstream flows over a flat or
slightly curved surface faor which the boundary—layer flows have similarity
with respect to polar coordinates. — _ -

The capes are as follows:

Case I: U = arPe®l g

W= br®, v £ 0 "
Case II: U = arRgmtl

W=20

W=1Dbr"" b0 = -
Case IIT: U = af(r)eml : : : .

W=Dbf(r)™, b #0 -
Case IV: U = af(r)en-1

W=20

W= Dbf(r)e™, b £ 0

As described easrlier, secondary flows exist even though the radial
component of mainstream flow venishes (W = O). For such cases, a function
W(r 6) ¥ is defined, and the boundary-layer radial component of

flow is expressed as

w = Wa'(n) (4c)

The Mainstream

When W # O, the mainstreams are spiral flows. For W = O, circular
meinstream flows are obtailned. I

g, Wz'ﬁ. - In regions where the thin-boundary-leyer theory is ap-
pliceble, the malnstream is very nearly parallel to the surface; U and
W eare functions of r and 6 only. '

The analysls for the exact solutions for boundary-layer flows having
similarity with respect to stationary polar coordinates (ref. 15) showed -
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that only one form of U and W (or W) is possible, that is

U = arneme
(38)

W(or W) = prle™

The present analysis results in obtalning & much wider variety of flow
solutions, represented by equations (20) and (29). In particular, there
are no restrictions whatsoever on the functional relation of U and W
(or W) to r in cases III and IV (eg. (29)). An example might be
chosen of circular main-flow streamlines where the inlet velocity U sat
the leading edge € = O varies in a sinusocidal fashion. The secondary-
flow overturning would then cause the boundary layer to pass through
reglons where the main-flow velocity is alternately increasing and de-
creasing. As will be seen later in the discussion of the boundary-layer
thickness and g(r,e), the boundary layer will correspondingly become
thinner or thicker.

The small-angle solutions were obteined by essuming that second and
higher power terms of 6 could be neglected. 1In all these cases, U and
W (or W) are obtained as products of powers of r and 6. In cases I
and II W/U (or W/U) is proportional to 1/6. 1In cases III and IV, W/U
(or W/U) is proportional to 6.

Projection of main-flow streamline on surface. - The equation for the
projection of the main-flow streamline on the surface for W # 0 may be
ocbtained by integrating

= rdge (37)

cl=

Whenever W # O and U #£ O, spiral mainstream flows result (cases I and
III). For W = 0, circular main-flow streamlines result (cases II and IV).

Slope of projected streamlines. - The slope of the projected stream-
line with respect to 6 = O (the tangent of the angle between the tangent
to the projected streamline curve at a point and the line 6 = 0) may be
obtalned from

g; tan @ + r
slope = = (38)

36 - r tan 6

It is found by substitution into equation (38) that the slope is inde-
pendent of.radial position r <for all cases.
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Irrotationality. - For msinstream flows comfildered here and in re- ) .
gions of thin boundary layers, as reguired for this analysis, only the -
component of vorticity normal to the surface T

13W oU U
Il - (39a)

can be much different from zero (ref. 14). The values of the constants =
specifled under the listing "Irrotationality" (table I) were obtained in
each case from

3
10 W U0 (39b)

These values set the conditlons for nearly irrotational mainstream flows.

The Boundary Layer

As discussed in references 14 and 15, the physical interpretation of .
the boundg¥y-layer behavior that the mathematical representations describe ~
is best found by examining the behavior of 17 and in particular g(r,8).

The boundary-layer thickness on the surface. at a point—r,8 1s in-
versely proportional to g(r 9) at the point. In order for the theoreti-
cal boundary layer. to have a beginning at a leading edge with zero thick-
ness, as in a real fluid, there should be a line.along the surface for
which g(r,0) is infinite while the velocities remain finite. In the
exact solutions presented in reference 15, this gccurs in the finite part-
of the plane only at the point r = 0 for values of n<1l. For n>1
the boundary lsyer in reference 15 may bHé considered to have a "beginning"
only at r = «. However, the mainstream velocitles there take on
"infinite" values. . . _ . .-

In the present report (flows for small angle 6), for cases I and II
when -1< m <O, g(r,0) and hence 1 becomes infinite along the line
6 = 0, while U is finite as required. 1In case I, however, W (and w)
are unbounded, so & proper leading edge does not exist there. Iﬁ‘case o
II, W=0 but W iIs unbounded at § = 0. In cases III and IV, for
l<m <2, there is a properly defined leading edge at 6 = 0, where
g(r,8) takes on infinite values and where U, u, W, and w remain -
finite. " For l1l< m'< 2, In cases IIT and IV, U = W =0 at the leading
edge. For m =1, U is independent of .8 = and may be different from

zero at the leading edge.
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In cases I and IT for m >0, and in cases III and IV for m > 2,
along the line 6 = O, the mainstream and the boundary-layer velocity
components are all zero. Even though the boundary-layer velocities match
the mainstream in these situations, a proper leading edge does not exist
there because g(r,8) equals zero, corresponding to an "infinitely" thick
boundary layer. As in reference 14, such accelerated-flow cases may be
considered appropriately by confining the discussion to regions where the
requirement of thin boundary layers is satisfied.

The Ordinary Differentisl Equations

The actual numerical solutlons of the ordinary differential equa-
tions are beyond the scope of the present investigation. The literature
contains examples of numerical solutions for particular values of the
constants. Some of these examples are noted in the listing "Comments and
References" associated with each case in table I.

The present analysis simply derives the ordinary differential equa-
tions that can be obtained with the underlying aessumptions. In any
particular case of interest for which the equations are appropriate, the
existence of the numerical solution and ite computatlion must be obtained
individually. Nevertheless, some general remarks (in part repeating
material from ref. 14 here for convenience) can be made here (as in ref.
11) concerning the numerical solutions.

Separation of F and G. - Under certain choices of the free con-
stants involved, the functions F and G are separable; that is, one
equation of the pair of ordinary differential equations will contain
terms in only one of these functlons and its derivatives. Numerical
solutions are much more readily obtained in such cases then when the
functions are not separated.

An example is provided when & = O (case I), so that equation (22)
then contains terms only in G and its derivatives. 1In all cases where
the functions can be separated, the equation is thereby reduced to a
Falkner-Skuan type equation. The complete solutions to Falkner-Skan equa-
tions have been obtained in references 4 and 5. Thus, equation (30) (case
III) and equation (32) (case IV), in which the functions are already
separated, are all Falkner-Skan equations.

Although it is not apparent from the equations in the table alone,
when & = O, then u = O and equation (la) and therefore equations (21),
(23), (30), and (32) disappear. In cases I and IIT (W £ 0), when a = 0,
the flows are straight two-dimensional flows along radial lines out from
a stagnation point. In cases II and IV (W= 0), a = O 1is the trivial
case of no mainstream flow.
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In case III, when & = b, F = G. If, in addition, m =0 and
c = -a, eguation (30) becomes equation (9.12) of reference 16:

F" - F'2 + 1 =0 - (40)

As pointed out in reference 16, thils is one of the few cases when the
boundary-layer equation can be solved in closed form. The solution is

3 tanh?® <—,\—Tl/_E + tanh'l’\/§> -2 (41)

0, equation (30) becomes’

F' =

cle

When c=a=b and m
F" + F12 - 1 =0 (42)

Letting
F(-n) = F(n) (43)

then by differentiation of equation (43) and substitution, equation (42)
becomes : : - = - ——_ =

FM.F2 41=0 (44)

and the solution thereby 1is seen to be

a

A/E 3

Linearity in u or w. - As discussed in reference 14 and applied
in reference 13, an extension of the solutilons beyond strict similarity
of the velocity component can sometimes be made by addition of solutions
where the boundary-layer equations are linear in u or w. Apparently
such extensions are not posegible for the boundary-layer Fflows investi-
gated here, because equation (1) is always nonlinear in u and in W
except for the typical case of no mainstream flow. Nevertheless, there
is the complete freedom from specification of the form of f(r) in cases

IIT and IV. Accordingly, if

Ft =2 = 3 tann? (13— + tanh~1 5) -2 (45)

Ul = alfl(r)em'l

and

Uz = azfé(r)em-l

1244
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are possible solutions for mainstream flows, then

U=TU; + Uy = [%lfl(r) + azfz(ri] %1 m gp(r)om-1

likewlse represents a possible mainstream flow, although solutions for
u and w cannot be superimposed. This fact (the reasoning is the same
for W as for U) is evident also from the ordinary differential equa-
tions for cases III (egs. (30) and (31)) and IV (eqs. (32) and (33)),
which are independent of the form of f£(r).

Comparison with Experiment

An experimental investigation was made to determine whether the
theory provides & reasonsble approximation of the limiting flow deflec-
tions for the particular case of circular flow over a flat plate. Of the
cages presented, this case 1s the one most likely to be encountered in
actual practice.

Theoretical predictlion of limiting deflection. - The case that will
be investigated is case IV with m = 1. Under this assumption equations

(32) and (33) become, respectively,

131
Zim=o (46)
11
-F1gt - (F12 - 1) + =+ @ =0 (47)

where the following relation between the various constants has been
chosen:

c =48 = =D

Equstion (46) is the Blasius equation, and values for F are tabulated
in reference 13. Reference 12 shows that the function G' in eguation
(47) is expressible in the form

G!' = P(n) - F'(n) (48)

where P(7) is the solution of the equation

1
P +—F-r§- - F1P = -1 (49)
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with the boundary conditions

lim P(n) =1, P(0) = O

’r]-)c

The solution of equation (49), however, is presented in reference 13, and
the values of P(n), (Py(n) in ref. 13) are presented in tables.

Now the angle of flow deflection of the boundary layer at the plate

surface is determined by
arc tan < 1lim E>
u
y =+0

G_C
arc tan lim 7T
n+0

As G'(0)/F*(0) is an indeterminate form, application of L'Hospital's

rule gives
G“
arc tan { lim T
n-=+0

Pl
t 1i -
are tan { (& )]

The value of P'(0)/F"(0), however, is determined in reference 12 to be
4.270. Hence, '

-<
]

-
]

¥ = arc tan 3.270 (50)

From egquation (50), the equation for the limiting deflection line on
the plate surface can be found as the solution of the differential

equation:

1l dr

= 55 = tan v = 3.270 (51)
Equation (51) has the solution

r = (const.) e3+270 6 (52)

25044
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Experimental determination of limlting deflection. - The experimental
determination of limiting flow deflectlion was made by means of smoke flow
visualization (epparatus and procedures described in ref. l) in & Lucite
two-dimensional circular channel of rectangular cross section. Tests were
conducted on a plate parallel to the base of the channel and fastened to
the channel walls at & distance of approximately one-third the channel
height. With a maximum Reynolds number of about 6x10%4, the flow for these
tests was well within the laminar range.

Figure 1, & view through the Iucite top of the channel, shows smoke
introduced lnto the mainstream at approximately & midchannel position.
On the test plate shown in the photograph, the circular white lines cor-
respond to the theoretical mainstream flows. The straight lines orthogo-~
nal to the circular lines represent 10° increments in 6. The dotted
lines appesaring on the plate are the theoretical limiting deflection lines
based on equation (52). The main-flow streamlines as depicted by the
smoke trace were found to follow closely the theoretical main-flow stream-
lines well beyond the region of interest near the leading edge of the
plate, although thils is somewhat cbscured by parallax in figure 1. Near
the exit of the channel, some deviation of the smoke trace from the cilr-
cular arcs occurred because of secondary-flow accumulations.

Figures 2(a) and (b) show limiting flow deflection determined by
introducing smoke directly on the plate surface. The photographs show
that the theory predicts limiting deflection very well in the range
0= 6 £ 10° Beyond 10° the theory predicts a greater overturning of
flow thaen thet indicated by the experiment. These results give an order
of magnitude to the range of values of 6 where the small-angle approxi-
mation appears to be reasonsable.

Predictlon of limiting deflection based on translate flow. - Refer-
ence 12 presents an analysis of three-dimensional boundary-layer flows
when the main-flow streamlines are translates (i.e., all streamlines are
obtained from a single streamline by propegation of the streamline par-
allel to the plate leading edge). As a matter of interest, this theory
was also used to predict limiting deflection for the present case.

In effect, a comparison can be made between the results predicted by
two distinct kinds of approximations. In the small-central-angle varia-
tion method the approximstion is made in the solution of the boundary-
layer equations while the description of the main flow 1s exact. In the
streaml ine-translate method the approximstion is made in the representa-
tion of the main-flow streamlines while the solution to the boundary-leyer
equations obtained is exact.

For the streamline-translate method, a mean value between the radius
of the inner wall of the channel and the radius corresponding to the
starting point of the outer limiting line shown plotted in the photographs
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was chosen as the defining radius of a typical cilrcular-arc streamline in
translate flow. Since circular-arc translate flow 1s snalyzed and the
limiting flow deflection 1s determined in reference 12 (see fig. 5, ref.
12), the results could be applied directly in the present ilnvestigation.
The basic assumption underlylng such an application is that circular-arc
translate flow of-the-type described is a reasomsble approximation ‘of the
concentric-circular-arc streamline flow that actually exists in the
channel.

The results of the analysis are presented in figure 2(c). A 30° sec-
tion of-the channel is sketched, and the theoretical limiting deflection
lines for both the translate-flow anaslysis and the small-angle analysis
are indicated. The circles appearing on the sketch represent points on
the smoke flow pattern as measured from the photographs. It can be seen
from figure 2(c) that the translate-flow analysis 1s less accurate than
the small-angle snalysis up to about 10°; but, from 10° on, the agreement
between theory and experiment improves for the translate anelysis. After
200 it appears that the predicted limiting line and the actual limiting
line are very nearly parallel up to the polnt where wall interference
causes the boundary layer to deflect in a cilrcumferential direction.

CONCLUDING REMARKS

Exact solutions were obtained in reference 15 describing the main-
stream flows over a flat or nearly flat surface for which the thin laminar-
boundary-layer flows have similarity with respect to statlonary polar co-
ordinates. The sdlutions thus obtained were of the form

U = arneme

W = brie®®

By suitable choice of the constants a, b, n, and m, the main flows may

be stagnation-point, spiral, or circular flows. The boundary layers for

these exact solutions have no properly defined leading edge in the finite
part of the plane, resulting in some awkwardnesse in relatling these theo-

retical flows to real physical flows. i : ;

The present analysis 1s restricted to reglons of small central
angle 6. The appropriateness of the restriction in physical situations
has been established experimentally (refs. 1 to 3 and 13). The mainstream
flows obtained herein are .
U = arn9m+l
(ceses I and II)
W (or W) = brfe®

-,


http://www.abbottaerospace.com/technical-library

NACA TN 3890 27

U = af(r)e®™+
_ (cases III and IV)
W (or W) = bf(r)e™

In cases IIT and IV for 1 <m < 2, g properly defined leading edge can

be obtained along the line 6 = O where the boundary layer has zero
thickness and the mainstream velocity components do not become infinite.
Although different velocity distributions are obtained here, the projected
maln-flow streamline configurations possible are the same as those of ref-
erence 15; that is, (1) stagnation flows along radial lines from a stag-
nation point, (2) spiral flows out fram (or in toward) a central point, or
(3) circular flows.

Actual numerical solutions of the transformed boundary-layer egua-
tiong are not attempted here. Particular examples are noted, however,
for which solutions have been obtained elsewhere.

An experimental comparison of limiting overturning at the wall under
circuler malnstream flow using smoke flow-visualization techniques showed
good agreement for the first 10° of the mainstream turning.

Lewis Flight Propulsion ILaboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, September 26, 1956
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TABLE T. - STMILARITY SOLUTIONS IN STATIONARY POLAR COORDINATES FOR SMALL ANGLE VARIATION

(a) Case I
o arte™ !
W b e", b £ 0
el .m 22 1/2 1/2
gr 0 U oW
1 v v = ¥\var® = ¥\vbr » € #0
Ordinary {(21) p(n + 1)(F1G' - 1) - 9—‘*%3“—5’1 GF" + a(m + 1) |:(1?')2 -1] - i(lﬂé’i)- FF" - cF™ = 0
differential
equations

(22) am(F'a' - 1) + bl’l[(G‘)E - 1]-" nt 3l ga" - ﬂﬂ-;-—e)-m" - eG" =0

Boundary condltions

F1(0) = G'{(0) = F{0) = @a{0) = O, %m Fr{n) = 5.1!11 ar(n) =1

Projectlion of maln-
stream on surface

v = Gt’ib/El gpiral flow streamlines {a # 0)

Slope of projected
streamline wlth
respect to 8 =0

% tan 68 + O

—
i 6 tan 0

Irrotationallty

m=a(n+1) =0

Linearity in
u and w

E%g} Not pogsible for thile case

Separation of
F and G

21) Not poseible for this case
22 a=20o

Comments and
references

a = 0, stagnation flow: eq. (la) and eq. (21) vanish and eq. (22) becomes a
Fallkner-8kan equation with solution completely known, refs. 4 and 5.
Ref. 8: a=ao=nm-=l, m=b, b =-c fromref. 8.

068¢ NI VOVN
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TABLE I.

- Contimied. SIMILARITY SOLUTIONS IN STATIONARY POLAR COORDINATES
FOR SMALL. ANGLE VARIATION

(b) Case II
U arPeutl
W 0

br?e™, b A ©
orn-1gn\ /2 o1 |2

n W) " vGawe) ¢ #0
Ordinary (%)bh1+1)we'-Bﬂgélcw-+am+1)ﬁw)2-ﬂ - 2(mr2) gpe_gpm o o
differential
equatlons

(24) am(F'a') + bn(ar)2 - 9193}—§l ag" - 8B+ 2) gyn _ ogma g

Boundary conditions

F1(0) = @'{0) = F(0) = @(0) =0, lim Fi(N) =1, 1im @'(n) =0

| N+= Now

Projection of main-
stream on surface

r = C, clrcular-flow streamlines

Slope of projected

streamline wlth - Cotangent ©
respect to 6 = 0°

Irrotationality (n+1) =0
Linearity in 1la

u and w

1b} Not possible for thls case

Separatlion of
F and @

Egi} Not posslble for this case

Comments and

references

a =0, no flow

' ) Fe2¥

og
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TABIE I, - Continued. SIMILARITY SOLUTIONS IN STATIONARY POLAR COORDINATES

FOR SMALL ANGLE VARIATION
() Came IXT

af(r)ﬁm‘l
pe(r)e™, b £ 0
1/2 1/2 1/2
m-2

n F(cf(r“)g ) - y(——g“gg) - Y(_-Ev;::e ) , € 74 0
Ordinary (30) a(m - 1)|(F1)2 -~ 1] ~ 2R FF" - cF" = 0
differential [ ] z
equation

(z1) - %?-EF')E - i]+ am(F'¢' - 1) - %? A" ~ c@™ = 0

Boundary conditlons

F'(0) =a'(0) = F(0) = 6(0) =0, 1im Fr(n) = 1im a'(n) =1

n-bn n—bn

Projection of main-
atream on surface

P o= Cebea/aa, spiral flow (a8 # 0)

3lope of proJected
streamline wlth
respect to 6 = 0

0 tan @ + %

6 - % tan 6

Irrotationality 2vf(r) - ari(r) - 3 £{r) = 0
Linearlty in la
w and W slb} Not pogsible for thls case

Separation of
F and G

(30) Separated
{(31) 2 = m = 0 (see comments and refersnces)

Comments and
references

Eq. (30) 1s a Fallmer-3kan equation, completely solved
in refa. 4 and 5, _

If & =0, eq. {la) and eq. (24) vanish, stagnatlion flow,
boundary condlitions not achlevable,

If a=Db, Pm(G;: if m=1]1, F = Blaglus F

Ref. 15, eq. (9:12): a=bh = -c <0, m = O,

068Z HL VDVN
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TABLE I. - Concluded. SIMILARITY SOLUTIONS IN STATIONARY POLAR COORDINATES

FOR SMALL ANGLE VARIATION

(d) Case IV
1) af(r)sm"l
W 0
WV br(r)e™, b £ O

1/2 1/2

9m—2

n y(—(—)-———cf o ) = Y(—-gvgg ) s ¢ £ 0
Ordinary (32) a(m - 1) EFT)2 - ﬂ -~%§ FP" -~ cF" = Q
differentlal
equatlon!

(33) - %,3 [r1)2-1] + an(¥ra') - BB FG" - ca" = 0

Boundary conditlons

F1{(0)=a'(0)})=PF{0)= G(0)=0, 11_‘1m Fi(n)=1, 1172 G-(h) =0

ProjJection of main-
stream on surface

r = C, circular-flow streamlines

Slope of projected
streamline with
respect to 9 =0

- Cotangent €

Irrotationality

f1(r) + 2 £(r) = 0

Linearity in
u and w

l1a

1b; Not possible for thlse case

Separation of
and G

32; Separated
33) a = 0 (3ee comments and references)

Comments and
references

Eq. (32) 1s a Falkner-Skan equation completely solved 1n
refs. 4 and 5.

If a=b, F £03 (see boundary condltions)

If m=1, F =Blasius F

Ref. 9: ¢ =a=b, m=1.

If a =0, no flow.

25 4
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(b) Boundary-layer streamline near midchammel at inlet,

Flgure 2. - Continnad. Limiting flow deflection in eiroular shammsl.
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{a) Boundary-layer streamline nmear precsure surface at inlet.

Figure 2. - Iimiting flov deflection in circular chamnel.
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Flgure 2. - Conmtimmed. Iimiting £low deflection in circular charmel.
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(b) Boundary-layer stresmline mear midchamms) at inlet.
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— —— Small-angle solution
—-— Translate solution
0 Points on smoke flow pattern

{c) Compariscn of translate solution with small-angle solution and smoke pattern.

Figure 2. - Concluded. Limiting flow deflection in circular channel.
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