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SUMMARY

The equations of motion and energy for the laminary boundary-layer
flow in an expansion wave of finite width moving into undisturbed fluid,
such as in a shock tube, were considered. Solutions in the form of
infinite power series for velocity and local enthalpy functions were
indicated, and the first three terms of each series were numerically
evaluated. Validity of the numerical results was restricted to the
region near the leading edge of the expansion wave. Skin friction and
hest transfer were compared with values given by a solution which con-
sidered the expansion wave as equivalent to a line discontinulty across
which existence of lsentroplc expansion relations was assumed. These
solutions were shown to be very different, qualitatively as well as
quantitatively. Singularities in the flow field were discussed in
regard to both the finite-width expansion-wave and the line-expansion-
wave solutions.

INTRODUCTION

Extensive use of shock tubes for aerodynamic research has placed
emphasis upon the effects of using a real, rather then s perfect, gas.
The flow phenomens for an ideal fluld are eesily derived and are given,
for example, 1n references 1 to 3. Deviations from the idesl flow may
occur because the working fluid is imperfect end because fluid viscosity
and thermsl conductivity introduce effects of the shock-tube walls upon
the flow. 7For moderate shock-pressure ratios, imperfect gas effects may
be neglected, but the wall effects mesy remain important; the present
analysis considers only the fluid viscosity and conductivity.

Deviations from ideel shock-tube flow are most easlly seen experi-
mentally through measurements of the shock-wave velocity. Experimental
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attenuations in shock strength were investigated in references 1, 2, k4,
5, and 6. Reference 6 also presented messurements of static-pressure
variations with time at & fixed position after passage of the shock wave.
Experimental timewlse density variations In the flow through the use of
a chrono-interferometer were shown in reference 7.

Various theoretical studies have been carried out as well. Refer-
ences 1 and 4 considered a reduction in masss flow at the entropy discon-
tinuity computed from the boundary-layer displacement thickness and the
free stream corresponding to the unattenuated shock., Attenuation in the
shock strength was then found by settlng the mass flow through the shock
wave equal to the reduced mess flow at the entropy discontinuity and com-
puting the new shock strength. The unsteady leminary boundery layer 1in
the hot gas behind the shock was derived in reference 2, and the resulting
skin-friction and heat-transfer effects averaged across the assumed one-
dimensional flow. The attenuation resulting from the waves generated at
the entropy dlscontinuity by these boundary-layer effects were then
computed. .

In reference 6, waves generated throughout the entire shock tube by .
skin-friction and heat-transfer effects were considered to affect the
real gas flow, average skin-friction and hegt-transfer coefficients being
based upon incompressible, turbulent, steady-flow flat-plate boundary-
layer values. The expansion wave was treated as a line discontinuity
across which isentropic relations were assumed to be valid (zero-thickness
expansion wave). Experimental date have shown excellent agreement with
this theory.

The assumptlion of the equlvalence of steady- and unsteady-flow lami-
nar boundary lsyers was shown to be rather insccurate by the unsteady
laminar boundary-layer theories of references 2, 8, and 9, which treated
the exact boundary-layer equations for the flow behind a shock wave moving
into an undisturbéd fluid. Reference 9 extended the theory to laminar
flow behind a zero-thickness expaension wave and presented solutions to
the integrated equations of motion and energy for lamlnar and turbulent
boundary layers behind both shock and zero-thickness expansion waves.

The boundary-layer theories of references 8 and 9 have been incorporated
into a theory predicting shock-wave attenuation in a shock tube (ref. 10).

The turbulent boundary layer in an expansion wave of finite width
(expansion fan) was considered on an equivalent steady-flow basis in ref-
erence 11, but only recently has any attempt been made to investigate the
unsteady boundary layer for this case. Reference 12 presents a golution
to the complete shock-tube boundary-layer problem, including the fan, for
leminar compressible flow. The integrated equations of motion and energy
are considered and graphical and numerical isoclinal procedures are uti-
lized. A feature of this theory 1s the use of the method of characteris-
tlcs to obtain the solution, & necessity because singularities originating
at the time of dlaphragm burst propagate through the shock-tuve flow field.
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The present peper presents an epproximste solution to the differen-
tial boundery-layer equations of motion and energy for the unsteady
leminar flow of a compressible fluild under the influence of the ideal-
fluid expansion-fan pressure gradlent. Resulits are compared with the
results of the expenslon-discontinuity analysis of reference 9. Much
of the material presented herein was submitted to the University of
Virginia in partial fulfillment of the requirements for a Master of
Aeronsutical Engineering degree.

SYMBOLS
a locel wveloclty of sound
Gy function defined by (_%)05(21__,___5-\)
Ty T, + S
Ce function defined by (Eﬁ)o‘j(r—li-ﬁ)
Ty Te + S
cp coefficient of specific heat at constant pressure
Cy coefficient of specific heat at constant volume
Fy particular function of nth-~order differential equation of motion
f dimensionless stream function
fn nth-order term in power-series representation of £
Gn particular function of nth-order differential energy equation
g dimensionless enthalpy function
&n nth-order term in power-series representation of g
h local enthalpy
h* enthalpy difference, h - Iy
hg stagnation enthalpy
k thermal conductivity

NPr Prandpl nunmber
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statlc pressure
gas constant

rate of heat transfer

constant in Sutherland viscosity-temperature relation
temperature . o
time

velocity of fluid in x- or X-direction - S—

wave velocity

shock wvelocity

velocity of fluid in Y- or y-direction
coordingte along wall

¥

"incompressible" coordinaste normal to wall, J[
0

p

W
€

coordinate normal to wall

ratio of specific heats, cp/cv

Y
V;;;g o

dimensionless coordinate,

absolute viscosity

kinemetic viscosity ' ' .
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£ dimensionless coordinate, 1 - —%—
uyt
€re coordinate £t evaluated at trailing edge of expansion fan
P density
T shear stress
A Tw’
Ty =
v
PeBie | =
t
= _ Ty
W Ve
g
¥ stream function
0,9 dummy verisble of integration
Subscrlipts:
n index of order of term in power series
W quantity evaluated at wall (y = 0)
o quantity evaluated in shock-tube region o, cold gas (see
fig. 1(a)) :
B quantity evaluated in shock-tube region B, hot gas (see
fig. 1(a))
€ quantity evaluated in shock-tube undisturbed reference
state € (see fig. 1(a))
1 quantity evalusted in free stream (y — o)
« quantity evaluated in shock tube undisturbed low-pressure

region o (see fig. 1(a))

Quentities written with a bar underneasth are dimensionless with
respect to the eppropriate quantity ln the undisturbed region ¢€; for
P

" =L
example, u = ag’ Py =5 and so forth.

Primes denote total differentiation of the functions fyp(n) and
gn(n) with respect to the argument 7.
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THEORY

The Prandtl boundary-leyer equations are reduced to a system of
two simultaneous, nonlinear, partlal differentisl equations involving
unsteady stream and enthalpy functions through a transformation of
coordinates. The special case of flow in an expansion fan advancing
into a fluld at rest is considered. Solutions in the form of infinite
power series are assumed, and each partlal differential equation is
reduced to an infinite number of ordinary differential equations.

Assumptions
The assumptions necessary to the analysils which follows are:

1. The Prandtl boundary-lasyer equetions ere assumed to be valid for
the expansion fan, which is congidered as centered, that 1s, originating
at a single point on the x,t plane. A shock-tube wave disgram of the
1deal-fluid flow for an expansion fan of moderate strength is shown in
figure 1(a). Figure 1(b) illustrates qualitatively the corresponding
boundary layer. The polint of origin of the fanat x =1t =0 (repre-
senting, for example, the diephragm burst in a shock tube) is a singular
point and must be €xcluded from the anelysls. The tralling edge of the
expansion fan, separating the fan and the region of constant fluid prop-
erties (region o in fig. 1(a)), represents a discontinuity in the
derivatives of the stream quantities and thus also violates the boundary-
layer assumptions. Distortion of the trailing edge caused by varying the
velocity and temperature within the boundary leyer is neglected.

In the reglon near the leading edge of the fan the velocity 1s low
end increases linearly in the ratio x/t from a value of zero at the
leading edge. This situation appears analogous to the reglon near the
forward stagnation point of a blunt body in steady flow and the Prandtl
boundary-layer assumptions, through this analogy, are assumed to hold in
this region. Therefore, the boundary-layer equations are agsumed to be
valld in the expansion fan except at the origin and along the free-stream
trailing edge.

One additional restriction on the use of the boundary-lsyer eque-~
tlons must be noted for the special case of shock-tube flow. For a
strong expansion process, part of the expansion fan occurs in the region
where x > 0. The "no-slip" boundary condition at the wall requires that
the temperature discontinuity separating the hot gas of region B from
the cold gas of region o remain in the boundary layer extending back to
the position of the diaphragm. This case is illustrated In the ideal-
fluld wave dlagram (fig. 2(a)) and in the corresponding boundary-leyer
formation (fig. 2(b)). At some time after the dilaphragm burst, laminar
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diffusion will have acted to smooth the discontinuity to some extent, but
large streamwise temperature gradients will still exist in the region

near the position of the discontinuity in the free stream. This condition
precludes epplication of the Prandtl boundary-lsyer equations. Elsevwhere
in the region between x = O and the discontinuity, turning of the dis-
continuity surface toward the wall will probably have reduced the stream-
wise tempersture gradient sufficiently for the boundary-layer equations to
apply. Since the tralling edge of the fan always lles upstream of the
discontinuity, it is assumed hereiln that streamvise temperature gradients
large enough to invalidate the boundary-layer equations never exist inside
the expansion fan.

2. The coefficients of specific heat, ¢y and cy, and the Prandtl
number are assumed to be constant.

3. A lineasr viscoslty-temperature reletion is assumed. The constant
of proportionality is defined so that the correct wall viscoslity is used;
the error introduced elsewhere In the boundary leyer is neglected.

4. The wall temperature is assumed to be constant. Because walls
are generally coustructed of materisls for which values of thermal con-
ductivity and heat capaclty per unit volume are high when compsred with
the values for the gas, this assumption, which has been shown to be
valid for flow behind a shock in reference 9, should be reasonably good
for the expansion-fan analysis.

The Bagic Equations of the Fluid Motion
The differentiel equations governing the unsteady, two-dimensional

flow of & compressible, viscous fluid under the Prandtl boundary-layer
assunmptions are the egquation of continulty

9 , 9(pu) . 3(pv) _
St T 3 T Sy © (1)
the equations of motion
u, ,Ou, Qdu_ _Lop,1dfdu
ot T " T Ty T Dax+pay<by> (2a)
0 __.L% (2b)
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the energy equation for constant Np, and Cp

_ife, %%, %), 1 dfam u\?
S gkl (Bt M "ay) ey By@éy) ¥ "(ay> (3)
end the equation of state

-1
- -5

p = oRT = Z>on (%)

The coordinate system is fixed to the wall, the orlgin of the x- and

t-axes being at the origin of the expansion wave. The use of only two
gspace dimensions, x and Yy, implies that interactions between adjacent _
wall boundary layers are neglected.

Equation (2b) immediately yields the result that the pressure is
constant across the boundery layer or that

P(X)'.YJt) = Pl(xyt) (5)

Equations (1), (2a), (3), and (4) then are to be solved for the four
dependent varisbles u, Vv, p, h. The aeppropriate boundary conditions
are E .

u(x,0,t) = O
u(x,=,t) = up(x,t)
v(x,0,8) =0 (6)

h(x,0,t) = h,(x,t)

h(x:m:t) = h]_(xat

In order that the equations may be more generally epplicable, the
enthalpy at the wall is retained as a variable.
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The linear viscosity-temperasture relation discussed by Chapman and
- Rubesin (ref. 13) is employed; namely,

B T
III = GW(th)‘T_l (7)

where the proportionality function Cy(x,t) is obtained by requiring
that equation (7) satisfy the Sutherland relation at the wall; thus,

0.5
Cy(x,t) = @:—) @—iw{%) (8)

A conventional transformation of coordinates and an unsteady stream
function are next introduced, the latter functlon identically satisfying
the equation of continuity. The definitions are

- X=x
yp(x,y,t)
Y = P00y 27
u/; Pe ~

E=t . (9)
w=Pedl ¥

P oy oY
v

P \0% = oY ox = ot

=_%§(§L_a_ ”gdy> _ _Es(é_*;_+§ﬂr_a_Y+aY)

Equations (5), (7), and the transformstion and stream function of
equations (9) are then simultaneously substituted into equations (2a)
and (3); the resulting equations are, respectively,

. fLJ,é‘_l'_.a_f‘L_éga%v=_7-l£aPl+°1“10wa3.£ (10)
Y5 OY ORSY  O% yy° y P Xx p€2 N
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_ 2
oh , W 3h A dw_2-1h oy o afl . faf Oy 3% | PiaCu(oy
dt OY 0¥ OX oY y P1\o% oY ox p€2 Np,. 3v2 pe2 dY2

(11)

The appropriate boundary conditions on the stream function and enthalpy,
written in X,Y,t coordinates, are

<§YL>Y=O =©
oy ez
(&), = m@®
> (12)
W(E;O:E) =0
h(%,0,t) = by(X,t)
h(X,»,t) = hl(i,Ey

Eguations (10) and (11) and the appropriate boundary conditions of
equations (12) thus describe the boundary-layer flow in & very general
menner and require only the assumptlions of constant p and Np, and

e linear viscosity-temperature relation. Solution of a particular
problem requires that the boundary conditions be given explicitly and
that the differential equations be further reduced. The exact form of
the boundary conditions will be shown to Influence strongly the methods
of simplification of the differentisl equations.

Timewise Conlcal Similarity

Similarity transformations.- Iisted in appendix A are the potential-
flow relations for flow in a centered expension fan. The equations for
U; and hy are the free-stream boundary conditions for the boundary-

layer differentiasl equations and are functions only of the ratio x/t;
thus, in a distance-time sense, the expansion-fan potentisl-flow varisbles
are conical. If, in addition, the wall temperature is assumed to be con-
stant, it is seen from equations (12) that all the wall boundary conditions



http://www.abbottaerospace.com/technical-library

NACA TN 3943 11
setisfy the conical requirement (that is, constency), and it then appears
reasonsble to search for solutions containing this conical similarity.

Similar stream and enthalpy functions, f and g, respectlvely, are
defined as

¥(2,Y,8) = uy (&) v eE £(E,n) (13)
n(%,Y,%) = by + hy*(8)e(E,n) (14)
where
E=1- X \
Uyt

, (15)

1= L

Ve (E - %J. Vet

The enthalpy at the wall h; 1s herein assumed to be constent. The
veloclty wy; represents a wave velocity and is used so that, by employing
the proper boundary conditions, equations (15) may represent the flow

behind a shock as well as in an expansion fan. For the flow behind the
shock, the wave veloclty is then wug; for the flow in the expeansion fan,

the wave velocity is considered to be the velocity of the leading edge of
the expansion fan and is equal to -ag. The parameter & 1s the conical
similarity parameter and is defined so that it is zero on the wave. The
diffusion parameter 1 1s closely related to that employed in references 2
end 8. This relation may be seen by rewrlting the parameter as

7 = ¥ (155‘)

The length uWE - ¥ is equal to the distance from the wave, and the close
regsemblance of this parameter to that of the references is now evident.
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Transformation of coordinates from £,Y,t to &,n,fT through the
use of relations (15) and simultaneous introduction of the stream and
enthalpy functions (egs. (13) and (1%)) reduce the equations of motion
and energy (egs. (10) and (11), respectively) to the following: o

W 33 nyoooHyay U £
L1 Gy El-§—§-+ §E§{;lﬂ - E%Gi;kf-+ E%f + %EEJ +

nd  onP|2k
Sy s (e, o), 1B thYE, a 16
’:(E l)+1_1w81;l<d§ BT\+E’18118§ * 5 & T =0 (16)
h* 32 u, 2/52.\2 d Yl 9y
L =L 28 - 1)=L [S°F % 281 Al e
by 52 T )§<an2> ™ Fral o (ol
le, 2 Sy | 3 _
2§f+ Bg)] + [(g 1) +}_le af;”:a-g—-g+_lll* ,aﬁ
dp
y -1 1 =1 _
7 Bt gt = 0 an

Boundary conditions are transformed from equations (12) and are

of =
(an )n=0 °
of -
(%) o
L > (18)
f(g,O) =0
8(&;0) =0
8(5’“) =1
J

The absence of the independent varisble T from the differential equa-
tions (16) and (17) and from the boundary conditions of equations (18),
except implieitly, indicates the existence of solutions exhibiting simi-
larity in & and n as was assumed in equations (13) and (1L). The
number of -independent variables has therefore been reduced to two.
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Application to the centered expansion fan.- The speclal case con-

cerning flow in the boundary layer behind & shock wave advencing into a
fluid at rest lesds to a result identical to those of references 2 and
8. This case is discussed in appendix B. The differential equations
governing the boundary-layer flow in the centered expansion fan are
found by substituting the free-streeam relations of appendix A (equa-
tions (Al) to (A5) and (AT)) into equations (16) end (17) with the
further qualification that

Uy = —8¢
- (19)
£ =1+ %
aet
Results of this substitution are
2=z
Cufi 7y -1,\713% _y -1\JPen, 3 _2
ce<l 7:—f> 3 -7 T ;]52““577#“
2 ,2 4y L _2 .oflfer ., 2Pt
T3 T a§>+[(§‘ 1) ?ﬁaq](an”anag ¥
N Loz =1, (2=1Vee|, -
_]2w+[l _h_w) 2;—;—1§+<7+1>§]g—0 (20)

3y-1
Cyr y -1, 71 7y -1 y -1%. 2] 1 Pg
—_1 - Lt 1l - - 2k
Ce( 7+ 1 i) 7+l+(7+1)§ Tor e

2
(7 - 1’(7737)252(?,275) + (1 - Z—T%g) [(l -n) - 2R

2
(7-1)§2:l a—g(ﬂ+2;—f—§f+7—2—£2a—f)+ga_gEg S1) - —2 if_J -

y + 1 an\2 2 1 + 1 ot ot v+ 1 Bn
-1 -7 -1 ‘ 2 Bfl 7y -1 l
2——§l-.———§ -1) - —&=—t= + 24——¢ - -
v+ 1 ( v+ 1 ) (g ) ¥+ 1 an € 27 + 1 (§ 1)

R N =y
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where

Cy  [Ty\02(Te + 8\
Ce \Te Ty + S

The boundary conditions upon the functions £ and g are the same as
those given by equstions (18).

Because of the complexity of these partial differential equeations,
golutions are sought in the form of infinite power series, which are
written in powers of the conicel coordinate g with the coefficients
as functions of 7 only. Thus, the solutions are assumed as

£(g,n) = i e%,(n)
n=0

g(e,n) = i £"g,(n)
n= b

Because both of these partial differential equations possess singular
points in the region ¢ 2 1 (see section entitled "Results and
Discussion"), the infinite series can only represent the solutions in
the region & < 1. The first few terms of each serles are considered to
approximate satisfactorily the exact solution in the region near the
leading edge t << 1. a

One further assumption is desirable. The enthalpy at the wall has
already been assumed to be constant but arbitrary. The most common
shock-tube physical arrangement dictates that the wall temperature before
passage of the wave must be equal to the temperature of the undisturbed
fluid. Thus, if the wall temperature 1s assumed to remain unchanged after
passage of the wave because of the high thermel conductivity and heat
capacity of metal walls, then

(23)

ald £
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Substitution of equations (22) and (23) into the equations of motion
and energy (eqs. (20) and (21)), epplication of the boundary conditlons
(egqs. (18)), and equation of coefficlents of like powers of £ succes-
sively leads to an infinite set of ordinary linear differential equations
and boundary conditions for each function, the first three of which are

o' + gfo" - fo' = -1 (24a)
217+ 20" - 28t = Fi(n) (24b)
3" + gfa" - 3f5" = Fo(n) (2ke)
fO(O) = fo'(O) =0
(25e)
fo'(w) =1
£,(0) = £,'(0) = £,'(») = 0 (nz1) (25v)
% + g—go' - & = -1 (268')
;-]-'—- + -ggl - 2g; = Gy(n) (26p)
Pr
g 11
ﬁ + g-gal - 5g2 = G2(n) (260)
S0(0) = © (2712)
go(w) = 1

®
B
e
I
g
&
n
o
[n
\Y;
I_l
e’

(27v)
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wlith the following definitions:

. 27 ")_2 1 1 12 7—ln‘ _7-1
Fl(n)--—7+lfo 27+1f0f0 o +7+1(f0) +27+l°0 vy + 1
(28a)
2')’ 2 teo_t 3 2 1 5 2 n
T = |n_2fv+ fAll - = £ - = £1f -
2(n) — AR o 27+lof1 2 7+ 1fo
fu|+22 S ( _) 28b
7+lo 1+ (7+1 €0 (28p)

k=B L0 2D ey B g2 - 2B eyt

27+ 1Np. 2(y+1)2 y+ 1 29+
2 fo' o - fo' (280)
7y + L 7+ 1
2 g 1 2 2
_ Y _ Sl Y + 3 1 1
G, = - - £ - f +
2(n) 7+ L Np, 2(y + 1)"l 2y + 1 O8L" "3 5 F 1180
- 2 2 Mo n
£ + £4! - £ + 2 £4 L
+ 10 &1 v+ 1 180 v+ 1 1 v+ 1 1

372 + 18y - 13 8" | /2 - Ly + 15 1, 5(2)7->f,_
o' -3 0
W(y + 1)2  Npr Ly + 1)2 2 2 + 1\ + 1

2,3 2 7 -=1la,
TP A~ S A 284
2y +1lvy+1 0 &0 ( )

1_2 3+1
27+1 ¥+ 1

fo“)

The primes on a symbol indicate differentiation with respect to the
argument . o

Numerical integration of the preceding equations can be accomplished

with no special difficulty. The momentum end energy equations for the
nth functions are decoupled and hence msy ve solved independently. The
perticular integrals F,(n) and G,(n) are dependent only on previous

solutions.
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Equations (24) to (28) are solved for f£,(1) and g,(q) end their

respective derivatives, for n =0, 1, and 2. These solutions then
make possible approximation of the stream and enthalpy functions by the
following relations which are valild in the vicinlty of the leading edge:

£(&,m) ~ £o(n) + E£1(n) + £22,(n) (292)
g(t,n) ~ go(n) + &gy (n) + £2g,(n) (29p)

Velocity and enthalpy profiles are given by

of (E,1) , ' 2p
&i ) _—_Sﬁﬂ_'“ £0'(n) + &' (n) + £555" (n) (30e)
. ¢ _B-hy

= = = 2 Ob
hi* By - by g(&,n) ~ go(n) + &g (n) + £8g(n) (%0b)
Skin Friction and Heat Transfer

The skin friction is given by

e () -niB)

This relation is transformed to the E£,7 ,'E coordinate system through
the transformation equations (9), (13), (14), and (15); the transforma-
tion yilelds the dimensionless friction

A T [8%r )1
Tw = wv__ = Pk Gy ‘/'u%[ éia )] (32)
pea€/% =0

Finglly, for the speclal case of expansion-fan boundary layer, from equa-
- tions (23), it is seen that
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jas E‘l azf(g)n)jl
Ty = B, =|—=%+ (33)
- \[g_[ a.n2 1=0
where
[ag—fé—ﬂ—gg)] = fo"(o) + E.f]_"(o) + §2f2"(0) (33a)
| n=0

The heat transferred per unit time per unit surface area from the
wall to the fluild q, is given by the relation

The transformaetion to the g,n,E gystem is accomplished in the same
menner as for the skin friction and ylelds the dimensionless heat
transfer

n=0

Gy =
» e Np, (g 7-1 on
Pele T

The expansion-fen wall heaet transfer is obtained from equation (35) and
is

2
P, a -1
~ 1 =1 & - 13g(t , 1)
Gy =-T— = 36
W NPI‘ {E- 7 - 1 |: aTl :\ 0 ( )

where - _

el L g1 (0) + gy (0) + £2," (0) (36a)
on 1=0 — .
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Transformation to the Physical Plane

The transformetion to the physical coordinste system is carried out
by using the profile functions. The incompressible normal coordinate Y
was defined by equations (9). The reverse transformstion is

Y Y - -
y=f __fj_":.__ax=__35___f n(X,Y,%) oy (37)
0 p(%Y,t) p(x,8)Jo  ne

Since the local enthalpy is given as a function of & and 17 by
equstion (50b), the integration of equation (37) is most easily accom-
plished in those coordinates. The transformetion equations defining &
and 17 (eqs. (15)) are used to define the differential dY as

- et ndt g de
ay vegtéhy+ 2 T * 3 g) (38)

The integration (eq. (37)) is to be carried out at constant X and t
and thus at constant & and %€; as a result of combining equations (38)
and (37), the physical normsl coordinate y is

(39)

Jveg f h(i;ﬂ:t) dﬂ

Substitution of the enthalpy function from equation (BOb), Yearrangement
of the terms, replacement of T by its equivalent 1+, and integration of
equation (39) yields for h, = h.:

y 1 n¥pn n 5 [T
= Ln + o so(n)dn+§‘/; g (n)an + ¢ fosg(n)dn (40)

The quantity g is the physical compressible counterpsrt of the
Jvegt

incompressible similarity psrameter 1 and is a function only of ¢
and 1.
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RESULTS AND DISCUSSION o

Numexrical Results

Each of the homogeneous differentisl equatlons corresponding to the
complete equations (24) end (26) was transformed to Hermite's differential
equation and complementary solutions in the form of Hermite polynomials
were obtained. (See ref. 1k.) Except for the n = O case, particular
solutions appeared to be unobtainable in closed form. Rether than combine
the Hermite polynomlals with particular integrals found by numericsl pro-
cedures, it was decided to tregat by numerical methods the complete equa-~
tions for the cases n 2 1.

In reference 15, the laminar boundary layer on a flat plate uniformly
accelerated from rest was investigated. The resulting momentum equation
end boundary conditions for the initial motion of the plate are equlvalent
to those of the present analysis for n = O (egs. (24ka) and (25a)) and the
complete solution (from ref. 15) is therefore

foln) = f—ﬂ; 1 - e-<2)2 - 362 +Ln<ﬁV%2L¢/2 e=0% d9>dq> (41)

2
fo'(n) =-%§-+ —ﬂ—e'(’r‘/z)2 + ﬂfvéréb/;n/ % a (42)

V=

It can be shown that the first term on the right-hand side of equation (42)
ig the partlcular Integral and the two remeining terms are the exponential
form of the gpproprlate Hermite polynomial, the complementery solution.

The energy differential equation is of the same form as the momentum
equation, and the following solution may be deduced:

Np,. n/2

~Np..(n/2)2 2 g

P, ey Fer(n/2) | Npen + 2 [ e (13)
13

go(n) = 'Npr 5 J_ ..V;f o

These functlons satisfy the respective boundsry condltions and are given
in table I for NPr equal to 0.72.
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Numerical integration of the higher order differential equations was
carried out on the Bell Telephone Laborstories X-66Thd relay computer at
the Langley Laborastory by using a modification of the Runge-Kutta fourth-
order method given in reference 16. (The ratio of specific heats ¥ was
set equal to 1.4.) Results of these computations are listed in tables II
and ITI. The functions most importent to the anelysis are fp'(n) and

gn(q), the nth order veloclty and enthslpy profiles, respectively; plots
of these functions are given in figure 3.

The actual veloclty and enthalpy profiles in the g,q,E coordinate
system are approximated by equations (30a) and (30b) and have been com-
puted for values of €& equal to O, 0.1, 0.2, 0.3, and 0.5. The results
of this computation are shown in figure 4. Since the power series for
both velocity and enthalpy profiles neglect terms of order 53, the results
are considered to be quantitatively correct only in the range 0 ¢ S 0.3
Extenslon of the results up to & = 0.5 1is included for qualitative indi-
cation of trends. Skin-frictlon and heat-transfer functlons are shown in
figure 5 with three spproximate formulas for each, corresponding to taking
one, two, or three terms of the power series.

The transformation integrals were computed by graphical integration
of the sppropriate functions given in tables I to III, and are listed in
table IV. The function defined by equation (40) is computed for values
of ¢ of 0, 0.1, 0.2, 0.3, and 0.5, and the results are plotted in fig-
ure 6. Theoretical velocity and enthalpy difference profiles in the
physical x,y,t coordinate system have been computed and are given in
figure T for values of § of 0.1, 0.2, 0.3, and 0.5 with the infinite
series gpproximasted by the three term series. The normal coordinate

parameter y/Vvet is used in place of y//vegt so that adjJacent pro-
files may be more easlly distinguished.

Digscussion of Results

As mentioned previously, the zero-order momentum equation for the
present case was found to be ldentical to that of reference 15, the ini-
tial motion of a flat plate uniformly accelerated from rest. This result
is not surprising in view of the fact that the present case may be con-
sidered to be a form of constant acceleration; that is, the potential-
flow veloclty varies linearly with the conical coordinate £&. The
respective coordinates of the reference are also clogely related to the
coordinates € and 7 used herein.

Figures 4 and 7 are apparently contradictory; figures 4(a) and 4(b)
show profiles becoming increasingly full as & 1s increased whereas the
corresponding plots of figures 7(a) and T7(b) indicate veloecity and
enthalpy difference profiles behaving in the opposite manner. This
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condition is the effect of distortion of the normel coordinaste by plotting
it in the incompressible n-plane as opposed to plotting it in the physical -

yyﬁ/ cb-plane, and no contradiction actually exlsts._

For & equal to 0.5, both velocity and enthalpy difference profilles
in figures 4 and 7 show a slight tendency to oscillate once near the free-
stream boundary, the latter profile actually exceeding a value of unity
inside the boundary layer. The trend lndicates that the velocity also
will exceed unity within the boundsry layer for values of £ larger
than 0.5. Because the amplitude of oscillation is extremely smell and
the estimated error of the present solution for the three-term-series
spproximation is of the order of §3 these results are open to question
However, velocilty profiles exceeding unity have been encountered in
steady-flow theories under conditions of & strong favorable stream pres-
sure gradient and high ratio of wall temperature to stream temperature _
(ref. 17); such stream and wall conditlions are present near the leading
edge of the expansion fan. Thus, although these profiles must be gques-
tioned in view of the limits of valldity of the present series solutions,
the velocity profile, at least, 1s typical of certain steady-flow velocity
profiles in fluld undergoing similsar processes.

The heat transfer given by the three-term-seriles gpproximation
(fig. 5(b)) apparently reaches a maximum at £ =~ O.4 and then decreases.
This result may be qualitatively explained by considering the difference
between the wall enthalpy and the stream stagnation enthalpy, which
forms a sort of heat-transfer potentlal. The stream stegnation enthalpy
ho,l is derived from the expansion-fan relations of appendix A and is |

glven by

noy = 2 =-~+--—=1+7'l(§2-2g) (4

The dimensionless potential, h - h, , for the case h, = h., 1is
J

plotted in figure 8. The rate of heat transfer follows the seme general

trend as the total enthalpy difference for an increase in the conical

coordinate near the leading edge. - N -
If this line of reasoning is followed, one might expect that, in the

region where the stagnation enthalpy difference becomes very strongly

negative, the rate of heat transfer might also become negative and would

thus indicate heat transfer from the fluid to the wall. This is indeed b

the case with the integral solution of reference 12 where the heat-

transfer function goes from positive to negative at a value of the conical

coordinate ¢ =~ 1.5. The present solution cannot be carried to that -
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extent, but examinatlion of the enthalpy function of the second power of
3 (82(ﬂ) in fig. 3(b)) indicates a reversal of sign in the derivatives

at the wall (n = 0); thus, a tendency for the heat transfer to reverse
is shown. This term in the power series increases in importance with
increasing ¢ and lends support to the belief that regions of negative
rates of heat transfer (from fluid to wall) exist beyond the region of
valldity of the present solution.

Camparison With Solution of Zero-Thickness Expansion Wave

Reference 9 considers the expansion fan as a wave of zero thickness
propegating into fluid at rest at a velocity equal to -8&¢. The wave

diagram for the speclal case of shock-tuve flow under this assumption is
shown in figure 9(a); the true fan 1s illustrated in figure 9(b). The
zero thickness wave coincildes with the line & = 0. Isentropic expansion-
fan relations are assumed to hold across the zero-thickness wave, and the
entire region from the wave to the tempersture discontinuity is assumed to
Le a region of constant stream properties and corresponds to region o« in
the true shock-tube case. Comparison of the results of the present analy-
sis with those of referentce 9 is carried out on the basis of equal poten-
tial flows. That is, if the value of & at the trailing edge of the
expansion fan £, is given, free-stream variables in the constant poten-

tial flow region o ([that is Py’ Em’ and so forth) may ve found from

appendix A (egs. (Al) to (45) evaluated at E+o). These varisbles are

also the free-stream variastles for the corresponding zero-thickness
expansion-wave solution. Since the present analysis does not consider the
region & > gte (region a), comparison must be restricted to the region

0= E < €1e Tfor each case, although the results of reference 9 are

extended peyond this reglon in figure 10. The asterisks appearing on the
curves represent the appropriate positions of Eiee

Skin-friction and heat-transfer functions are shown in figure 10 for

gte equal to 0.1, 0.2, 0.3, and 0.5, the present solution corresponding

to the three-term (quadratic) power-series approximestions (egs. (3%a) and
(36a)). It is apparent that the two solutions are very different; the
skin friction and heat transfer for each zero-thickness expansion solution
approach infinity at the wave & = O, whereas the corresponding functions
for the expansion fan vanish. One might consider this behavior analogous
with that of a flat plate and of a blunt body in steady flow. Skin fric-
tion and heat transfer at the leading edge of a flat plate are infinite
whereas, at the forward stagnation point of a blunt body, friction vanishes
and heat transfer is finite, depending upon wall temperature. Whether
these discrepancies are important in computing shock attenuation, however,
will depend upon the strength of the wave in question. For wesk waves,
although the details of the flow within the narrow fan have been shown to
be very different, effects upon shock attenuation may be small as they
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represent integrated wall shear and heat transfer far downstream. Here
the steady-flow anglogy is with the flow well downstresm of the leading
edges of" the flat plate and the blunt body where the leading edge is not
important. For strong waves, however, the flow within the fan may
serlously influence the shock wave. It should be polnted out thsat
although the computatlons of reference 9 were carried out for strong as
well as weak expansions, the limitetions of the anglysis were therein
recognized.

It 1s of interest to note that, at & = &, 1in the zero-thickness-

wave case, the skin-frictlion and heat-transfer functions are approximately
one-half the corresponding expansion-fan values. This relation 1s more
evident 1f skin-friction and heat-transfer ecoefficients defined by

o= (45)
Ve
pwul:_
Ty o= (46)
hi* v
oy —— £
Np,.{ TE

are considered. TFor the present solution, combination of equations (%33)
and (45) and of (36) and (46) yields, respectively,

2
Ty = (—-——”—a s ’) (7)
on n=0
= - ag(é:n)) 48
G (f-_?iT__ 1o (48)

The corresponding coefficient form from reference 9 is independent of
coordinate § eand 1s a function only of expansion strength £..,. These

coefficients are shown in figure 11; the values from reference 9 are
approximately one-half those of the present solution. This relation is
exact for the limlt &4, = O (an infinitesimelly week wave) where the

following values apply:
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. Present solution | Reference 9
— l L

T, 2L \/E

— Npr Np.

Ly 2\/ N e
The zero-thickness-wave case ig discussed further in asppendix B. A

more detailed comparison of the finilte-width and zero-thickness expansion
waves is made in reference 12.

Singulgrities in the Flow Field

The equations of momentum and energy were transformed to the g,n,f
coordinate system (egs. (16) and (17)) and then specislized for the case
of the centered expansion-fan potential flow (egs. (20) and (21)). It is
of interest to note that the aforementioned equations indicate mathemati-
cal singularities in the flow field. This condition can be observed in the
expresslon

of| _ 2 _.of
EE-l)‘Ela—;]-,:(E'l)-;TIﬁ'a—n] (49)

which is the coefficlent of the highest order derivative with respect to
¢ in each of the partiasl differential equations. For 1 3¢ S 1 + Yy,

this term vanishes somewhere in the boundary layer and, as a result, the
solution became nonanalytic (that is, a singuler point). In the X,¥,5
coordinate system, the singularity occurs at & position

= E(XJY: t)

aet

X
< >singularity -

af
gl

It 1s evident, since u is alweys positive (in the positive x-direction),
that the singularity always appesrs in the region x 20 and is actually
within the limits 0 € £X- < u,.

act - —1

The appearance of these singulerities is discussed in reference 18
- in regard to the lmpulsive motion of a semi-infinite flat plate in an
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incompressible fluid. David Ademson has made an independent investigation
of thils case at the Langley Laboratory and he argues that, although the
vorticlty generated at the plate surface at the start of motion diffuses
normel to the surface at an infinite rate, the Prandtl boundary-leyer
assumptions gllow no diffusion of vorticity in the streamwise direction.
At the origin of motion, the flow field of this case consists of the
undisturbed fluid ehead of the leading edge, and the fluid behind the
leading edge through which the vorticity of starting has already spread
in a direction normal to the surface. A line singulerity separates these
regions and, as time progresses, this singularity 1s swept downstream.

The singularities in the expanslon fan mey be considered in an analo-
gous fashion as originating at the polnt x =1t =20 (the disphragm sta-
tion at burst in shock-tube flow, for example) with vorticity generated at
this polnt and diffused immediately only in the normal y-direction. As
time progresses, the singularity is swept downstream (in the positive
x-direction). When the expansion fan is supersonic (E4e > 1), these

singularities appear in the fan itself; thus, the present series solu-
tion is limited as already discussed. ) '

The singularities exist, however, even when the expansion fan is sub-
sonic, that is, E4, < 1l. The condition of a nonanalytic solution must

8till occur in the region where § 21 even though this region may be down-
describing the diffusion of vorticity is qualitatively independent of
expansion-fan strength. As a result, one would expect the anaslysls based
upon & zero-thickness expansion wave to exhibit singular behavior in the
region ¢ 2 1. The fact that no such behavior was evident in the date of
reference 9 is attributed to the fact that the origin of the wave (for
exemple, the diaphragm burst) was neglected therein when the flow was
assumed to be steady with respect to & coordinate system fixed to the wave.
The zero-thickness wave, as applied to the shock tube in references 6 and
10, therefore implied a wave which originated et t = -» , propogated at

a constant veloclty equal to -a¢, and passed through the point x =1t =0

on the x,t diagram (fig. 12). Consideration of the zero-thickness expan-
sion wave by the present method (see asppendix B) does result in the
expected mathematical singulsrities.

CONCLUDING REMARKS

A solution to the laminar boundery-layer equations that is valid near
the leading edge of an expension wave of finite width has been obtained.
Application of the results to the calculation of real gas flow in a shock
tube by the method of NACA Technical Note 3375 involves the use of the
skin-friction and heat-transfer results along with like functions appro-
priate to the cold-gas constant-potential-flow region. The present
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solution could also be adapted for application to the method of NACA
Technical Note 3278 by computation of the veloclty normal to the wall.
For this application, solutions in the region between the fan tralling
edge and the tempersture discontinuity, including the assoclated singu-
larities, also would be required.

The zero-thickness expansion-wave solution of NACA Technical
Note 3712 indicates the skin-friction and hest-transfer results to be
very different from those obtained herein. In principle, then, substi-
tution of a zero-thickness wave for a true expansion fan in computing the
boundary layer must be questioned both on grounds of accuracy near the
leading edge and of omission from the consideration of the singularities
in the flow field in the region downstream of the position of the origin
of the wave. In application to the shock-tube case, however, the results
of NACA Technical Note 3278 indicate that the hot gas compressed by the
shock is the primary factor influencing shock-wave attenuation for moder-
ate pressure ratios; thus, in practice, assumption of a zero-thickness
expansion wave may not seriously affect the theoretical attenuation
results.

No experimental boundary-layer deta for laminer flow in a centered
expansion fan are available. Local heat-transfer rates within the fan can
be measured, and such measurements may substantiate the present theory.
Data on shock-wave attenuation are plentiful, but little information
regarding the fan may be deduced since the effects of the shock-compressed
gas generally predominate and flow Reynolds numbers are frequently in the
turbulent range. Future application of the integral solution to turbulent
boundary layers should afford both direct and indirect checks on that
theory and should lead to more definite conclusions regarding the present
theory.

langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., December 3, 1956.
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APPENDIX A

FREE-STREAM RELATIONS IN THE EXPANSION FAN

The equations defining the flow parameters of a fluld undergoing
accelerstion in a centered expansion fan are ligted, for example, in
reference 1 to 3 and are reproduced below in terms of the coordinate

£ = Ef% + 1:

moesigt (A1)

g =12 (a2)

b = (21)2 (43}
2y

B = (@) (8)
2

oy = (&)™ (85)

The stream viscosity is written by using the Sutherland relation as

T 1.05
T Y e g (46)
S S Te I, +8

Equation (A6) is combined with the equastion of state (eq. (4)) and the
definition of C, (eq. (8)); from the resulting relation are obtained

the viscosity terms in the differential equations of motion end energy

c
= p. ¥
pqC, = By G (AT)
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where

Equations (8) and (AB) mey be combined to yield

Cy  [T\V2(Te + 8
c'e"(T_> (Tw"‘S)

For the speclal case T; = T., 1t is seen that

o |
|
H

(48)

(49)

(A10)
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APPENDIX B

BOUNDARY LAYER BEHIND SHOCK OR ZERO-THICKNESS

EXPANSTON WAVE MOVING INTO FLUID AT REST

The flow behind a shock wave or a zero~thickness expansion wave may
be consldered by Utilizing the theory of this paper modified for constant
potential flow. The x,t diagram of figure 9(e) shows both cases.

Although the shock wave advances into the low-pressure region «, reglon €
remains the reference for both solutions. The wave velocity wy i1s equal

to ug in the shock-wave case and is equal to -ag 1in the zero-thickness
expansion-wave case.

The following relations result from the equations of motion and
energy (egs. (16) and (17)) for constent potentisl flow:

T A T £ DU caare|, P
Elﬁlqw 3 3 * an ggn Uy ggf Lo O + (& - EW 5 21 anag
(BL)
* 32 21 0 \2
1 2 3% 3 [3r dglng W . Of
oGl TSR (7'1)‘?(5}1—2) P 'I_Lw( s-) "
og 3 o
h* =i -1)+=]=0 B2
22 -

Boundary conditions are the same as those given by equations (18) and the
coordinates £ and 1n are defined in equations (15); these values are
valid for both cases under consideration. Note that ¢ 1is zero on the
wave in each case. Solutions in the following regiong are desired

(see fig. 9(a)):

(a) Shock-wave case; region B
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(b) Zero-thickness expansion case; reglon a
O§§=l+—}1-§(l+gl)

Note also that

(g ), = (w )B
and that, in general,

(m), # (m1),

Direct solutions of equations (BlL) and (B2) appear unlikely. The
coefficient of the leading partlal derivative with respect to g€ in
equations (Bl) and (B2) is given by

Zd u
[(g -1)+$—d§ﬂ= l}g -l)+$:'

and the vanlshing of this coefficient introduces singulerities into the
flow field at positions given by

l_l
nw
U
1\

e’

or

o
A

<
=

|

. S
ugt
for the flow behind a shock, and

12 E 21+ u
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or

1A
IA

x
© agt ~ L3
for the case of flow behlnd a zero~thickness expansion fan.

Power-series solutlons asre assumed, as in the expansion-fan case,
and are given by

£(g,n) = Ew £, (1) (B3)
n=0

g(e,n) =S t%,(n) (84)
n=0

Because of the location of the singularities, it is apparent that this
power series 1s valld only in the following reglons:

Shock-wave case:

Expansion-wave case:
0sE<1

For the flow behind the shock, this region is precisely the region B;
hence the series solution 1s sufficient. The region of valldity of the
geries solution for the expansion-wave case is only part of the cold-
gas region «, end it is in this reglon that the series solution will
be inadequate.

Equations (B3) and (B4) are substituted into equations (Bl) and (B2);
after expanding and collecting terms, coefficlents of 1like powers of ¢
are equated. The first three equations of each set and the corresponding
boundary condlitions are :

b i
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%flfl" + (l + E.Elfl') fl' =0
£5(0) = O)
£5'(0) = Of
o' (=) = -l‘
£,(0) = £,'(0) = £, (=) = 0 (n > 1)
1 2
plulCWl;?O + (y - l)il* " 2} + 280' - %i—ifogo' =0

1 2
g - 1 1" -
Elﬁlcw[N—l" + 2(y - l)g%fo fl:l + <I21 - %%fc))gl: -

Pr

u

n

8y

g 1t 2 u u
s+ (% + 2oy - 0+ (3- 3 B -

-2y

E 1 - 1 - ! 1

35

(B52.)

(B5b)

(B5c)

(Bba)

(B6b)

(BT=)

(BTD)

(BTe)
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go(0) = 0
(B8a)

go(w) = 1
8,(0) = gn(=) = 0 (n2z1) (880

Equations (B5a) and (B7a) for fo and gg may be integrated numeri-
cally. Solutions of the remaining equations are

Il
(@)

£1(n) = £5(n)

(B9)

g1(n) = gx(n)

Thus, both infinite-series representations of the functlons reduce to the
simple relations

foln)

go(n)

f(gbﬂ)
S(E,H)

(B10)

For constant potential flow, the similar stream and enthalpy functions
are functions of 1 only, a result which could have been obtained directly
by modifying the similarity transformations (egs. (13) and (1k)).

Equations (B5a) and (B7a) and the appropriate boundary conditions mey
be transformed into equations (9) and (10) of reference 9 for both shock
and zero-thickness expansion waves 1f the special case hy,; = h. 1is consid-

ered. For this reason, no attempt to evaluate the constant-potential-flow
solutions is made herein. Singularities spparent in the¢ present solution,
however, were not evident in reference 9. These singularities represent
vorticity, generated by the start of motion at + = O, which diffused
normal to the wall at an infinlte rate and then was wasghed downstream. By
considering both problems as independent of time when treated in a coordi-
nate system fixed to the wave, reference 9 neglected the start of motion
and hence, in the shock-tube case, implied a wave which originated at

t = -, propagated through the point x = t = O, and continued on. In
this case singularities were thus not evident.

Figure (12) shows the location of the singularities. When the flow
behind the shock wave 1s consldered, only region B 1s of interest; thus,
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the singularities exlsting outside this reglon do not affect the solu-
tion. Only flow behind the zero thickness expansion wave involves
singular behavior within the region of interest, and this phenomenon
should, in principle, be considered in computing shock-tube boundary
leyer. The expansion-wave solution of reference 9 then is actually
valid only in the region O S ¢ < 1.
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TABLE I.~ VELOCITY AND ENTHALPY FUNCTIONS, n = O TERMS
[FPT - o.7é]

1 o fo! fo" g0 g&"
0 0 0 .1284 0 0.9575
.20 0213 .2064 .9%96 1775 .8203
4o .0802 3TT3 L7732 .3290 .6969
.60 .1702 5172 6284 L5712 .5868
.80 .2854 .6301 5043 5646 4897
1.00 4208 .T7201 .3993 .6539 .LoL8
1.20 5722 .7910 .3119 L1273 . 331k
1.40 L7362 8459 2402 7872 2687
1.60 .9098 .8880 .1823 .8355 .2157
1.80 1.0908 .9197 L1364 8740 L1713
2.00 1.2772 9432 .1005 - 9045 1346
2.20 1.4677 . 9604 .0729 .9283 L1047
2.40 1.6612 .9728 .0521 .9468 .0805
2.60 1.8567 .9816 .0366 .9609 .0613
2.80 2.0537 .9878 0253 | .9715 L0461
3.00 2.2518 .9920 0172 © 9795 0343
3.20 2.4505 .9948 0115 .9854 .0252
3.40 2.6497 .9967 .0076 .9897 .0183
3.60 2.8492 .9979 .00k9 .9929 .013L
3.80 3.0489 .9987 .0031L .9951 .0093%
k,00 3.2488 .9992 .0020 . .9967 .0065
L,20 3.4487 .9995 .0012 .9978 .0045
440 3.6L486 .9997 .0007 .9985 .003L
4,60 3.8486 .9998 .000k - .9990 .0021
4,80 4.0486 .9999. .0003 .9994 .001%
5.00 | 4.2487 | 1.0000 .0001 .9996 .0009
5.20 4 4u87 1.0000 .000L 9997 .0006
5.40 L,6488 1.0000 .0000 .9998 . 000k
5.60 4.8488 1.0000 .0000 .9999 .0002
5.80 5.0488 1.0000 .0000 .9999 .0002
6.00 5.2489 1.0000 .0000 1.0000 .0001
6.20 | 5.4489 1.0000 .0000 1.0000 .0001
6.40 5.6490 1.0000 .0000 1.0000 .0000
6.60 5.8490 1.0000 .0000 1.0000 .0000
6.80 6.0491 1.0000 .0000 1.0000 .0000
7.00 6.2491 1.0000. .0000 1.0000 .0000
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TABLE IT.- VELOCITY AND ENTHALPY FUNCTIONS, n = 1 TERMS
[¥er = 0.72; 7 = 1.h]
ul £ £y " g1 g’

0 0 0.7946 0.1507
.20 .0lh2 .1336 5487 .0370 .2084
Rite} .0505 .2222 3437 .0798 .2125
.60 .1006 2738 1783 .1198 .1835
.80 .1580 .2960 .0502 1521 1373
1.00 2175 .2961 -.0439 1743 .0852
1.20 2754 .2805 -.1080 .1863 .0350
1.40 .3291 2546 -.1468 .1888 -.0086
1.60 . 3769 .2231 -.1652 .183L -.043hL
1.80 14182 .1896 -.1680 Jd721 -.0684
2.00 4528 1567 -.1597 1567 -.0843
2.20 4810 1262 -. 1443 .1389 -.0922
N 2.40 5035 .0992 -.1252 .1202 -.0935
2.60 .5210 0762 -.1048 .1018 -.0899
2.80 5342 0572 -.0850 .0845 -.0830
. 3.00 Shl1 -.0421 -.0670 .0688 -.0740
3.20 .5513% .0303 -.0514 .0549 ~.0640
3.40 5564 .0213 -.0384 L0431 -.0540
3.60 .5600 L0147 -.0280 .0333 -. 0445
3.80 .5624 .0100 -.0200 .0253 -.0358
4,00 5641 .0066 -.0139 .0189 -.0283
k.20 5651 .0043 -.0095 .0139 -.0219
k.40 .5658 .0027 -.0063 .0101 -.0166
k.60 .566% .0017 -.0041 0072 -.0124
4.80 5665 .0011 -.0026 .0050 -.0091
5.00 .5667 .0006 -.0016 .0035 -.0066
5.20 .5668 . 000k -.0010 .0024 -.0046
5.40 .5669 .0002 -.0006 .0016 -.0032
5.60 .5669 .0001 -.0003 .0011 -.0022
5.80 .5669 .0001 -.0002 .0007 -.0015
6.00 5669 .0001 -.0001 .000L -.0010
6.20 .5669 .0000 -.0001 .0003 -.0006
6.40 .5669 .0000 .0000 .0002 -.0004
6.60 .5669 .0000 .0000 .0001 -.0003
6.80 .5669 .0000 .0000 .0001 -.0002
7.00 5670 .0000 .0000 .0000 -.0001
. 7.20 .5670 .0000 .0000 .0000 -.000L
7.40 .5670 .0000 .0000 .0000 .0000
7.60 5670 .0000 .0000 .0000 .0000
. 7.80 .5670 .0000 .0000 .0000 .0000
8.00 5670 .0000 .0000 .0000 .0000
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TABLE III.~ VELOCITY AND ENTHALPY
FUNCTIONS, n = 2 TERMS
[Npr = 0.72; 7 = 1.h]

1 f2 o' " &2 g’
0 0 0 0.418 0 -0.096

.20 007 .064 .229 .002 .089

A0 .023 .09L .070 .027 JA45

.60 043 .095 -.050 .055 .126

.80 .060 .076 -.1%0 .075 072
1.00 .072 .046 -.172 .083 010
1.20 078 ,010 -.181 .080 =, 045
1.40 .076 -.025 -.166 .066 -.085
1.60 .068 -.056 -.135 LObT -.108
1.80 055 -.079 -.096 .02k - 11k
2.00 037 -.094 -.054 .002 -.107
2.20 .018 -.101 -.016 -.018 -.091
2.40 -.003 -.100 .016 -.0%5 -.070
2.60 -.022 -.095 .0%9 -.0k6 -.048
2.80 -.040 -.086 .053 -.054 -.026
3,00 -.056 -.07h .060 -.057 -.007
3.20 -.070 -.062 .061 -.057 .008
3,40 -.081 -.050 057 -.054 .020
3.60 -.090 -.039 .05L -.049 027
3.80 -.097 -.030 .Ok2 -.043 .030
4,00 -.102 -.022 .0%5 -.037 .03L
4,20 -.106 -.016 .027 -.031 .0%0
k.40 -.109 -.011 .02L -.025 027
4,60 -.111 -.008 .015 -.020 024
.80 -.112 -.005 011 -.016 .020
5.00 -.113 -.003 .007 | -.012 LOLT
5.20 -.113 -.002 .005 -.009 .013
5.40 -.114 -.001 .003 -.006 .010
5.60 - 11k -.001 .002 -.005 .008
5.80 -.11h .000 .001 -.003 .006
6.00 -.114 .000 .001 -.002 .00k
6.20 -.114 .000 .001 -.002 .003
6.40 -.11k .000 .000 -.00L .002
6.60 - 114 .000 .000 -.00L .001
6.80 - 114 .000 .000 .000 .001
7.00 -. 11k .000 .000 .000 .001
7.20 -.11h .000 .000 .000- .000
7.40 -1k .000 .000 .000 .000
7.60 -y11h .000 .000 .000 .000
7.80 -1k .000 .000 .000 .000
8.00 -.11h .000 .000 .000 .000
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TABLE IV.- ENTHALPY INTEGRAL k/;n g,(n)dn

[n =0, 1, and 2; Np, = 0.72; 7 = l.ll-]

1 -1 |
] J[ go dn J( gy dn Jf g dn
o} 0 0
0

0 0 0
.2 022 .004 .000
A .070 015 .003
.6 149 .035 .011
.8 .253 .06k .025
1.0 .380 .095 .okl
1.2 512 132 .057
L.k 670 .169 071
1.6 .823 .208 .082
1.8 1.000 .24k .089
2.0 1.18 275 .091
2.2 1.37 <304 .088
2.4 1.54 .330 .08l
2.6 1.74 352 075
2.8 1.92 372 .065
3.0 2.13 387 054
3.2 2.%2 .398 .Ol2
3.4 2.52 408 .031
3.6 2.72 L6 .022
3.8 2.92 Je2 .012
k.0 3.12 Je6 .00L
4.2 3.32 JL2g -.002
by 3.52 L31 ~.008
4.6 3.72 432 -.013
4.8 3.92 I -.016
5.0 .12 435 -.019
5.2 4,32 136 -.021
5.4 k.52 L36 -.023
5.6 72 L37 -.024
5.8 4,92 437 -.024
6.0 5.12 L3 -.025
6.2 5.32 L37 -.025
6.4 5.52 437 -.026
6.6 5.72 A37 -.026
6.8 5.92 437 -.026
7.0 6.12 L37 -.026
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Figure 5.- Skin-friction and heat-transfer functions near the leading
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Figure 5.- Concluded.
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Figure 7.- Velocity and enthalpy difference boundary-layer profiles in
the physical coordinate system.
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Figure 9.- Typical shock-tube wave disgram for zero-thickness expansion
wave and for true expansion fan. B
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Figure 1l.- Skin-friction and heat-transfer coefficients for expansion

fan and for zero-thickness expansion wave.
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