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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 4148

THEORETICAL PRESSURE DISTRIBUTIONS FOR SEVERAL RELATED
NONLIFTING ATRFOILS AT HIGH SUBSONIC SPEEDS

By John R. Spreiter, Alberta Y. Alksne,
and B. Jeanne Hyett

SUMMARY

Theoretical pressure Qistributions on five related airfoils,
including thin symmetrical clrcular-arc airfoils, in two-dimensionsl flows
with high subsonic free-stream veloecity are presented. The girfoils have
various locations for the point of maximum thickness ranging from 30- to
TO-percent chord and are of arbitrary, although small, thickness ratio.
The results are obtained by approximate solution, through an iteration
procesas, of a nonlinear Integral equation derived from the equations of
transonic flow theory. It is shown that the pressure distributions dis-
play most of the principal phenomens observed in experimental studiles,
end are in good correspondence with those calculated by other methods for
suberitical Mach numbers and for Mach numbers near 1.

INTRODUCTION

The equetions governing transonic flows are known and well established
by favoreble comparisons with experiment. Although the difficulties aris-
ing as & result of the nonlinearity and mixed character of the differential
equation for the potential have hindered the advancement of the analysis,
epproximate methods are gradually emerging that permit the theoretical
prediction of pressure distributions on & wide variety of shapes of
aerodynamic interest.

One of these methods is that described In reference 1 in which the
differential equation of tramsonic flow theory is recast into the form
of & nonlinear integral equation and approximate solutions are sought by
gpplication of an iteration procedure. The iteration procedure is of the
successive gpproximation type, but differs from the related procedures
customarily employed to determine higher approximations to the solutions
of problems of compressible flow theory in that the quadratic nature of
the integral equation is recognized and retained throughout the analysis.
This method is described in general in reference 1 and is spplied to a
nonlifting symmetrical circular-arc alrfoil for which pressure distribu-~
tions are calculated for a range of Mach numbers extending from well below
the crltical Mach number up to unity. The results indicate most of the
principal phenomens observed in experimental studies. Certain aspects of
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the results for free-stream Mach numbers near unity are not as satisfactory
as for lower, but still supercriticsl, Mach numbers, however, and it is
now evident that one of the simplifying approximstions needs refinement
before results of good quality can be calculated for flows in which the
free-gtream Mach number approaches unity.

Although it would be interesting and worthwhlle to develop the
necessary refinement to extend the Mach number range over which the method
of reference 1 can be agpplied satisfactorily, the need for such a refine-~
ment has been greatly reduced by the development of a second approximate
method described in reference 2. The latter method enables the determina-
tion of expressions in closed analytic form for the pressure distributions
on & wilde variety of airfoils in flows with free-stream Mech numbers equal
to or near unity. A large number of specific results are given in refer-
ence 2, but particular attention is focused on a family of airfoils,
ineluding symmetrical circular-arc slrfolls, that have the point of max-
imum thickness located at 30-, 40-, 50-, 60-, and 7O-percent chord, and
for which experimental pressure distributions are available from refer-
ences 3 and 4. These results indicate pronounced effects of airfoil
shape, but provide no information on the transition from the pressure
distributions of subsonlc type that occur at sll Mach numbers below the
critical to the pressure distributions of sonic type that occcur at free-
stream Mach numbers near unity. Theoretical pressure distributions can
be calculated for most of the intervening Mach number range by applica-
tion of the method of reference 1, however, and i1t is the principal pur-
pose of this paper to present and discuss the results of such calculations
for the particular famlly of airfoils referred to above. A resumé of the
method of reference 1 precedes the presentation of the results.

PRINCIPAL SYMBOLS

b function defined in. equation (20) ’
Cp pressure coefficilent, - -
2; U2 _
+2/8 P

e chord
cg sectlon pressure drag coefficlent, d
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a pressure drag
E function defined in equation (22)
f function defined in equations (24) and (25)
i h
[«
i B(UJkr) Y3
h half height of wind tunnel
I function defined in equation (16)
o Mo (r41)
Uso
L Tp, - 1
I3 wilidth of element used in approximating the chordwise velocity
distribution
M local Mach number

May  critical Mach number

My free-gtream Mach number
P static pressure
P, free-stream statlic pressure

2 NEDZ+ (Z-D°

t maximm thickness of profile

Uy, free-stream velocity

u,¥ perturbation velocity components parallel to the x,z axes,
respectively

T .éfz- u

7 Ekg W

X,z Carteslan coordinates
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ordinates of wing profiles

Koy o
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retio of specific heats, 1.4 for air
S = Loy

variables of integration corresponding to X,%

1-M°
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free-stream density of asir —

Q]

&

0

E

perturbation velocity potential
B2
Subscripts

values ahead of shock wave

values pehind shock wave
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er conditions associafted with the critical Mach number
L values given by linear compressible-flow theory
W values at the wing surface

WT wind tunnel
Superscript
* values associated with the sonic point
DESCRIPTION OF ATRFOILS

The airfolls considered in this paper are exactly those for which
experimental dasta are given by Michel, Marchaud, and IL.e Gallo in refer-
ences 3 and 4. The ordinates Z of the airfoils that have the point of
meximum thickness &t 60- and T7O-percent chord are given by

2oalz-(®)] &

where n has the values 3.38 and 6.05, respectively, and A 1is related
to the thickness ratio T by

_ o/ (n-1)
- 2(n-1)

(2)

The ordinates of the alrfoils theat have the point of maximum thickness
at 30~ and 4O-percent chord are glven by

[6-9)-¢-5]

where n has the values 6.05 and 3.38, respectively, and A 1is related
to the thickness ratio by equation (2). The ordinates of the airfoils
that have the point of maximum thickness at 50~percent chord are special
cases of either of the families of airfoils defined by equation (1) or
(3) vhen n is equated to 2, and are the same as those of the airfoils
for which theoretical results are given in reference 1. The latter
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alrfoils may be referred to as either parabolic-arc or circular-are
alrfoils since the two classes of shepes are indistinguishable to the
order of accuracy of the small-~disturbance theory of transonic flow.

RESUME OF THEORY

The new results presented in thils paper are determined by direct
application of the method of reference 1 to the specific airfoils
described in the preceding section. A resumé of the parts of reference 1
that pertain specifically to the determination of pressure distributions
on symmetrical nonlifting airfoils is given here in the interest of com~
pleteness, and in order to provide an opportunity for additional comments
on certalin points beyond those provided originally in reference 1.

Fundemental Equetions and Boundary Conditions

Consider the steady flow of an inviscld compressible gas past an
arbitrary symmetrical nonlifting sirfoil of chord c¢ and thickness
ratio . Introduce Cartesian coordinates x
z and 2z with the x axis parallel to the direc~
tion of the free stream as illustrated in
Ve sketch (a). Let the free-stream velocity and
— {——"* density be U, and p , the perturbation poten-
° tial be ¢, and the perturbation velocity com-
ponents parallel to the x and z axes be @,
or u, and ¢,, or W, where the subscript
indicates differentiastion. The boundary condi-
tions require that the perturbation velocitilies vanish at infinity, and
that the flow is tangential to the wing surface. The former condition
indicates that ¢ 1is a constant at infinity. The latter condition can
be approximeted for thin wings by ’

Z{x}

Sketch (a)

(), = U = (1)

where 2 represents the ordinates of the alrfoll upper surface. The
differential equetion for ¢ 1in the smell-disturbance theory of transoni
flow is :

r+1
(LM®) Pty = Moo™ T PPy = KPPy (5)
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where M, is the Mach number of the undisturbed flow and <y 1s the
ratio of specific heats (1.4 for air).

Equation (5) i1s, of course, valid only in reglons where the necessary
derivatives exlst and are continuous. Since these conditions do not hold
where shock waves occur, and since shock waves are & prominent feature of
most transonic flows, an edditional equation is needed for the transition
through the shock. The fundamental properties of a shock surface require
that the normal component of velocity be disconbtinuous and the tangential
component, and therefore @, be continuous. The necessary relation
follows from the classical expression for the shock polar which, 1n the
small-disturbance transonic theory, is approximated by

(1-14,%) (ugp) % (wa-wp) ® = M® = 252 (ugmup) ™ (6)

where the subscripts =& and © refer to conditions shead of and behind
the shock,

Upon solving the above boundary-value problem for the perturbation
potential, one may determine the pressure coefficlent by means of the
approximate relation

S PP __2 %
CP Peo 2— Uooax (7)
7 Yo

An important quantity In the discussion of compressible flows is
the critical pressure coefficient CPcr assoclated with the local occur~

rence of sonic veloelty. The sppropriate relation is found by combination
of equation (T) and the expression obtained by equating to zero the total
coefficient of @y, in equation (5), and is

- 200-1%.7) (8)

“Fer Moo (7+1)

The analysis presented in reference 1 is based upon consideration
of the preceding equations recast into a normalized form by introduction
of reduced variables., The definitions of these quantities, together with
edditional useful relestions, are given below.
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- - - Xk
X=X z = Bz ¢ = E_é V]
= _ kI = ® _ k = 9% k
Z Bs u R u W i W
1/3
E'P = (Uook) CP g = "Bz g = - l"Mz
T/ (Uegr) =/® (Upgsr) 2/®
- Ko E oo L ¢ - Bl
- Eﬁr © = =2/3 - =2/s
T = -2 “/3 = ~2(t-t,) Ty = 26
where
2
1
B =a1-M7 k = M (9)

Ueo

In this way, the differential equation given by equation (5) reduces to

PaztPsz = Pz¥ze (10)

or to

(1-%) g #%,,= © (11)

Tt is apparent from equation (11) that T < 1 when the local velocity is
subsonic, U = 1 when it is sonic, and U > 1 when it is supersonic. Sim-
ilarly, the expression for the shock relatlon given by equation (6) reduces
to
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BT (q,-m,)2 (12)

(U -T) 2 (T - 2 =<

"If the shock wave is a normal wave and the flow is parallel to the
X axis (i.e., Wg = W = 0, but Ty # Tp), it can be seen from equa-

tion (12) that the reduced perturbation velocity component W Jumps from
1+ A immediately shead of the shock to 1L = A immediately behind the
shock. The quantity T-(T>/2), on the other hend, is equal on the two sides
of the shock._ The latter result is consistent With the fact that the
quentity 'ﬁ-(ﬁe /2) corresponds, in the transonic spproximation, to the
mass flow, which is continuous through & normsl shock.

An Integral Equation for Transonic Flow

Approximate solutions for the pressure distribution on symmetrical
nonlifting airfolils in mixed or transonic flows are sought in the method
of reference 1 by conslderation of the following integral equation derived
from the differential equations given in the preceding section by
spplication of Green's theorem:

400 .
e L TAEE) 1 = 3% 1\ .o
WR,Z) = T,(%,Z) + —=2— S - = f .é_.a_g_.é m <-f£> dg at (13)
where
=J(ZD)2(z-D)3

The term ’EIL that appears in equation (13) represents the values for T
given by linearized compressible flow theory. Its values can be obtained
by application of the following well-known expression:

C =
ﬁL=-}._a:f g_m___l_._.d'g' (1k)
TR & fzm)tee

The derivation of equation (13) , presented in reference 1, requires
the introduction of two slightly contradictory statements regarding the
nature of the shock waves. They are: (a) All shock waves are assumed
to lie in a plane perpendicular to the x axis, and (b) the shock waves
are assumed to be normal shock waves (i. e. , normal to the local flow

direction). A new derivation of equation (13) has been given subsequently
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in reference 5, however, in vhich 1t is shown that i1t is not necessary
to introduce these two assumptions, and that this integral equation 1s,
indeed, an exact relstion within the framework of transonic small-
disturbance theory.

It is helpful to conslder, before proceeding to the details of the
approximete solution of eguation (13), a summary of the discussion glven
in reference 1 concerning some properties of _the nonlinesr integral equa-
tion and of its solution. The first and simplest property is that the
solutions of equation (13) must approach those of linear theory when the
free-stream Mach number is much less than the critical Mach number,
since U << 1 and the terms involving the square of T become negligible
with respect to those linear in 71U, thereby leaving only

(ﬁ)Moo<<1 = -ﬁ]'_, (15)

Further discussion of the properties of equation (13) is facilitated
by introduction of the abbreviation I/2 for the integral, so that

=]
1I='IIL+P‘2—-% : (16)

where

+00_2_ s —
=2 L 5 0 L) &t
1_2[2ﬂf 32 Zn<r2> aE df]

00

Although I 1is a function of U and 1s therefore umknown, it is
informative to rewrite equation (13) by solving for T in terms of I
and Tp, thus

T=1xNI-(20~l) =1 N (17)
where -

Several points are to be observed at once with regard to equation (17).
First of all, the discriminant must always be positive in order to
obtain real values for U, thus

IZ2L (19)
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Furthermore, the cholce of plus or minus sign determines whether the

local velocities are subsonic or supersonic. A change in sign at the
point where the radical is zero corresponds to a smooth transition through
sonic velocity. A change in sign at a point where the radical is not zero
results in & discontinuous jump in velocity and corresponds physically to
e shock wave. Such discontinuities are permissible when they proceed from
supersonic to subsonic velocities (or from plus to minus sign in eq. (17))
vwhen progressing in the flow direction. Discontinuities in the reverse
direction are inadmissible since they correspond to expansion shocks, &a
phenomenon which violates the second law of thermodynamics.

Tn order to remove unnecessary complications and to facllitate the
discussion, the following remarks are confined to the relations among I,
L, U, and T, evaluated at the airfoil surface. In this way, eac¢h of the
Pour functions reduces to & function of a single variable X eand cen be
illustrated simply by curves rather than by surfaces. The subscript W
is appended to each of the four variables to denote that the values are
those at the wing surface. The Iy and Iy curves represent the compo-
nents involved in the solution of equation (17), and T, and ﬁLW curves
represent, respectively, the velocity distributions given by transonic
theory and by linear theory.

The linear theory solution for subsonic flow around a nonlift-
ing airfoil of given shape can be readily derived through application of
equation (14), The corresponding values for the Ly curve follow directly
from equation (18). Not very much can be stated at this point about the
values for Iy, except that they depend on the distribution as well as
magnitude of U and that the inequality mentioned above must be satisfied.
The relation between the Ty and Iy curves is of utmost importance,
however, and will be discussed qualitatively in the following paragraphs.

It follows from the discussion presented in the preceding paragraphs
that the quslitative features of the relations among the Iy, Ly, Uy,
and ﬁLW curves are of essentially one form for flows in which the free-

stream Mach number 1s less than the critical, and of another form for flows
in which 1t is greater than the critical. If the Mach number is less than
the critical, the Iy and Iy curves never touch. Sketches of typlcal
curves for this condition are shown in

sketch (b). The amplitudes of all I, Lo -

four curves increase as the free-

stream Mach number increases, however, ~/:>;zZ::5\—
/QLw \ o]

and the Iy and Iy curves finally
touch at one point as the free-stream
Mach number becomes equal to the
eritical Mach number. If the free-
stream Mach number is greater than Moo “Mepe,
the critical, the Iy and curves

must contimue to touﬂﬁ at g@ least Sketeh (D)

one point along the chord in order to avoid the occurrence of forbldden
expansion shock waves. The two curves may also be tangent at a second
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point along the chord, in vwhich case
Iw the flow may decelerate smoothly from
supersonic to subsonlc veloclties. All
present indications are that such flows
are very exceptional if they exist at
all, and that, in most cases, the flow
decelerates abruptly from supersonic to
subsonic velocities through a shock wave.
For these cases, the Iy and Iy curves
are tangent at only one point along the

chord and the four curves appear quall-~
sketch (e) tatively as illustrated in sketch (c).
The point of tangency locates the position of the sonic point and the
point at which the sign in equation (17) changes from minus to plus. At
some point downstream of the sonic point, the flow decelerates abruptly
to subsonic velocitles and the sign in equation (17) chenges back to minus.
If the Iy and Ly curves are continuous at this point, the jump in Ty
is from 1 + A to 1 - A, corresponding to that of a normal shock wave,

and (QGy/dX), = -(dTy/dX),.

Lw

M Mg,

Simplification of the Integral Equation

Since no general methods are available for the solution of integral
equations, such as equation (13), that are both nonlinear and singuler,
recourse must be had to spproximste methods. Approximste solutions of
this equation could conceivably be worked out numerically by starting
with a two-dimensional grid of suitebly selected values for TU(E,T) and
iterating until convergence is obtained., Such calculations would pro-
ceed by inserting the assumed vaelues for U into the double integral
and solving to obtein the next approximation for uU(X,z), making use of
tangency condition on the surfaces or functions represented by I and L
as discussed in the preceding paragraphs. IFf the first gpproximation
for W 1s taken to be ﬁi, it 1s shown in the sppendlx of reference 1
that the final result for U, in the limit of an infinite number of iter-
ation steps, coincides with that provided by tlassical iteratlon methods,
provided the free-stream Mach number 1s less than the critical. It is
ghown, furthermore, that the power series expansions for the higher
approximations to the solutions of the equations of transonic flow theory
obtained by epplication of classical ilteration methods diverge 1f the
free-stream Mach number is greater than the critical.

The method of reference 1 does not seek spproximate solutions for
supercritical flows by taking Gi to be the first approximation, but
follows en idea of Oswatitsch expressed in references 6 and 7 that approx-
imate solutions for mixed flows comtaining shock waves can be obtained 1f
the starting T distribution contains discontinuities compatible with
the shock relations. This idea is combined in reference 1 with an itera-
tion procedure that incorporates the considerations described above regard-
ing the relation between the I and L funetions. It 1s shown further in
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reference 1 that this procedure converges rapldly end that it is not
necessary to be highly accurate in the selectlion of initial values for u,
provided care 1s exercised in fulfilling the tangency requirement on the
T and L. functions.

A source of complication in the numericel solution of equation (13)
by an lteration process is the double integral. Tt is assumed in the
method of reference 1 that approximate lkmowledge of the velocity dlstri-
bution in space is sufficient for determining a working approximstion for
the double integral. The possibility of introducing simplifying approxi-
mations In an integral, with the effect that the error in the result may
be rather small, sppears to be the principal advantage of approaching the
nonlinear problems of compressible flow theory, and perhaps other problems
as well, through consideration of an integral equation rather than through
direct consideratlon of a differential equation.

The perticular assumption introduced at this point in the method of
reference 1 is that & sufficiently good approximation to the veloecities
in the flow field surrounding the alrfoil can be expressed in terms of
the local coordinate %, the ordinates of the ailrfoil surface Z(X),
and the desired, but unknown velocity distribution Ty(X) on the airfoil
surfaece. This permits one integration to be performed, thereby reducing
the double integral of equation (13) to a single integrel. The particular
expression used in reference 1 and In the calculations of additional
results reported in thils paper is one suggested originally by Oswatitsch
in references 6 and 7. It possesses the properties that T starts from
the value Ty at the airfoil surface (T = 0) with an initial rate of
change given by the irrvotationality condition end vanishes at great
distances as 1/Z%, and is explicitly the following:

w(E5) - 0 (20)
[1+(Z/0) 1

where

- W

33Z o2
Substitution of equation (20) in the double integral of eguation (13)
permits Integration with respect to E. Thus, by performing this integra-

tion and setting Z = 0, the following spproximste integral equation is
obtained for Ty:

- = -.EWZ C—uw2 <E>
”W-LW*—Q“]; E.E = )at (21)
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The function E is

(E) () = X |x|(5-100%%*) -

vt

(1~10x2+5x%) m|x] - = (1+x2)(25 71x2-x4-x3)] (22)

Although the integration interval is indicated in equation (13) to extend
from £ = -0 to § +0, the contribution of the regions shead of the lead-
ing edge and behind the trailing edge vanishes with the introduction of _.
the velocity profile given by equation (20) since b is infinite. The
integration need, therefore, be carried out only over the chord c.

Attention 1s called to the fact that the approximate relation for
U(%,z) given by equation (20) is not entirely satisfactory. Evidence of
this is provided by the facts that U i1s indicated to be zero in the
region shead of the leading edge and behind the trailing edge where b
is infinite and that the discontinuities in U at the shock waves are
conglstent with the shock relations only at the surface of the airfoil.
A further shortcoming of equation (20) is that it cannot be used in &
region where b 1s negative since it leads to a spurious infinity when
inserted into the integral of equation (13). TFor the convex airfoils
consldered in this paper, negative values for b are indicated by the
above expression for small regions near the leading and trailing edges
where uW is negative. Since estimates indicate that the contributions
of these regions to the value of the double integral are very smell over
most of the chord compared with those of the regions in the middle of the
alrfoil, the contributions of regions where U 1is negative have been
consistently disregarded in the present calculations.®

Negative values for b also result in regions of positive Ty if
the adjacent surface of the girfoll is concave rather than convex. This
situation does not arise in the cases considered in this paper because
all of the.sirfoils heve convex surfaces, but is likely to occur in other
cases, a typical example being that of supercritical flow past an sirfoil
with a cusped tralling edge. In this particular case, the positive values
of Ty and the chordwise extent of the region of negative b may be
large, and the simple expedient of disregarding the influence of such
regions could hardly be expected to succeed. - It would appear necessary,
before pressure distributions are calculated for such cases, to reconslder
the question of a suitable veloclity profile and to introduce some other

iThis point was improperly observed in the calculation of the results
for the symmetrical circular-arc alrfoils given origlnally in reference 1.
The results for this airfoll that are presented herein have been corrected
to conform with the above statement, even though the difference between
the two sets of results 1s generally quite small,
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expression more appropriate than that given by equation (20). The same
conclusion applies also to alrfoils with extensive flat reglons for which
b is infinite.

The error &I 1incurred in the value of I by the introduction of
the relation between T and Z given by equation (20) is, of course,
equal tothe difference between the exact and approximate values for I,
that 1s,

+00 +00 +00
BI=Iex-IaPP=ﬂw de dt -ﬂ%mc dt 4t =ﬁ(qex-qapp)c at atf  (23)

where
[ 2
u?- = for B>0
32 1 52 2x[1+ (€ /b) 1
0'=-a?m-xz q_ex=5;[ qapp={
0 for <O

.

These expressions possess two propertles that meke it difficult to
estimate upper bounds for the magnitudes of Iy and IaPP' They are that
the region of integration extends to infinity and that ¢ is singulsr,

or infinite, at € =X, £ = %. In actual applications, however, the first
propexrty does not lead to large contributions from the distant regions
because qoy diminishes sufficiently rapidly with distence from the air-
foil, and dapp is chosen so as to assure the same behavior., The second
property remains a factor, however, because neither gqgy nor dapp vanishes
at the singular point of ¢. Although it is one of the principsal proper-
ties of the integral equation given by equation (13) that serious diffi-
culties arising from this source are averted by the fact that the values
of ¢ change from positive to negative in a cyclic manner as the point
€, moves around the singulaer point X,Z, it is nevertheless true that
most of the contributlion to the value of I arises from the region in the
vieinity of X,Z. It appears plausible, however, since dgpp bhas the
same values and first derivatives as gqoy for all points along the air-
foil chord, except those in the immediate vieinlty of the leading and
traliling edges, that the error incurred in the value of I should be small
for some large class of smooth convex airfoils.

It is shown in reference 1 and verified further by examingtion of
the new results presented herein that considerations based on the use of
equation (21) together with the relation between the I and I curves
discussed in the preceding section lesd o useful results for all Mach
numbers up to that &t which the shock wave 1s situated at the tralling
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edge of the airfoil, At higher Mach numbers, the approximation furnished
by equation (21) is inadequate, particularly for the region near the traill-
ing edge, because of the presence of & palr of oblique shock waves extend-
ing downstream from the tralling edge. Examination of the properties of
Iex in the presence of such a shock system shows that ‘there 1s a log-
arithmic singularity at the tralling edge that exsctly counteracts the
singularity in ﬁi, and & discontinuity in its velue elsewhere along the
shock wave. This point was not understood at the time reference 1 weas
prepared and sn asttempt was made there to obtaln results for higher Mach
numbers by assuming that an adequate approximation for the contribution

of the double integral to the values of U on the alrfoll could be
attained by replacing the actual obligque shock system with a normal shock
wave gituated at the tralling edge. This procedure yielded results for
the pressure distribution on the airfoil that asppeared reasonable in spite
of the occurrence of a logarithmic singularity in U at the tralling edge.
This singulasrity arose from the fact that the approximation Introduced by
use of Igpp resulted in the loss of the singularity in I, and therefore
provided no mechanism for the proper cancellation of the singularity

in Wp. An additional difficulty that arose in reference 1 in this Mach
number range is assoclated with the fact that no direct plan for iteretion
could be devised and that epproximate solutlons had to be sought by using
a procedure that might be described as partly iteration and partly trial
and error. Although 1t would be desirsble to develop the present approach
so that results could be obteined for the entire Mach number range, this
has not yet been done because results for Mach numbers near unlty can now
be obtained by application of the newer end simpler approximaste methods

of reference 2. The present results, together with those given in ref-
erence 2, cover the entire Mach number range from zero to somewhat greater
than unity with only a small gap remaining for Mach numbers egual to or
slightly largex than that at which the shock wave reaches the trailing

edge.
Nunmerical Eveluation of Integral

One of the principal steps in the 1terstion method described in
reference 1 is the evaluation of the integral involved in equation (21).
Since Uy and b are generally prescribed by a
gset of numerlcal values rether than by analytic
functions, a numerical technique has been used
for the integration. The process consists of
replacing the prescribed Tuy distribution by a
tw stepwise approximation as indicated in sketch (d),

introducing a mean value for b for each of the
c rectangular elements, Iintegrating to determine the
7A a:r % hg Yl contribution of a single element, and summing the

)/

influence of all elements for which b is posi-
tive. The contribution of a single element of

Sketch (@) width 17 and centered at X = t;, as typified by
the shaded area of sketch (4), is given by
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Upon performence of the indicated operations, the following expression
is obtained for f:

f = 1 3z _A [(l+A?)4-(1+A?)2+8(1+A?)-8} +
12(1+42)% L2 [4]

14

12A(A%-1) m|A|-A(1+A%) [( 1+A%) 2+12:| } +

1 {iﬁ B [(1+132)4 (14B2)2 8(1+32)-8] +

12(1+82)% L2 |B|
125(B-1) 5] (1457 | (14512 | (25)
where
5 o Mr2(R-E1) 5 o W-2(x-E1)
2oy’ - oby

Thus, the integral in equation (21) is approximeted as follows:

[$-TEAED @] -

A graph illustrating the variation of f with ZZi/bi for various
(X-E;) /1y 1is given in reference 1 and is not repeated here.

Most of the results given in reference 1 were calculated using
only 10 elements to approximate the Ty curve. That this number is
sufficient for the symmetrical circular-arc airfoil was checked by

repeating the calculations in selected cases using 20 elements and noting
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that the results were nearly indistinguishable on the scele to which they
are presented in reference l. The same general procedures were followed
et the outset of the calculations of the pressure distributions for +the
additional alrfoils included in the present investlgation. It was grad-
ually concluded, however, that the extra work incurred by the use of 20
rather than 10 elements is largely compensated by the more rapid conver-
gence of the iteratlion process, and thet in many cases less total work i1s
required to perform the calculations with the larger number of elements.
As & result, all of the pressure dlstributions presented for the airfoils
having maximum thickness at 30~ and T7O-percent chord were calculated using
20 elements. On the other hand, the pressure distributions for the air-
foils having maximum thickness at 40- and 60-percent chord were calculated
using 10 elements for all Mach numbers except the eritical, for which

20 elements were used.

Determination of ﬁiw

The values for W cen be determined from the general solution
for U given in eqpa%?ﬁn (14) by performing the indicated operations
and setting 7 = 0, or more simply from the following expression derived
from equetion (1k4):

uLW=

al=

[res @)
o 4t

x-E

The Cauchy principal value 1s used in the integration. In thils way, the
following expression is obtained for ﬁiw for the airfoils described by
equations (1) and (2):

=1
- n n=1 — — .
5t =..T.n_/_(__..l ]_-n<.}.c.> m_}_c=+n _i_+_l_<.}_{>+.,,+
Ly 28 n-1 c c=-X n-1 n-2\C

_a-n =1
eo s (7Y
(5 -(8) [ S )
n-m+1 \ ¢ c o X _E c
c%C
wvhere m is such an integer that O < (n-m) <l. If n 1is any integer, ’

n-m 1is zero and the integral disappears. Thus equation (28) reduces to
the following simple form for the symmetrical ecircular-arc airfoil for
which n = 2:
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E];W=..2.:'_'[<l-2z mZ + 2] (29)

If n 1is not an integer, the
integral remains. It can be eval- A N
uated analyticaelly if n 1is any - Vd )N ™ N\
integer plus certain simple frac- \%iz?

5

tions. In the present investige-

tion, however, it is necessary to 88—
consider the values 3.38 and 6.05 /
for n and the integrels are [A
evaluated numerically., No diffi- cgﬁ
i

tw
T

culty occurs at the point where
T = ¥ since the integrand is not. i
singuler but is equal to _8 . ——— 40nd 6

(n-m)/(ﬁ?b)l'(n'no. The general | ]
expression for 1 for the alr- o . 4 e
foile described by equations (2)

and (3) can also be written in a Sketch (e)
similar menner, but it is suffi-

cient to note that the results are the same, except for replacement of
X/c by 1-(X/c), as those found by application of equation (28). The
chordwise variation of W for each of the five alrfoils of the present
investigation is shown graphically in sketch (e).

Tteration Solution of Integral Eguation

Approximate results for pressure distributions on thin airfoils are
determined, 1n the method of reference 1, by solving the simplified inte-
gral equation by use of an iteration procedure in which certain operations
at each step are performed numerically and other operations are performed
grephically. In particular, the value of the integral, or the function
designated in the above discussion by I, is determined numerically; the
tangency condition between the I and L. functions is satisfied, when
necessary, by use of graphical technique; and the resultant values for Ty
are determined at each step by use of the quedratic formule as indicated
by equation (17). These techniques have been applied without modification
in the calculstion of the new resulits presented in this paper. It should
be remarked, however, that there are two categorlies of problems discussed
in reference 1 for which no new results are given in this paper. One of
these 1s that of shock-free supercritical flows for which no further
attempts were made to attain solutions because it seemed evident that the
same negative result reported in reference 1 would again be found. The
other category is the one mentioned previously that includes the Mach
number range near unity at which the shock wave is situated at the trail-
ing edge and the gpproximation of the variation of T with Z furnished


http://www.abbottaerospace.com/technical-library

20 NACA TN 4148

by equation. (20) is clearly inasdequate. In spite of this known deficlency
and the lack of a direct plan of iteration, numerous calculations were
actually made for this category. Although the quality of the results was
generally comparable with that of the corresponding results reported in
reference 1 for the symmetrical ecircular-src alrfoll, it was not equal to
the quality of the results for lower Mach numbers. This situation,
together with the decreased necessity for the resulis occasioned by the
development of the theory of reference 2, has caused these results to be
omitted from the present report. '

The two categorles for which new results sre given in this paper are
(a) subcritical flows and (b) supercritical flows for which the shock wave
is siltuated forward of the treailing edge. The detalls of the iteration
method are such that the Mach number or velue of ¢, for a given calcu~-
lation can be selected in advance for subcritical flows, but not for
supercritical flows. In the latter case, the position of the shock wave
is fixed instead, and the assocliated Mach number is found as part of the
solution. TFor this reason, results given for supercritical flows are
selected so that the shock wave 1s siltuated at even intervals of +the
chord, rather than so that there are even Intervals of Mach number or £ .

RESULTS AND DISCUSSION

Presentation of Results

The theory described in the preceding pages has been applied to
calculate pressure distributions for both subecritical and supercritical
Mach numbers on each of the five families of asirfolils described at the
beginning of this paper. As noted previously herein, the Mach number
range investigated extends in each case from well below the critical up
to the lowest Mach number at which the shock wave 1s at the trailing edge.
The results are glven in numerical form in table I and are illustrated
grephically in figures- 1 through 5. Each figure consists of two parts.
Part (a) presents the results for subcritical flows and part (b) presents
the results for supercriticel flows. _

As Indicated previously hereln, the pressure distribution associated
with the value of ¢ for which the shock wave 1s situated at the trall-
ing edge is inaccurate in the vicinity of the trailing edge. The results
presented for this case are consequently indice%ed by a dashed line over
the last few percent chord.

In addition to the above results, each part of each figure contains
an extra set of results indicated by a dotted line that is useful for
reference and comparison. The dotted line in part (a) of each figure
indicates the pressure distribution provided by linear theory for the
lowest Mech number (or most negative ¢ } considered for each airfoil.
That in part (b) of each figure indicates the theoretical pressure
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distribution given in reference 2 for free-stream Mach number 1 (g = 0).
The latter results are shown 1In reference 2 to be in substantisal a.greemen'b
with the experimental results of references 3 and L.

Examinstion of the results for the various airfoills reveals that the
pressure distributions for supercritical flows bear an Iinteresting rela-
tion to the pressure distributions for the criticel Mach number and for
free-stream Mach number 1., As the Mach number is increased beyond the
eritical, the shock wave increases
in strength and moves rearward [ [
across the chord, but the values A Shock position
of C, over the forward portions | V¥V W/ | Soaic point
of the alrfoll remain nearly the —% c
same as at the critical Mach number.

When the Mach number is increased
sufficiently tha:b_the shock wave B ey ATz 5
reaches the trailing edge, the 7 4
entire pressure distribution resem- : R
bles in form, but not in level, the oY A 4
pressure distribution at Mach num- : a\% )

ber 1. It caen be seen, however, 1 B, s
that the chordwise extent of the © ol San.c . 2
supersonic region and the rate at S S 4
which it grows as the Mach number 2
is increased beyond the critical
are strongly dependent on the shape -20 -6 -2 -8 -4 0
of the airfoil. These statements €o

are illustrated by the curves pro-

vided in sketch (f) that show the Sketch (f)

variation with ¢ of the locations of the sonic point and the shock wave
for each of the airfoils. The dotted lines for values of ¢, mnear zero
refer again to the results glven in reference 2 for the location of the
sonic point at Mach number 1 and viecinity.

1O

The results for the alrfoll having maximm thickness &t 30-percent
chord are particularly interesting because they indicate that the position
of the shock wave changes very rapldly with small changes in £, or Mach
number., It is possible that this result mey have a bearing on some of the
unsteady conditions that are observed in experimental investigations (see s
for instance, ref. 8). These conditions are generally associated with
extensive shock-wave boundary-laeyer interaction. The circumstances
encountered on the ailrfoll with the point of maximum thickness at
30-percent chord suggest that unsteady phenomena of major importance may
2lso occur even In inviscid flows 1f there is a lilttle unsteadiness in
the main stream. The circumstances associated with this airfoll are in
marked contrest to those for the other airfolls considered herein for
which the positlon of the shock wave is more strongly dependent on E.

Examination of the simplified integral equation given in equation (21)
discloses that the great sensitivity of the shock position to small changes
in Mach number exhibited by the results for the airfoll with maximum
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thickness at 30-percent chord is not to be assoclated, in generel, wlth

a forward location of the point of maximum thickness, but with a vanish-
ing of the curvature of the rear portion of the airfoil. This conclusion
follows directly from the fact that the contribution to the value of the
integral of equastion (21) arising from such reglons is very small because

b 1s large according to equetion (20}, E[(E-X) /b] is large logarithmically
according to equation (22), and the quotient E/b in the integrand van-
ishes in the l1imit as ‘the curvature approaches zero., It thus follows that
the I curve, hence the T curve, and finally the free-stream Mach
number are very insensitive to variastions In the location of the shock

wave 1f the shock wave i1s sltuated adjacent to a part of the airfoil where
the curvature 1s very small. Although this conclusion appears to be a
general property of the simplified integral equation glven in equation (21),
some caution should be exerclsed in its immediate acceptance and wildespread
application to physical problems because the spproximate relstion, equa-
tion (20), introduced in the development of equation (21) from the exact
integral equation given in equetion (13) obviously deteriorates in quality
as the curvature vanishes. The agreement between the present results and
those for Mach numbers near 1 glven in reference 2 suggests, however, that
the quality of the specific results given in this paper is not unduly
impaired by this factor.

The results glven in figures 1 through 5 are presented ageain in
figures 6 through 10 in an slternative form in which the variation of
with &, 1s plotted for various stations along the chord. This form o
presentation 1s the counterpert, in terms of reduced quantities, of the
plots commonly given in reports of experimental investigations showing
the variaetion of. C, with M, at prescribed points on the surface of a
wing or body. An additional set of lines is included on each of these
figures showing the theoretical results given in reference 2 for the vari-
atlon of Cp with g, for free-stream Mach numbers near 1. It can be seen
that these results are in essentlal sgreement with those calculated by the
method of reference 1 for lower Mach numbers. This agreement is of par-
ticular interest hecause the two sets of results have been calculated by
methods that are new and spproximste, but that differ widely in the
detalls of the approximation.

It is evident from examination of figures 1 through 10 that the
results calculated by the method of referencgé 1 display the anticipated
qualitative aspects of transonic flows assoclated with the part of the
Mech number range to which they apply (i.e., appearance, rearward move-
ment, and increase in strength of the shock wave as the Mach number is
increased beyond the critical, etc.) and are in good quantitative agree-
ment with other theoretical results for low Mach numbers and for Mach
numbers near unlty. The remaining sections of this paper are concerned
with comparisons of. the present results with those of higher order theory
for subcritical flows and with those of expeFiment for supercritical flows.

_The results given in figures 1 through 10 are all expressed in terms
and. £ . Since the extraction of the value of M, that is asso-

[l
ciameg with a given pair of values for £ &and the thickness ratio T

-
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requires the solution of a cublc slgebraic equation snd is somewhat
inconvenient, figure 11 has been included to give the variation of

with &, for various 7. It 1s assumed in the preparation of this graph
that y is 7/5.

Comparison With Existing Higher Approximstions for
Suberitical Flows

Although the results for supercritical flows represent the primary
contribution of the present Investigation, it is not without interest to
examine the results for subecritical flows in somewhat greater detall and
to compare them with existing results given by linear theory and by higher
approximations. These comparisons are of particular importance in the
present discussion because it is only for suberitical flows that a good
evaluation of the degree of accuracy of the results can be achieved at
the present time., Even thls discussion is handicapped somewhat by the
fact that all other theories for subsonic flow around airfoils are also
approximate and that no exact solutions are known.

From the present point of view, the most significant method that has
been used to obtain higher approximetions to the solution for suberitical
flow around thin sirfoils is the method of successive approximgtion in
which the solution is expressed in a power series in thickness ratio.

In this method, the first term is the result given by linear theory, and
the coefficilents of successive terms are determined by iteration. Although
a general procedure for the evaluation of the second approximstion has
recently been glven by Ven Dyke
(ref. 9), the determination of
the third approximation has been 8~ poomresuis \CHE
accomplished for only a few spe- ~————Ist order ¥
cial shapes. One of these is [ ———2nd »
the nonlifting symmetrical D L v Q(Acp Eq.8)
circular-arc airfoll for which _— [~ \ 1
the second approximstion has Co Girgular arc r=.10 _’“rf”’

been given by Hantzsche and T C,
Wendt (ref. 10) and the third -2
approximation by Asaka (refs. 11,

12, and 13).2 Sketch (g) shows

a comparison of the variations )
of Cp with M, at the midpoint 0 2 ) X3 8 To
of such an airfoil having a : Mo

thickness ratlo T of 0.10, as
indicated by the present calcu~ Sketeh (g)

lations and by the first, second, and third approximstions. It can be
seen that the present resulis approach those given by the first

2The results for the third approximation given in the present report
differ from those obtainable directly from the expressions given in either
references 11 or 12 and 13 because of the correction of some misprints.
These corrections have been verified by correspondence with the author.

Exact [sentropic



http://www.abbottaerospace.com/technical-library

ol NACA TN L4148

approximation (or linear theory) for small Mach numbers, but depart
therefrom with increasing Mach number and sre much closer to the higher
approximations for Mach numbers near the critical. At Mach numbers
greater than the critical, the results of the present calculations differ
merkedly from those indicated by the method of successive approximation.
This 1s proper, however, since the range of applicability of the latter
method is confined to subcritical Mach numbers.

It should be noted that the curves labeled first, second, and third
order present the results indicated by successive approximetions to the
solution of the exact equations for inviscid compressible flow. It is of
greater significance, from the point of view of evaluating the accuracy
of the present celculastions, to compare the present results with those
indicated by successlve approximations to the solution of the simplified
equatlions of transonic small-dlsturbance theory. The latter results can
be calculated by use of the following expression, which is reedily derived
from Asska's result by teking the limiting form consistent with the
approximations of transonic flow theory:

M Cp, = EPn _ _mz) o <_ El;)am-a)/z (50)

T2/3

where for the midpoint of a circular-arc airfoil

\
ao=0
a1=%=2.5l¥65
(31)

as =22 - L - o.5132 = >

ﬂ2

i@, 10292, y.908) =
ae—“< 61n2>+ﬁ3<9+l+908> 0.6339J

*
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Hotice_tha.t CPo = 0 and 8 _— \

CP:L = CH. It can he seen Gircular arc =0 |

from the graphical display of I\

the results given in sketch (h) -6 © Present results s

that the variation of o ;_S:] d°'f.'e" Eq(30) / }\})

with M, indicated by the S ——3rd a ) i
present calculations is Y '25'd°“je' Ea(32) / //Y\
slightly greater than that - b // \
indicated by the third approx- — wdl {

imation. The precise evalua- | Cp.r EQ(8)

tion of the accuracy of the -2

Ppresent results remains uncer-

tain because neither the exact

solution nor an upper bound

for the results is provided by o 2 4 5 ) 10
the classical method of Mo

successive approximations. Sketch (h)

In order to provide further insight into this situstion, three
additional curves are included in sketch (b) to show the variations
of CP with M, indicated by the following expression:

=CPN=

1/3
(%)

T2/3

Py

i . N & =<
2t [1- [l - n-y ) _Pn Po-z
2€ €o
~
Epn 2 an/zs
26, |1 - [JIL - e (— L) (32)
2€, €eo

vhere for the midpoint of & circular-arc sirfoil the coefficilent s 8n, 1s
given in equation (31). Notice that

C. =0
Py=o

(33)

o l-< ) %>1/2 )
J

The foregoing expressions represent the results of the Nth approximetion
obtained by application of an alternative method of successlive approxims-
tions that involves the solution of quadratic rather than linear equa-
tions at each step of the iteration process. This method, described

%o
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briefly in reference 1 and dlscussed at greater length in reference 2,
ylelds results at each step that overestimate, rather than underestimate,
the variation with M, of the pesk negative values for Athough

the difficulties of iantegretion sre as great as in the classical method

of successive approximations and only the first few steps can be evaluated
in any specific epplication, it is shown in the appendix of the report
version of reference 1l that the results obtalned for flows that are sub-
sonic everywhere converge, in the 1limit of an infinite number of iteration
steps, to the same result as ultimately obtalned by application of the
classical method of successive epproximations. The result obtained by
application of the quadratic method clearly terminates with the occurrence
of sonlc velocity somevhere in the flow field, however, and no results are
provided for mixed or transonic flows. This termination of the result is
in distinct contrast to the apparent bhehavior of the results of the classi-
cal method of successive approximation, but closer examination of the rela-
tion between the two sets of results reveals that the infinite series with
which the latter resulis are expressed does not converge at Mach numbers
greater than the critical and that the values indicated for transonic flows
are false. Since the exact solution of the equations of transonic flow
theory 1s presumed to Indicate a variatlon of with M, that is somewhat
gregter ‘then that indicated by the third approximation of the classilcal
method, but somevwhat less than that indicated by the third approximation
of the quadratic method, it is evident upon exemination of sketch (h) that
the proper trend is defined within rather narrow Limits, and thet the
results of the present numericsl calculations fall within these limits.

— 1 -40 Although it is immediately
—_— evident from the foregoing dis-
Circular arc ! cussion that results correspond-
] | ing to those illustrated in
| Lol sketeh (h) for the 1l0-percent-
N 30 thick airfoil could be calculated
Tp readlily for alrfolls of other
7 A \ thickness ratios, graphical pre-
Eq.(24) %ZizV' \\ sentation of the results in
/\2 o2 ¥ Ny Cpe EaB) 2o terms of C, and M, would
V///ggé%f//Pi \ require a complete set of curves
L for each thicknese ratio consid-
= | ered. The corresponding values
o Present results £Or thin airfoils of arbitrary
::::gidOTer £a.30) -0 thickness ratio can be summa-
———3rd u " rized concisely by a single set
—--—-{st order of lines, however, by plotting
T End v R the results in terms of the
. . , reduced variables CP and §_.
-40 -30 -20 -10 0  Such a plot is given in
sketch (1). Tt can be seen that
Sketch (1) the relationship between the

various approximetions remains

substantlally the same as 1llustrated in sketch (h) for the special case
of a 1l0-percent-thick airfoll.
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The corresponding results
for the variation of C
with £ at.the station, x/c,
along the chord at which the
present results indicate sonlec
veloelty is first attalned as
the Mach number is increased
are shown for the other four
eirfolls of the present inves-
tigation in sketches (J)
and (k). It is necessary to
present only two plots because
the results for suberitical
Mach numbers are the same for
the airfoils having the point
of maximum thickness located
at 30- and 7O-percent chord,
end similarly for those having
maximum thickness st 4O~ and
60-percent chord. Since
approximations higher than the
first have not been determined
for compsrison with the pres-
ent numericel results for the
latter four airfoils, an addi-
tional curve is included in
sketches (i), (J), and (k)
illustrating the variation
of Ef with ¢ indicated by
the following pressure-~
correction formule derived in
reference 2:

A

(34)

is the value

for indicated by linear-
1zed compressible flow theory.
The relation given by equa-

tion (34) is approximate, but
it can be seen from sketch (i)

where

27
T T -50
Ay, ke
—e 30 225
L] .70 75 n r
- -40
"
(o)
Eq.(34) //
A -30
Ea(33) R~/ /
— A1 //é (30) 20
| Ca, EaS)-
-10
-50 =25 =30 =20 =g 0
&
Sketch (J)
T T T -850
A,  x£
— e 40 340
= 60 660
-40
2| = a
l[ -‘.0'4
-30
£q.(34) J
"N
Eq.(33) // .
L = -20
| 1 Cq, EqloM
é% NEq.(30)
-10
-50 40 =30 -20 -0 0
&
Sketch (k)

that its use leads to results that sre more accurate than those indicated

by linearized theory. Although it has not been proved in general, it

appears from examination of the results for the symmetrical circular-arec
airfoil and other cases for which higher order approximations are avail-

able that the variation of

with €,

somewhat greater than the proper trend.

indicated by equation (34) is
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It can be seen from the foregoing comparisons that the present
numerical results eppear in each case to be in good accordance with other
theoretical results for suberitical Mach numbers. There are no correspond-
ing theoretical results avallable with which the present results.for super-
critical Mach numbers can be compared, however, and evalustlon of the
accuracy of the results in this range can only be attempted at the present
time by comparison with experimental results.

Comparison With Existing Experimental Results
for Supercritical Flows

The sppeal to experiment to Judge the quallty of an approximate
solution of the equations of compressible flow is novhere a more uncer-
tain procedure than in the range of Mach numbers somewhat greater than the
critical. in which the shock wave is situated upstream of the tralllng edge.
The principal reason is that the theoretical results are basged on the
assumption of an inviscid gas, whereas numerous experimental iInvestigations
(see, e.g., refs, 1% through 19) indicate that viscous effects associsated
with Interaction of the shock wave and the boundary layer are frequently,
if not invariably, of substentisl magnitude in the general vicinity of
the polnt where the shock wave meets the boundary layer. A resumé of some
of the more prominent aspects of these phenomena 1s given in reference 1.

As a start toward a more specific

e ' discussion of the present results, con-
Circular arc | sider the comparison shown in sketch (1)
o of the theoretical and experimentel
|-+ Present resulis 'L -30  variations of Cp with g, at the mid-
_,Ef?zzm'¢3 JANMEDS 5 point of symmetricael circular-arc air-
. 08 W\ & 7 foils. The ecircles Joined by the solid
s 9 2\ 20 line represent the calculated results
'/,47 RSN for a thin airfoil of arbitrary thick-
p—— — ness ratio. The other data points
represent the experimental results from
Cpe, 0 0 reference 3 for four airfoils having
thickness ratios of 0.06, 0.08, 0.10,
and 0.12 and should, according to the
-45 =0 50 o) 0 transonic similarity rule, define a
{0 single curve. Although the theoretical
end experimental results are in reason-
Sketch (1) able agreement at Mach numbers near 1

and are qualitatively similar at all Mach numbers, it can be seen that
substantial quantitative discrepancies exist for Mach numbers in the gen-
eral vicinity of the critiecal. It is unlikely that these discrepancies

gt the midchord station can be attributed to shock-wave boundary-layer
interaction. Examination of the results for the other alrfolls of the
present investigation reveals similar discrepancies when compared with the
experimental data of Michel, Marcheud, and Le Gallo given in reference L.
Since the results for the circulsr-arc airfoil are typical of those for
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all of the airfolls considered herein, most of the following discussion
is concerned with closer examination of the results for this particular
airfoil,

Experimental pressure distributions for supercritical flows past
symmetrical circular-arc alrfoils have been published not only in refer-
ences 3 and L4, but also in references 1l and 15 by Liepmanmn, Ashkenas,
and Cole, and in reference 16 by Wood

and Gooderum. It should be noted, 40
however, that the investigations _— .

reported in references 1L and 15 are Circutar arc . k\
concerned primarily with boundery- ° Zﬁﬂ&;?ﬁfm ffr',% 30
layer shock-wave interaction and the s 7=|g . 44 o
authors include statements in refer- o EXperment ret 14y —

ence 14 casting doubt on the accuracy |[* t=I2 L " ¢ \\

of the values indicated for the free- = | 20
stream Mach number, a quantity of |~

only secondary importence in thelr _ = Cper EQ.0)
investigations. The varlation of -io
with ¢ at the midpoint of these

eglrfoils is presented in sketch (m)

in exsctly the same manner as Iin

sketch (1) so that the two sets of -40 30 ¢, 20 710 o
results should colncide. It can be
seen that such coincidence of the Sketch (m)

results is again observed at Mach numbers near 1, but that there is wide
scatter in the results for Mach numbers in the vicinity of the critical.
It is Interesting to observe in all these cases, as well as in others for
Mach number 1 given in reference 2, that the experimental results for the
thicker airfolls are generally in better agreement with the calculated
results than those for the thinner airfolls. This trend is contrary to
what might be expected if a major source of error were associated with
the essumption of smell disturbances in the establishment of the equations
of transonic flow theory.

Inasmuch as the differences among the variocus sets of results exist
at Mach numbers less than as well as greater than the critical, 1t is
possible to explore the accuracy of the various results by comparison with
the third-order epproximstion of Asaks to the solution of the complete
equations of subsonic compressible flow theory. Since the latter theory
includes terms disregarded in transonic flow theory and results for air-
foils of different thickness ratios do not collapse perfectly onto a single
line when plotted in terms of CP and E_, the results are given in
sketch (n) in terms of Cp and M. In order to avoid confusion due to
overlap, the intermediste thickness ratios, T = 0.08 and T = 0.10, have
been omitted. It can be seen that none of the experimental results are
in good sgreement with the values indicated by higher order theory. Inas-
much as There is considersble evidence from various sources that higher
order theory generally provides results that agree well with those found
experimentally for Mach numbers up to the critical, it would appear that
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-8 the source of the
_____i [:;%;;L rresul’rs \ ° discrepancy should be
- —2nd « o sought in some facet of
——3d Gircular arc | ' the experimental
-6l ' M A technique.
Experiment o%\ o 4 A
Cp | Ref. 7=12 =06 | 0 e\ | Some disagreement
3 B g 3//'/A{ﬂ 4 ' between theoretical and
-al 14 a £ A/f’;;:”B \ - experimental pressure
[y P N 4 distributions, although
= I— e Cper Eq. ()], - ¥ generally of much smaller
. a megnitude then that
e observed in sketches (1)
K 05 I S—— e ' through (n), must alweys
' Gper Exact Isentropic \ be anticipated to result
from the presence of the
boundsary lesyer. The
% 2 4 3 8 o Influence of this factor
Mo 7 mey be somewhat greater
than usual in the experi-
Sketch (n) mentel investigetions of

references 3 and L because the airfoil is not mounted in the middle of the
tunnel as is customary, but is simulated by & bump on the tunnel wall, and
is hence imbedded in the wall boundary layer. The authors of references 3
and L have considered this point, however, and included some evidence that
indicates the experimental results on the 12-percent-thick circular~arc
airfoll at a Mach number of 0.99 are substantially the sasme as those on a
similar alrfoll mounted in the middle of the tunnel and having a boundary
layer artificially made turbulent. No corresponding information is pre-
gented for lower Mach numbers or for the thimner airfoils for which the
relative effects of the boundary layer would be greater. Although it is
recognized that the influence of the boundary layer on the pressure dis-
tribution is not the same for all Mach numbers, it is difficult to account
for the smmll discrepancies between theory and experiment near Mach num-
ber 1 and the large discrepancies near the critical Mach number by
boundary-layer effects alone. It appeers, therefore, that some other
factor might be supplying a substantial contribution to the observed
discrepancies. )

A source of uncertainty thet ls present in 81l wind-tunnel testing
is assoclated with the finite dimensions of the test section. The study
of wall interference and the determinstion of formulas for the calculation
of corrections have consequently been the subject of numerous investiga-
tions (see, e.g., refs. 20 through 25). It is found, for airfoils and
test sections of typical proportions, that the influence of the walls 1s
generally small at low Mach numbers, but increases substentially as the
Mach number increases towerd and into the tramsonic range. Preliminary
investigation reveals, moreover, that it appears plausible to attribute &
substantial amount of the present discrepancies to this source.
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In order to be more specific, consider the problem of transonic flow

past & thin nonlifting airfoll of chord ¢ sand thickness ratio T mounted

in the center of a wind tunnel of height 2h. The aerodynsmic properties
of this airfoll are to be compared with those of the same airfoil in an
unbounded flow with free-stream velocity U,. It is considered that the
epparent free-stream veloclty in the wind tunnel, as determined from
messurements of pressure at a point far upstream in the test section or
in the plenum chamber of a ventilated wind tunnel, is not necessarily
equal to Uy, but is given by Uy + u, where u, 1is much less than U,.
The eppropriate equations for the study of such flows are thus equa-
tions (4) through (6) together with the following relation for the
pressure coefficient CPWT on the airfoil in the wind tunnel

CPWT = - 2&2:221 (35)

Ueo

and an additional boundary condition at z = th determined by the nature
of the wall. This condition i8 w = 0 if the test section has solid
walls, u = U, 1f the test section is an open Jet, and a more complicated
relation if the test section has porous or slotted walls. It is not nec-
essary to be more specific about the boundary condition for the latter
case at this point, since it is shown in references 21 and 22 thet the
influence of a ventilated wall is intermediaste bebtween thet of a solid
wall and an open jet.

The linearized theory of wind~tunnel wall interference follows
directly from the equations enumerated asbove upon replacing the right-
hand sides of equations (5) and (6) by zero. It is found, provided the
dimensions of the section are large compared with those of the airfoil,
that the net effect of the walls at subsonic Mach numbers is that the
pressure p (not ) and local Mach number &t the surface of the air-
foil in the wind ‘tunnel in a flow with apparent free-stream velocity
Up + Uyo 15 the same as at the surface of an identical sirfoil in an
unbounded flow with free-stream velocity Uy. The quantity u, is
given by

Yoo
T ¢ (l-Mw;)S/ZHZ (36)

where H represents h/c and C is & constaent, the value of which
depends on the nature of the walls of the test section; for example,
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C=-X f& golid walls
6 te
(37)
Com+ % de open Jet
12 tc )

where Ag 1s the area of the airfoil section. The influence of the
tunnel walls on CP follows directly upon combination of equations (35)
and (36). It is

M0p = Cp - Cp = -2 72 (38)

Comparison with other results presented in this report is facilitated
by rewriting equations (36) and (38) in terms of Cp, end &, thus

C
DE, = B - E = - — (39)
W ()% R

A6P=-5P-5PWT=24§W (40)
where
2
(i KUe 7 (g k)Y 2H

b = =
WD (UekT)R/® -

If the influence of the walls is exemined for a family of airfolls of
different thickness ratio and wlth the apparent Mach numbers in the wind
tunnel selected so as to meintaln a given ¢ , and thereby to secure
similarity of transonic phenomens such as the critical Mach number, ete.,
it is evident from equations (39) and (40) that |at, | and |ACp| are
inversely proportional to the square of H. It follows immedfately that
lAﬁml and [ACPI diminish if either the height~chord ratio h/c of the

tunnel or the thickness ratio + of the airfolil is increased.
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Added insight into the nature of
the influence of the tumnel walls can
be had by examining the curves glven LY
in sketeh (o) showing the variation S — &
of Cy with & at the midpoint of a T Circulor arc f’ :
symmetrical cirecular-arc airfoil in o \
en unbounded flow (or the variation

W
of Cp. With g, ~ for infinite B |

together with the corresponding f Sour
values for with ¢ computed = . /f/ H/
T Y 7 Ref. 242

by use of equations (39) and (LO) for oz
the same airfoil mounted in either a | =
closed wind tunnel or an open Jjet of
such dimensions that H equals
either 1 or \fJ2. The value of unity
for H corresponds, for instance, to
that associated with a 6~percent-
thick airfoll in a wind tunnel having _; = > S e
a ratio of semiheight to chord h/c Cour

of 7/3 (the same as that for the

experimental data shown in sketeh (1)) Sketch (o)

at en effective free-stream Mach num-

ber M, of approximately 0.75. Although the curves are continued to
supercritical Mach numbers for which the use of linear theory to calculate
the influence of the tumnnel walls may be open to question, it is inter-
esting to observe that the differences between the results for an
unbounded flow and for an alrfoil in an open Jet are qualitatively simi-
lar to those that can be observed in sketch (1) between the theoretical
results for an unbounded Fflow and the experimentel results measured in a
wind tunnel with slotted test section. The differences between the theo-
retical and experimental results are larger then indicated by the linear
theory of wall Interference, but quantitative agreement should perhaps
not be expected since it is well known that substantial nonlinesr effects
oceur gt Mach numbers of the order of the critical and greater.

(4]

H

R8s
g
é:
s
LA
B

* 4« o m @

ol
®
8
B

An Interesting property of the linear theory for the influence of
the tunnel walls is that there is a maximum value for ¢ , and hence

The apparent free-stream Mach number, in a closed tunnel. This result

is at least qualitatively consistent with the familier property of choking
of wind tunnels with solid walls. If the dimensions of the test section
are sufficiently large compared with those of the airfoil, the values

for EPW‘I‘ assoclated with the maximum value for §°°W‘.T.' are on the exten-

sion of & line T, - 26 =T . Since Tp - 2t 1is equal to -2¢,
1

which 1s the reduced quantity assoclated with the local Mach number, this
resuit Indicates that the local Mach number distribution measured on an
ailrfoil in a sgolid-wall tunnel of sufficlently great dimensions under
choking conditions 1s the same as in an unbounded flow with free-stream

Mach number 1. This conclusion is in complete accordance with the more
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reliable theoretical results, based on nonlinear transonic flow theory,
for flow past & wedge airfoil and a lifting flat plate (refs. 24 and 25),
and with experimental results for an NACA 6LAOO8 ailrfoil tested in several
test sections of different sizes (ref. 26).

Linear theory indilcates infinite corrections vhen M, = 1 and must
be replaced by a corresponding theory based on the nonlinear equations
of transonic flow theory. This theory is not developed as far as the
lineaxr theory, but it is clear from simllarity considerations thet the
functional form for the expression for CPWT for a famlly of affinely
related airfoils in a wind tunnel is

EPWT = f(&m, %‘; AE,OO, ﬁ) ()'l'l)

plus additional parameters indlcative of the porosity of the walls or of
the geometry of the slots for wind tunnels with ventilated test sectioms.

If it is assumed that the local Mach number distribution measured
on an airfoil in a wind tunnel is the same as that measured in an unbounded
flow, in accordance with the indications of linear theory, equation (LO)
again espplies together with an expression for AE, +that has the following
form:

Lk, = £(E, H) _ (42)

Equation (39), obtained from linear theory, is consistent with this
functional expression and is, moreover, the precise relstion that the
solution of the nonlinear equations of transonlc flow theory must approach
as the free-stream Mach number tends toward zero. Although snalysis of
the influence of the walls based on considerstion of AG, and L aB
described above 1s similar to that successfully employed for low-speed
flows, 1t may not be the best procedure to follow for Mach numbers near 1.
The reason is that the corrections must inevitably become large at Mach
numbers near 1 as a result of the fact that Eé - 28 1is independent

of g, in this range.

Alternative procedures that lead to smaller corrections at Mach
numbers near 1 are to consider ACP et E“WT_= E.s OT to find A@w 80
that CPWT = Cp .
former point of view is adopted it follows from equation (41) thet aC,
is a function of £ eand H. At Mach number 1, §  is zero and ACP
depends only on H, thus

at some representative point on the airfoll., If the

Alc'Pg - £(H) (43)
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If it is assumed that IAE?[ decreases with increasing H, as appears
reasonable since léﬁfl would be expected to be smaller if a given airfoil

were tested in a large wind tunnel than in a small wind tunnel, it follows
again that lACPl is smaller for & thick airfoil than for & thin airfoll

of affinely related geometry tested in a given wind tunnel.

Although the above discussion applies strictly only to families of
affinely related airfoils, certaln properties of the asymptotic solution
for the flow at great distances from an airfoil at Mach number 1 suggest
that the magnitude of |AG | is greater for airfoils having maximum thick-
ness far aft than for those having maximum thickness far forward. The
reason 1s that it is not so much the thickness and chord of the complete
alrfoil that matters In the expressions for the asymptotic solution at
Mach number 1, but the part of the thickness and chord that is more indic-
ative of the portion of the airfoll that can influence the subsonic part
of the flow field. This point has been discussed by Barish (ref. 27) who
suggests the use of vealues of thickness t* and chord c* +that are asso-
ciated with the sonic point. This suggestion is based upon the observa-
tion that numerical calculations indicate the asymptotic flow fields of
wedges and certain cusped-nosed airfoils are nearly independent of the
details of the shape, provided +* and c* are fixed. It follows, to
vhatever extent this observation is generally true, that the relation
corresponding to equation (43), but appropriate for nonaffinely, as well
as affinely, related airfoils is of the following form:

[E* = £(F*) (k)
where
2 i/3
Aﬁﬁ* _ (M ii;fg] T T [Mg2(7+l)T*]l/3H*
¥ = —h'— 3 T% = ﬁ
¥ o*

It is evident from inspection of sketches (1) and (m), as well as
the more extensive set of results given in reference 2, that a substan-
tial part of the discrepanciles between the theoretical and experimental
results for Mach number 1 possesses properties comsistent with those
described above for the influence of the wind-tunnel wells. This corre-
spondence prompts the presentation of sketch (p) which shows the varia-
tion of ACL* with E¥ at free-stream Mach mmber 1 at the point on the
airfoll surface at which sonic velocity occurs in free air. The values
for Aﬁb* were compufed using the theoretical velues given in
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-6 T m— reference 2 for §§ and the
+ ¢ o 3 208 experimental values given in refer-
-4 H e a4 32 | ences 3 and & for CPWT- The loca-
aCp + . 2 2? tion of the sonic point and hence
-2 | v 7 44 the values of +t*% and c* are thus
T ﬁ } determined from the theoretical
$ s solution. Although the general
Y L '#éﬁ o procedure may be open to some gques-
tion and scamter is Inevitably large
o since AC is basically s small

° 4 8 12 H-'a 20 24 difference of larger quantities
(some idea of the uncertainty of
Sketch (p) the values for ACP* can be gained

by consideration of the vertical line through each datsa point indicating
the range of values assoclated with an arbitrary change of 1 percent in
the local Mach number), the results display a reasonably well-defined
trend consistent with the ideas that ACP* does depend on H* and

that |[AC,* | diminishes with increasing E.

Pressure Drag

Once the pressure distribution 1s lmown for a given airfolil, the
pressure drag d can be calculated by use of the following relation:

g = l Cp = 22 ax | (45)

(p /2)U c

It is convenlent at this point to introduce a reduced drag coefflcient E&
defined in texms of reduced quantities, thus

Ed:é]: Ep.d_(?-x_@dz (46)

It is clear from the definitions of . CP’ T, Z, and ¥ that the relation
between cy3 and ¢y 1is

1/3

= M (7+1) ]

a= T5/8
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The variation of ¢T3 with ¢ has been computed for the symmetrical
circular-arc airfoil, The results are summerized below and illustrated
graphicelly in sketch (q). Three classes of results are included in this

- I f f —]
€ cq _ i Ref. 57 ]
-1.4o 0 Gircular arc f
-1.35 .00 /,- T
-1.25 .12 /
-1.12 .65 g 2
-.985 1.9 /]
~.838 k.ot bor, //
Y e 8 = o
8 ¢ -
Sketch (q)

sketch and are distinguished by the type of line. The solid portion of
the curve represents the values for Mach numbers up to that at which the
shock wave has moved to 0.9 chord and is determined by direct application
of the pressure-distribution results for gm,S ~0.985 given in table I
and surmarized in figure 3. -The continuation of the curve to a value
for g, of -0.838 is determined in a similar menner, but is indicated
by a dashed line hecause the calculated pressure distribution is inaccu-
rate In the vicinity of the tralling edge when the shock wave is at the
trailing edge. The portion of the curve marked by long dashes represents
the value 4.77 glven in reference 2 for Mach numbers near unity. In all
cases, the integrations required to determine the drag were evaluasted
using Simpson's rule. Very fine intervals were used near the leading
and tralling edges and the contributions of the regions in the immediate
vicinity of the leading- and trailing-edge singularities were evaluated
analytically in order to achieve the desired degree of accuracy.

It can be seen by examination of the results shown in sketch (q)
that E& is zero for ¢ < -1.42 (corresponding to the critical Mach num-
ber). It remains nearly zero as £, I1ncreases to -1.35, and then rises
rapidly with further increases of £, The increase in drag is assoclated
principally with the rearward movement of the shock wave across the chord
and terminstes abruptly when the shock reaches the trailing edge at
£, = -0.838. Although no values for drag are given, it is evident from
inspection of the variation of with £, indicated in figure 8 that
further increases in §  result only small changes in ©Cy, and that
finelly, at a value of ¢, somewhat less than zero, C3 becomes
invariant with further changes in £ .
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The values for the drag of the

[+}}

—Eq.()
N -=~—Eq.(3) //

S ———

Air%oils dlefine d‘ by other airfoils considered in the pres-
/ ent investigation have been calculated

only for Mach numbers near unity.
5 results, given originally in reference 2,
are sumarized in sketch (r) together

These

% T~ with the corresponding results for

4

d
15
l-—-b-——--l.——J A
SRR
30 40 50 70

Poinf of maximum thickness, (x/),
max

tonF-N}——NL‘
o

related airfoils defined by equations (1)
end (3) upon insertion of values for n
. , 1. . ranging from 1.50 to 6.05.

There are no experimental resulis
for the pressure drag of symmetrical
circular-arc airfoils that are of suf-
ficient reliability to provide a clear

evalustion of the accuracy of the cal-

Sketch (r)

The most extenslve results are those given by Michel, Marchaud, and
Le Gallo in reference 3 for four alrfoils of different thickness ratio.
These results were obtailned by integration of the measured pressure dis-
tributions and suffer in quality, not only as a result of the factors
discussed in the preceding section of this report, but also because of
lack of sufficient pressure-distribution dsta for pointes near the leading
and trailing edges. The results of Michel, Marchsud, snd Le Gallo are
presented, nevertheless, in sketch (s) together with the theoretical
results from sketch (q). Also included in sketch (s) are the theoretical
values for €3 for purely supersonic flow,
reference 2 and were calculated by Imtegration of pressure distributions
obtained by application of a simplified form of simple wave theory that
is conslstent with the equations of transonlec flow theory.

culated results shown in sketch (q).

The latter results are from

Sketech (8)

6
|
Ref. 2—\ l l I I
5L  ——
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N ~~ |
==
Experiment ref. 3 Extrapolated drag ref. 3— |
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e 08 e .08
a .10 4 10
v .l2 l' .I2.l
] ——
8 16 24 32 40
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Examination of the results shown in sketch (s) reveals that the
theoretical and experimental variations of ¢T3 with & exhibit the same
general trends but are quantitatively quite different. Part of the dif-
ference 1is undoubtedly assoclated with boundary-layer shock-wave inter-
action. As discussed at greater length in reference 1, this phenomenon
can have considerable Influence on the drag, but 1s disregarded completely
in the basic formuletion of transonic flow theory. From the standpoint
of drag, one of the prinecipal effects of shock-wave boundary-layer inter-
actlon gppears to be that the shock wave is moved to a more forwsrd loca-
tion along the chord. The pressures on the rear part of the airfoll are
increased as & result and a substantial reduction 1in drag follows. These
effects are largest at Mach numbers somewhat greater than the critical,
but persist to a lesser degree for sonic and even purely supersonic flows.
Because this phenomenon depends on Reynolds number and may be of greatly
diminished importance at full-scale conditions, Michel, Marchsud, and
Le Gallo introduced in the discussion of their experimental results for
free-stream Mach numbers equal to or grester than wmity the concept of
"extrapolated drsg" to represent the drag that would occur in the absence
of separation. This quantity is calculated by comnsideration of a pressure
distribution that differs from the experimental pressure distribution in
the vicinity of the trailing edge as a result of the replacement of the
pressures actually measured by those obtained by extrapolation of the
trends indicated at stations upstream of the separation point. Accord-
ingly, the values for extrapolated drag given by Michel, Marchaud, and
Le Gallo arxe also shown in sketch (8). As might be expected, the theo-
retical values for drag are In better agreement with the values for extrap-
olated drag than with those obtalned directly from the actual measurements.

Another part of the difference

between the theoretical and experi- i [ /' ——-T.—
mental values for drag is associated ] 1y J mﬁF la
with tye higher critical Mach num- ] ! / / / _—
bers displayed by the experimental | { ! 4/  Cicular arc ] T
results in sketch (s) and is prob- ! / fjf// -

ably to be attributed to the influ- —t 2
ence of the wind-tumnel walls. Some [T / //“/ . E &;bzunlg?d for
idea of the magnitude of these z 2 /’ g /' N :‘g won
effects can be gained by examination P, e v Solid wall

of sketch (t), which shows the vari- LIS LS " 2 00
ation of Ty with £, for a symmet- T '

rical circuler-arc airfoil in en

unbounded flow (or the variation Sketch (t)

of _dwm with g“wr for infinite H)
together with the corresponding values for E&WT and ¢ computed by

use of equations (39) and (40) for the same airfoil mounted in either a
closed wind tumnel or open jet of such dimensions that H equals either 1
or N2. These values of H are the same as considered in sketch (o).
Sketch (t) illustrates that the effect of the finlte dimensions of the
test section 1s such that the values for EaWT remain equal to the
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corresponding values for an airfoil in an unbounded flow, although
experienced at different values of §_, or Mech number. As & result,
significant effects of the walls are observed in the variation of EEWT

with waT at Mach numbers somevhat greater than the critical. All such

differences disappear at Mach numbers near unity in an open Jet or near
choking in a solld-wall wind tunnel, however, since ¢y is independent
of & in this range. Exsmination of sketch (t) reveals again that the
differences between the results for an unbounded flow end for an sirfoil
in an open Jjet are qualitatively similar to those that can be observed
in sketch (s) between the theoretical results for an unbounded flow and
the experimental results measured in a wind tunnel wlth slotted test
section.

Ames Aeronautical Isboratory
Netional Advisory Committee for Aeronautics
Moffett Field, Calif., Oct. 22, 1957
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Figure 2.~ Theoretical pressure distributions on an airfoll wlth maximm thickness at hO-percent
chord.
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Figure L.~ Theoretical pressure distributions

(a) £,5€,
cI

| |
(X/C)Zmax='60
-6
-4 & =—1.50
_ ® ¥ 159
Gp —'l.84
—2.23
--2 // A —4_64
/ k'/“/—
0
/ S,/
, £ =464
A I S-S -y T B w— 68
x/c X/c

(b) B, 2 &,
cY

on an airfoil with meximum thickness at 60-percent
chord.

8hTh NI VOVN



http://www.abbottaerospace.com/technical-library

Figure 5.- Theoretical pressure distributions on an airfoil with meximm thickness at TO-percent
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Figure 6.~ Variation of reduced pressure coefficient €, wlth Mach mum-
ber paremeter ¢ w Lfor an airfoil with maximum thickness at 30-percent
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