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SUMMARY

The problem of heat transfer in isotropic turbulence with a constant
mean temperature gradient is considered during the final period of decay.
The Reynolds and Péclet numbers sre then very small, and all triple cor-
relation terms can be neglected in the equatlons for the double correla~
tions. On this basis, it is found that the temperature field ultimately
becomes independent of the initisl conditions on the temperature and has
characteristics determined only by the mean temperature gradient, the
physical properties of the fluid, and the characteristies of the turbu-
lence. Detailed anslyticsl and numerical results are obtained for the
asymptotic state.

The mean turbulent heat transfer is in the direction of the mean
temperature gradient, with a magnitude proportional to the magnitude of
the latter. Although it approaches zero when the Prandtl number approaches
zero, its dependence on the Prandtl number is not large for Prandtl num-
bers of order wmity and lerger. This type of Prandtl number dependence
is typical for meny of the other results depending on both wvelocity and
temperature fluctuations. In fact, the rate of decrease with separation
distance of the two-point temperature-velocity correlation varies little
over the full range of Prandtl numbers and is always about the same as it
is for the double velocity correlation. In contrast, all results Involving
only temperature fluctuations display = strong dependence on the Prandtl
number. For example, for small Prandtl numbers the double temperature
correlation falls off much more slowly with separation distance than the
velocity correlation does, while for lerge Prandtl numbers the opposite
is true.

INTRODUCTION

The simplest case of turbulent heat transfer is the problem first
considered by Corrsin (ref. 1), in which the temperature of the fluid is
specified to have a constant mean gradient in some preferred direction,
while the velocity field, which is assumed independent of the temperature


http://www.abbottaerospace.com/technical-library

2 NACA TN L4186

field, is regerded as isotropic and known. Thus, though mean values
assoclated with the velocity field only are isotropic, those associated
wilth the temperature fileld are asxisymmetric. A study of this problem,
although it is highly idealized, 1is expected to give some idea of the
nature of turbulent heat transfer and, by analogy, alsc of turbulent mass
transfer.

Such a study is 8lso a naturasl preliminsry step before attempting
the much more complicated problem of turbulent momentum transfer. The
simplest example of the latter, the so-called homogeneous shear flow with
a constant mean velocity gradient studied by Reiss (ref. 2) and later by
Burgers and Mitchner (ref. 3), is mathematically similer to the present
problem in some respects, though with additionsl complications due to
the vector nature of the transporied quantity. The present problem,
because of the scalar nature of the transported quantity and the resultlng
more restrictive symmetry conditions, is considerably simpler mathemati-
cally. Its solution may be expected to provide useful clues towards the
solution of the more difficult problem of homogeneous shear flow.

In addition to being of theoretlical Interest, this ldealized problem
of turbulent hest transfer is of considerable practical interest, since
a direct experimental investigation of 1t appears to be feasible. For
example, if the horizontal bars of the usual turbulence-producing grid
in a wind tunnel are heated with a proper varlation in the temperatures
of successive bars, the condltions of the idealized problem should be
reproduced fairly closely 1ln a region downstream of the grid. There are,
of course, varlous epproximations involved in relasting the experimental
situation to the theoreticsl problem, but they appear to be no more serilous
than the ones normsally assoclated with the wind-tunnel study of isotropic

turbulence.

Although the problem as stated appears to be the simplest problem
of turbulent transfer that can be formulated, there are still formidable
mathematical difficulties present in the general csse, when the inertisl
transfer terms are dominant in the basic equations. In particular, the
system of equations for temperature mean values that can be derived from
the heat-transfer equation is incomplete, Jjust as is the well-known system
for velocity mean values derived from the dynamical equations. Of course,
as in the latter case, one could, to obtain & determinate system, make
some type of assumption such as the one most commonly made at the present
time that fourth-order mean values are related to second-order ones as
they would be for a normal probability distribution.

Proudman and Reid (ref. 4) have recently used this statistical
assumption in an analysis of isotropic turbulence lnvolving meen values
of velocities at several pointe but at the same time (see also ref. 5
by Tatsumi). Reid (ref. 6) has applied the idea in a similar manner to
the study of the convectlive effects of isotropic turbulence on arbitrary
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vector and scalar fields, including, in particular, the case of isotropie
temperature fluctuations in isotropic turbulence. Chandrasekhar (ref. T)
has used it in an alternative epproach to isotropic turbulence, in which
nean values &t different times as well as at different points are con-
sidered. At the present time, however, the possibllities of the assump-
tion have not been fully exploited even in these problems involving com-
plete isotropy. Until further progress hes been made with the latter, it
does not gppear worthwhile as yet to pursue this approach further in the
present more complicated problem.

The objectives of the present study, as well as of the earlier inves-
tigations of Corrsin (ref. 1) and Méltse (ref. 8), are considersbly more
limited, being restricted to resulits that can be derived without a detailed
consideration of the triple and higher order correletions. Corrsin and
Mélese have obtained in this mamner results of a genersal nature for a
variety of different situetions but have not treated any special case in’
detall. In the present investigation, attention will be restricted mainly
to the final period of decsy, and for this case essentlially complete
results will be derived for the double temperature correlation and the
double temperature-velocity correlation and their Fourier transforms.
During the final period, the turbulence Reynolds numbers are so low that
inertial transfer effects are very small, and the triple-correlation terms
in the equations for the double correlatlons can be neglected. To this
order of approximastion the problem is determinate, and the statistical
hypothesis mentioned above is not required. The conclusions may be
expected to give an approximate description of the decay of the velocity
and temperature fluctuations far downstream of the grid in the experiment
described earlier.

Although some of the most interesting features of turbulent heat and
momentum transport ere obviously absent during the final period of decsy,
the latter must still be recognized as an important aspect of the general
problem. For this reason, and because of the relative simplicity of the
analysis, a detailed treatment of this special case is appropriete first,
before proceeding with the more difficult genersl case.

This research was carried out at the Department of Aeronautics, The
Johns Hopkins Unlversity, under the sponsorship and with the financial
assistance of the National Advisory Committee for Aeronautics, and at the
Ballistic Research Laboratories, U. S. Army, Aberdeen Proving Ground. The
authors would like to thank Prof. Stanley Corrsin for many helpful dis-
cussions. Thanks are also due to Mrs. Frences Chenoweth and Mrs. Barbara
Jacobs for assistance with the numerical calculations.
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SYMBOLS

E(k) defining scalar of Qij(5)5 isotropic energy spectrum
function

f(r) defining scalar of RiJ r); longitudinal velocity cor-
relation coefficient

G vector with components, Gy = o8

~ Bxi

k wave-number vector

L(r,m) defining scalar of Li({!b)

L'(r,m) defining scalar of Li'(E:A)

Li(£:b) = %{§(5,t)ui(§ +r,t) + 9(x + g,t)ui(g,t)] (axisymmetric)

Li'(£:b) = %[§(§,t)ui(5 + g,t) - 8(5 + g,t)ui(é,ti} (axisymmetric)

Lg thermal integrsl scale (see eq. (87))
M(r,m) temperature correlation coefficient (see eq. (96))

e
m= X b) = CO8 o

T
N(r,m) temperature-velocity correlation coefficient (see
eq. (111))
—\1/2

Pkﬂ Péclet number, (u?) / ke/n
P pressure
Ry, heat-transfer correlastion coefficient (see eq. (77))

RiJ(E) = ui(z,t)uj(z + £,t) (isotropic)
—\1/2
158 turbulence Reynolds number, (u2) A /V
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@(k, |J-)

onk?

8(r,m)

2]
N
7
>
——
1]

separation vector in correlastion functions

temperature
time

initial time
component of u in a direction normal to A

component of u parallel to A, . ugAg

velocity vector with components ui(§,t)

space coordinate
angle between vector r and unit vector b

magnitude of mean temperature gradient (a positive
constant), |V§W

angle between vector k and unit vector A

Kronecker delta

permutation symbol
Fourier transform of 6(£,b) (axisymmetric)
three-dimensional temperature spectrum function,

f_i 8k, 1) du |

6(5,t)ﬁ(5 + £,t) (axisymmetric)


http://www.abbottaerospace.com/technical-library

6
ﬂ(ﬁ:t)
]
A(k;u)
A'(k’l-"-)‘
A1(k) )
A1 '(ksR)
Ax)
A
(om/2xy )
N = 'VT
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A
Bo= E;b) = cos ¥
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deviation of temperature from its local mean value
thermal diffusivity

defining scalar of Ai(;g,b)

defining scalar of Ai'(k,k)

Fourier transform of Li(g,b) (axisymmetric)
Fourier transform of Li'(£:b) (axisymmetric)

three-dimensional heat-transfer spectrum function,
1
-2nk? f 2p(k,0) du
-1

turbulence microscale (see eg. (67))

thermal microscale (see eq. (82))

unit vector in direction of mean temperature gradient

kinematic viscosity
density
Prandtl number, v/k

Fourler transform of 313(5) (isotropic)

IS)
vorticity vector with components w; = €jy; S;l
k
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Subscripts:

i,3,k,12 tensor indices
m meximum

n normal

o] at time <t

P parallel

FORMUILATION OF PROBLEM

For the problem under consideration, it is assumed that the velocity
field is isotropic and unaffected by temperature veriations. The gov-
erning equations for the veloclty and pressure are then the Navier-Stokes

equation

aui aui 19
— rus —2 = - =2, W L
ot J X 5 P oxyg . ()
a2
where V2 1is the Laplaclian operator s and the continuity equation
X: OX:
dJ d
Ju
__i = 0 (2)
Oxy

The quantities p and v are the density and kinematic viscosity, respec-
tively, and are assumed to be constant. ,It is supposed that in the fluid
& constant mean temperature gradient B is maintained in the dilrection of

a unit vector A by some external agency (i.e., B = VTW and

. aﬁ/a_xi)

7\ = ——— SO th&t
vl /)

T(x,t) = To + BAgxy + 9(x%,t) (3)

where To 1s a constant and 6(§,t) denotes the deviation of the tem-
perature from its locel mean value. From the heat-transfer equation

a—lI‘-'i"l.l‘-j-a—T—-=livz']:l (ll')
ot ij
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the governing equation for the temperature fluctuations ls obtained as
24 uy &+ pAu, = WVPS (5)
axj

where Kk is the thermal diffusivity, also assumed to be constant. The
equation satisfied by the mean temperature, which is obtained by averaging

: odu
equation (4), reduces in this problem to the obvious result that J

= 0,
aX.J

that is, that the mean turbulent heat transfer vector is a constant. The

temperature field, because of the preferred direction ), is seen to be

axisymmetric rather than isotropic.

The preceding formulation evidently also applies to turbulent mass
transfer, if the temperature T 1s replaced by concentration (assumed
small), and the thermal diffusivity x 1is replaced by the diffusion
coefficient.

The various physidal restrictions, such as restrictions on the
ragnitudes of the velocity and temperature variations, which are required
in order for the sbove formulation to give an adeguate approximation to
reality, are well_known (see Corrsin's comments in refs. 1 and 9, e.g.).

During the final period of decay when the turbulence Reynolds num-
ber is small, molecular transfer effects arée expected to dominate inertial .
transfer effects. Quantitative estimates of thelr relstive Importance
can be obtained by order-of-magnitude considerations. For example, in
the dynamical equation (1) the viscous terms vveui are in this case

among the dominent terms, and the inertial transfer terms uj Bui/BxJ -

end pressure term -(1/p)(dp/dxy) are of relative order of magnitude
—\1/2 . - —\1/2

(ue) A/v, where A is the microscale. The gquantities (uz) and. A
evidently represent a significant velocity and a significent length,
respectively, for the energy-containing eddies of the turbulence as well
as for the dissipative eddies under these circumstances (i.e., the micro-
scale 1s now of the seme order of magnitude as the integral scale). Sim-
ilarly, in the heat-transfer equation (5) the thermel-conduction terms -

k729 are emong the dominant terms, and the inertiel transfer terms
uj BG/BXJ are of relative order of magnitude d(ue)l/gkg/;, vhere o©

is the Prandtl number and Ay 1s some length characteristic of the

temperature fluctuations. The thermal microscale, defined by Corrsin i
(ref. 9) for the tempersture field in a menner analogous to the defini-
tion of A for the velocity field, is evidently a significant cholce
for the length Ag. :
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Hence, the final period of decay is characterized by the inertial
transfer terms in equations (1) and (5) being negligible or more precisely
by the satisfaction of the following conditions:

(————E) l/%‘ <1 (6)

v
and
_a/2
c(ue) Ag

14

<< 1 (7

The first condition implies that the Reynolds number must be small, as
was to be expected, and the second implies thet the Péclet number must
also be small. When the Prandtl number is not too large, it is reason-
able to expect that ANg and A sare of the same order of maegnitude, so

that the Péclet number is of the order of the Reynolds number and the
two conditions are essentislly equivalent.

In all subsequent considerations, the approximations described

above willl be accepted, and the dynamlcal equation and heat-transfer
equation will be used in the approximeste forms

Bui

and
o8 -
S BAjuy = e (9)

The relative errors in these equations are O(Rm) in the first and
O(an) in the second, where R and P)g @&re the Reynolds number
and Péclet number defined in relations (6) and (7), respectively.

The situation under considerstion, then, is as follows. At some
time t, after the initial instant of generation of the velocity and
temperature fields, the turbulence intensity has decreased to such an
extent that the Reynolds and Péclet numbers are both very small and
equations (8) and (9) are satisfactory approximations. With their use,
the subsequent variation of the wvelocity and temperature fluctuations
can then be determined to the same order of epproximation in terms of
conditions at time tq.
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In general, of course, the relations between conditions at time to

and those at the initilal instant of generation of the velocity-tempersture
field are beyond the scope of this approximate analysis. These relations
depend in a compliceted and unknown maenner on the neglected terms in equa-
tions (8) and (9), which are initially important if the initial turbulence
level is high enough. For present purposes, the conditions at time +4
are assumed to be known, at least in a statistical sense. The considera-
tions will be limited mainly to the double temperature correlation 4'

and the temperature-velocity correlation duy'. The results to be pre-
sented for the double velocity correlation uiuj' are well known, but

they will be included for the sake of completeness.

Solutions of Equations for Fourier Transforms of
Correlation Functions

Let the correlation functions be defined as

o(z2) = Ax)o(x+ z) (10)
Ly(z:2) = %[ﬁ(ﬁ)ui(zs EIR z)ui(zs)J (12)
(2) = PR E) - 3 D)) (22

where the dependence on A has been indicated explicitly to emphasize

the axlsyrmetric character of these mean values. For the seke of brevity,
the dependence on the time will not be indicated. It is to be noted that
mean values as well as fluctuating quentities are time dependent, since

a decaying veloclty-tempersture field is being consldered. With the aid
of equations (8) and (9), the correlation functions, equations (10)

to (12), are seen to satisfy the equations

g_: + 2BNgLy = 24v20 (13)
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g%l + BAjR1j = (k + v)V2Ly (1k)
aIBJt! = (x + V)VaLy' (15)

vhere Rij({) = ui(%)uj(ﬁ + 3) is the double-velocity-correlation tensor

ususlly denoted by this symbol, which to the present order of approxima-
tion satisfles the equation

e 2VWER, 4 (16)

Equations (13) to (15) are special cases of the more general equations
derived by Chandrasekhar (ref. 10).

Since the veloclty field is assumed to be isotropic, Rij(g) is an

isotropic tensor, solenoidal in both of its indices. It can therefore
be represented in the usual way in terms of the longitudinal wveloecity-

correlation function Eéf(r), where u2 denotes the mean-square value
of one veloclty component. On the other hand, the vector Li(g,b) is

axisymmetric, so that in general it requlres two defining scalars and
can be expressed in the form

Li(}‘,:Z\,) = Lyry + Lohg (27)

where 1; and ILp are arbitrary functions of

.r2

o
™
1

(18)

25
>
]
£
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When Li(ﬁ’b) is solenocidal, as it is here, it requires only one defining

scalar L = L(r,m), which, as Chandrasekhar (ref. 11) has shown, is relsted
to L and Lo in the manner

1y = (ruDe + D). ()
Lo = (1«213r + ruDp + 2)1. (20)

where the differential operators Dy &and Dy have the meaning

193 w3
Dr rdr r2dm
3 (21)
_ 13
Dm—;'a—m
J

Exactly aneslogous considerations apply to the vector Lj' and its
defining scalars L;' end Lo', which can be expressed in terms of a
single scalar L' as described by relations (19) and (20).

Equations (13) to (16) could be reduced to equations for the defining
scalars described above, 1f desired. This is the procedure followed by
Chandrasekher (ref. 10). In practice, however, the desired information
can most easlily be derived by considering the Fourier transforms of these
equations.

Thus, the Fourler transform of 8('1;,2\‘) is defined in the form

( 3 ) - LR
@—2:-:-1;;—= (2x) ?fe(bb)e K gr (22)

where %b = ku and where ©(k,p) has been so normelized that
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92 = j;mfi o(ic,u) du dk (23)

Likewise, the Fouriler transforms of Li(,{:;b) and Li'(.{’b) can be
defined in the menner

a(n) = (207 [1a(zn)e > F az (24)

with a similar relation for the tramsform A4' of ILi'. Finally, equa-
tions (13) to (16) can be transformed to

?i + kAN = -2kk%® (25)
g:-i + PAj®yj = -(& + v)k2Ai | (26)
Ay 2 (
oM ' 27)
S5 £+ v)KTA
and
3%
.j. = _2Vk_2®ij (28)

ot

where °ij(5) is the Fourier transform of Rij(.l.',) in the sense of
equation (24).

Since @4 j(g) is gn isotropic tensor it can be written in the well-

known form
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_ Bk E(k)

(29)
k2 [ hk®

015(k) = (13

vhere E(k) is the isotropic energy spectrum function. The representa-

)
tion of the orthogonal {i.e., kyAy = O, corresponding to SEE-= é) axi-
r
i
symmetric wvector Ai(E,b) in terms of & single defining scalsr can, by

the technique of Proudmsn and Reid (ref. 4), be written directly in the
fornm

23(k2) = <Sia - E-i—zk-o-')!\-(k,u)%a (30)

where A is a function of k-'k = k2 end k-A = kp. Similarly, there

is an snalogous expression for the orthogonal exisymmetric vector Aiﬂ
in terms of a single scalar function A'. Thus, the scalar forms of
equations (25) to (28) become

0 _ - u2)2
S 20k%0 = 1mp<1 m )k A (31)
JA 2 E
oA k2A = -
i (k + v) B 3 (32)
gi‘_'ar (k + v)K2A' = O (33)
oE

= 4+ 2v%k%E = O (34)
Jt

-
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The derivation of the solutions of these equations satisfying given
initial conditions at time +to 1s straightforward, and the results are

as follow:

Bk, ) & Bo(i)e 2V (b-t0) (35)

BEo(k) £-2vk2(t—to) } e—(n+V)k2(t-to)} +

Alk,u,t) = -
bee(w - v)kh
Ao(k,u)e‘(“+v)k2(t't°) (36)
A'(k:uxt) = AO!(leJ-)e-(K-‘-V)kz(t-to) (37)
2
Bk, .t = B2(1 - 12)Eo(k) [e-vkz(‘b—to) ) e-nkz(t-to)i] .
2(k - v)2k%
- e
eo(k:l-'-) + M%(k:p) e-2nk2(t-t0) -
K - v
_”i(l_'_“g_) Aok, uye-(REV)EE(B-t0) (38)
K - v

A1l variables have been explicitly indicated for emphasis, and Eo(k) =
E(k,t0), AMo(k,u) = A(k,u,t0), and so forth. From the discusslon in the

previous section, it may be expected that for t 2 to the errors in these
results (as compared with the exact results) are 0(37\) in the first and

0(Bpg) 1in the others.
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Asymptotic Behavior of Solutions for Large
Vealues of Time

In the preceding soclutions there is still a considersble degree of
indeterminacy due to the presence of the functions E,, 8y, Ao, and A,'.
These express the ultimate influence of the past history of the velocity-
temperature field during the period of time from the initisl instant of
generation to the time +to, when the inertial and pressure effects are
significant. PFor sufficiently large values of t - to, however, it will
be shown that the results given by equations (35) to (38) tske on much
simpler forms asymptotically, which depend only to a slight extent on
the previous history. The asymptotic forms fturn out to depend critically
on the behavior of the functions E, ©, A, and A' for small values of
k and thus on the behavior of the corresponding correlation functions
for large values of r. A complete analysls of these questions is com-
plicated and lengthy and requires the use of the exact equations of the
velocity and temperature fields. Detailed answers ere available only
for the Yelocity field alone, in the recent work of Batchelor and Proudman

ref. 12).

The results of reference 12 indicate that for small values of k
the behavior of E 1is in general given by

E(k,t) = C(t)xt + o(k5lo'ge k) (39)

On the other hend, the exponential factor in equation (35) becomes very
small as t - to =« for all except very small values of k, so that the

asymptotic form is obtained by replacing Eg = E(k,to) by its leading
term when k is small. Thus, the asymptotic form for E as t - tg - o
is

>
B(k,t) ~ Coklre "2V (¥-%0) (40)

where Cg = C(to), This is the well—known_result for the energy spectrum
function E during the final period of decay.

In the present problem of the combined temperature-velocity field,
similar results cen be obtained for @, A, and A', providing that plau-
sible assumptions are introduced at an appropriabe stage in the analysis.
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Equations (22) and (24) are first considered and put into more usable
- forms by the introduction of spherical coordinates (r, a, B), with
the aid of the definitions

rx=r8
E'Z\,= r cos o = rm
k-A=k cos y=kp r (41)

Kp:rp = krum

kr (1 - mE)(l - p2) cos B

v
5

J

Thet is, kp and rp are the projections of the vectors ;k“ and r
elong A, and k, and rp are their projections in a plane normal to A,
so that k= Xp + kpn and r = Ip + In. With the aid of the formula

¢ (ref. 13, p. 87)

fﬁ e1h c08 B 45 - org (a) (k2)

-7

where Jg 1s the Bessel function of the first kind of order =zero, the

integration with respect to the angle B can be immedistely carried out,
leading to the vesults

e::;) i (%)-2»/‘001/':1 r26(r,m) cos(krmyu) JO[kr[(l - me)(l - ”E)]dm ar

(43)
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o nl
A(k,p) = L—L—fofl r2Lp(r,m) cos(krmy) Jo[kr \/(l - me)(l - ua)] dm dr

1 -2
(4h)

A (k,p) = "i<2“)-2j f_l sz (r,m) sin(lomp) S \/(1 - mz)(l - u2) dm dr

l-p.

(45)

In these relations,

Ly = NIy
(16)

I’PI = KiLil

end use hasg been made of the fact that € and LP are even functions
of m and Lp' is an odd function of m. These properties are easily
derived from relations (10) to (12) and (17). Thus, both © and A
are real and even in u, and A' is purely imeginary and odd in u.

On a purely formael basis for the moment, the first few derive-
tives with respect to k of ©, A, and A' at k = 0 are now deter-
mined from relations (43) to (45). In the case of ©, the results are

immediately seen to be

_ %8 - :
e(OJP-) = EE(OJF) =0 (""7)

ha
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2 @l
a_kg(o,u) = 2(31)'1](;_/:1 r29(r,m) dm ar (48)

For the quantities A and A', the following relation (indicated by
Mélese, ref. 8) is required:

Iy = 1 ;2m2 Bi rIL - ai[m< - ma)L} (L9)

r 113

A similar relation for L,' follows from equations (17) to (21). With

the use of equation (49), and with the assumptions that rJL —0O and
r’L' 50 as r -»«, the following results are obtained:

A(O:U) =

|

o
~~
U
®]
L —

I

(@]
~
\Jl
F

g—jﬁ(o: l-l) =

-2 pwpal :
——(o,u) = - i&j)pefoj:l rl'lp(r{m) [m2p2 + -32:(1 - m2) (1 - ;.1.2):l dm dr (52

k2

A'(O,p) =0 (53,
a_Al(ou)=-1_._Eff r5mlp(rm)dmdr o (sh
1 - p2

(Relations (50) and (53) were obtained previously by Mél2se.) Hence, the
behavior of 8, A, and A', respectively, for small values of k is
given by
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8(k,p,t) = C'(t)k2 + o(k2) (55)
Ak, p,t) = C"(p,t)k2 + o(k2) (56)
A'(k,u:t) = ¢c'" (U-:t)k + O(k) (57)

where

" () = -;EBZA > (58)

(See eqs. (48), (52), and (54).)

The formal results derived above will be valid if the integrals
involved in equations (47) to (54) actually exist and if the assumptions

2L, 50 and r3L' -0 &s r > » are valid. For the purposes of the
present investigation, these conditions will be assumed to be satisfied.t
As mentioned previously, a complete justification would require an elab-
orate analysis of the behavior of the correletions of temperature and
velocity for large velues of r, after the manmner of the work of Batchelor
and Proudman (ref. 12). Although such an investigation has not been car-
ried out In full, a partial study reveals no essentlally new difficulties

lsufficient conditions for the existence of the integrals are that
r5Lp - 0 and rl*‘Lp' —+0 as r - «. These are not necessary conditions,

however, and it is assuming less just to assume that the integrals exist.
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and tends to support the assumptions stated. The latter, moreover, appesar
quite reasonable from an Intuitive polnt of view.

By the same type of reasoning as that employed in deriving rela-
tion (LO), it now follows that the asymptotic forms of relations (36)
to (38) for large values of t - %ty are obtained by replacing Eg, Ao,

Ao', and ©g by their leading terms when k 1s small, as given by equa-
tions (39) and (55) to (57). Hence, for t - tg - », relation (36), for
example, becomes

Ak, p,t) ~ - -lm(—iq-)-_v;[e-Esz(t_tO) ) e-(n+v)k2(t—to)] .

Cort(p)kze'(ﬁ'l'v)k_z(t'tO) (59)

where Cg = C(to) and Co"(u) = C"(u,to). Analogous results follow for

relations (37) and (38). A further study of these new formulas now shows
that actually the leading terms are dominant. Consider equation (59),

for example, and introduce the nondimensional variesble x = k\‘2v(t - tg)
and the reference value

P (-xlz =3 xl) (60)

- ————————\ - e
k(e - v)

Am=

where o = v/k 1is the Prandtl number, and x; is defined by

1/2
20 l1+c0
= lo 61
*1 (l - c Ee 20 ) (61)

That is, Ay 1s the maximum value of the first term in A. Then equa-
tion (59) can be written as
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itg .2

L xR T 20 cat - =X
L _ e ~ e + o (1) w2e 20 (62)
bmo o Lo 2mv(t - o)
e X1 . 20 TR

Since the second term is O[l/(t - to):] , the final result for the asymp-
totic form of A when % - Lo —» o 18 seen to be

Alk,p,t) =~ - mi_c_?_ﬁ_[e-Zsz(t-to) - e'(n+v)k2(t-to)] (63)

Similarly, if @, is defined as the maximum value of the first term

in the expression for ©, it is found that the remaining terms in the
expression for 8/8n are O(L/(t - to)). Thus, the asymptotic form of 8

when t - tp— o is

52(1 - ua)Co[e-vkE(t—to) - e"‘ka(t‘to)]?- (6X4)

@(k; P-:t) ~
2k - v)° .

Finally, the quantity A' is of interest only in the combination
A + A', which determines the Fourier transform of the correlation Suy'
(see egs. (11) and (12)). A considerastion of the nondimensional quentity
(A + A') /Ay shows, with the aid of equation (5T), that A'[Ay = '

O(l /\’t - to). Hence, when t - to —» =,

A+ A mA ' _(65)

vhere A is given by eq_xi'a"bi_ori'('6_3).

During the finel period of decay, therefore, the asymptotlec solutions
do not depend on the initiel conditions for the temperature field but only
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on those for the wvelocity field, through the parameters Co and +%p.

In the following sections, various properties of the temperature field
will be derived on the basis of the approximaste relations (63) to (65).

Some Integral Properties of the Temperature Field

There are several quantities, corresponding to mean values at one
point only, that can be expressed entirely in terms of integrals involving
the functions € and A. Before these results for the temperature
field are presented, the corresponding results for the velocity fileld
in terms of the energy spectrum function E will be listed for later use.

From equation (40) and the definitions of reference 1%, (pp. 47
to 51), it 1s seen that the mean-square kinetic energy is given by

3 m -5/2
2. %-uiu- - % L/; E(k) dk = lééi Co{}gt -.to)} - (66)

i
the microscale A, by

- -1
X __2__ k2E(k) dk = -J:‘E/(t - to)] (67)
ka l5u2 0 b

and the integral scale L, by

L= 2 wk'lE(k) dk = \/%7\ (68)
onl 0

Thus, in all further results it will be possible to express the quenti-

—\1/2
ties Cp and t - tg 1in terms of (u?) and A, which are of more

direct physical significance. The resulting formulas will then contain
only quantities that are directly observable at any instant dwring the

finael period of decay, in addition to the given constant parameters of

the problem (i.e., v, &, and B).
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Perhaps the quantity of greatest Physical interest predicted by the
present theory is the level of mean-square temperature fluctuations, which
follows from equations (23), (64), (66), and (67) in the forms

. 1/2
92 = Vit 5 co[b(t - toi]'l/a 1 - 2(4§E_i) + gl/2
) g

3\2v2(1 - o 1+
1__¢® 2,242 20 \M2 /2

== —2 __RrR%HHP2|1 - 2 ot 6
3 G 6)2 N B (} " 6) + (69)

—\1/2 —_
where Rp) = (u?) Av. The first form indicates that &2 decays more
slowly than u?, Just as Corrsin found in the simpler problem with constant
nean temperature (ref. 9).

Another quantity of some interest involves the mean-square gradient
of 9. Thus, if

Gy = éﬁ_ . (70)
axi !

and 1f the components of G perallel (GP = RiGi) and perpendicular to A
are considered and axisymmetry noted, there results

—_— —_— oAl
G2 = Gp2 + 26,2 = _j;fl K0 (k,u) du dk (72)

The quantities GPE and 'Gha are, respectively, the mean-square values
of the component of. G 'parallel to A and the component in sny direction
perpendicular to } and are given by

A}
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[}
o
]

o j; i/j k2uf0(k, 1) dp dk

2 - 3/2
= L Co [v(t - to):’ 3/2 1 - 2(12" ) / + o3/2
60 \2v3(1 - 0)°

_L_® poply . af2e V2, 32
15 (1 - 0)2 R 2(1 + d) "o (72)
and
—_— w Al —_—
2 _ .2 o2
Gn fofl 2 (1 - 12)e(k,u) an ak = 26 (73)

From these results one can, of course, obtain the mean-square gradient
of 4 in an arbitrary direction with respect to A . Relation (73)

= expresses the physical fact that the mean square of the molecular hest
transfer fluctuations is greater "across the mean gradient” than it is
"down the mean gradient," in a ratio that 1s independent of f. This

- conclusion is rather surprising, in view of the fact that the mesn hest
transfer (both molecular end turbulent) is entirely in the @irection of
the mean temperature gradient.

Consider now the cross correlation Ii(g,b). It is found, for
exasmple, that

ﬁ)— = 7\1Li(o:2‘\,) = a'fv/;ci/‘j: (l - ua)A(k-:lJ-) dp dk (7"")


http://www.abbottaerospace.com/technical-library

26 NACA TN 4186

Jup = 0 (75)

corresponding to the fact that the heat-transfer wvector Li(o,b) is
different from zero only in the direction of ). From equations (63)

and {74) follows the explicit relation

- -  \Emgo Co[v(t ) to)]-B/z - (20 )5/2

2hy(l - o) 1+ 0
1_0 g (—e)l/ "l - (2 /2 (76)
= - u -
1 -0 A l+c0
The heat-transfer correlation coefficilent
=
Ry = e (17)
— —\1/2
(‘62 U.p2>
introduced by Corrsin (ref. 1) now becomese
-1/2
3/2 1/2 /
Rh=-—l—l-<2° ) 1-2(2") + o2 (78)
\FS l+0 1+ 0

definition a positive constant.
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A quantity of perticular physical significence is the ratio of
mean turbulent heat transfer to mean molecular heat transfer given by

(79)

= ) 2
-3 2 g2 1 - [=9 3/
lL+ 0

The behavior of this ratio is evidently just what would be expected phys-
ically. For & given turbulent motion (i.e., a given value of RA), the

ratio decreases with decreasing values of o (i.e., increasing thermal
conductivity of the fluld). On the other hand, for given fluid properties
(i.e., a given value of o), it increases with increasing Reynolds num-
ber R) of the turbulent motion.

For the correlation Giwj, where wj = ejkz(aul/axk), some rather
involved calculetions lead to the relatively simple result

l-o0 l+o

5/2 — /2

which 1s different from zero if and only if G and @ are perpendicular
to each other as well as to ). After the general temnsor relation for

Gjwy 1in terms of A 1s obtained, the above relation is derived most
readily by teking rectangular coordinates (xl, xp, 8nd x3) with xp
along A. It can then be shown that Gywy = Goup = G5a5 = 0 and, with

the further use of spherical coordinates (k, v, and B) as described
by the defining relations (41), that :

Ga%=-G5a>2=fk22Ad§=%“j; KA ax (81)

From these results and equation (63), equation (80) follows.

Another quantity of some physical interest is the microscale or
"dissipation" length parameter Ay for the temperature field, first

introduced by Corrsin (ref. 9) and defined by
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— 2 )
2:-_3_%@ =61’3_ (82)

2
Bri Bri o0 A8

e

In the present case; equation (82) reduces to

1/2 3/2
>"3 = 6l1 - 2(2" ) + o/2)11 - 2(2—"-) + o3/2 (83)
x2 1+ 0 l+ o0

It should be noted that the geometrical interpretation of Ay is now

not so simple as it was in the isotropic case (ref. 9). 1In fact, with
use of the relation m = rkkk/r, it is found that

%(x,2) _ d%8(x,m) 2 30(zm) | 3|1 - w2 B6(r,m) (85)
ory Ory 3p2 r odr Bm r2 d3m

from which follows

2 2 2
3 esg,b) -3 3 6(r,m) L1 9 (; _ )jl 3 6(r,m) (85)
dry ory =0 e om om| 32 r=0

However, averaging this equation with respect to m leads to the simple
result _

2 1 |
5 & £ ~ _ 5\‘/‘ o) e(r m) am (86)
Bri ar I‘—O r=0

Thus, in an average sende, Ay 1is still a representative length scale
for the variation of 8(r,m) in the vicinity of r = O.
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Another charsacteristic length for the temperasture field is the
thermal integral scale

Ly = a% L 8(r,m) dr (87)

also introduced by Corrsin (ref. 9). This quantity is expected to give

a measure of the distance over which the temperature fluctuations are
effectively correlated, as the integral scale 1. does for the velocity
fluctuations. When 6 1s expressed as the inverse of the transform rels-
tion (22) and the spherical coordinates (k, 7, and B) in the k space
described previously are used, equation (87) takes the form ~

0 Ao AL
Ly = ;_2% LLL 6(k,u) cos(iomy) J_ lcr\/(l - m2)(1 - p?)| ap ax ar
(88)

The integration with respect to r can be immediately carried out (see
ref. 15, p. 43}, leading to

When the expression (64) for @ is introduced, the integration with
respect to p 1is straightforward. The final integrstion with respect
to k 1is readily performed by integrating from ko, to « and then
taking the limit as ko — O, with the aid of the formula
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2 loge (A xef'x

XO\[K

2
dx..
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(50)

where x = k\l2v(t - to). The end result, after elimination of 92 by

equation (69), is

Tqa =
LT

é:léi'k(l +m2)|1 - 2(

-1

1/2
) + 01/2 loge

(1 + 0)2

- (91)

An exemination of the preceding results indicates that in this
problem, for a given field of turbulence, many of the thermal character-

istics are strongly dependent on the Prandtl number.

It is instructive,

therefore, to present a summery of the formulas derived above in the

special cases:
and lubricating oils),

=1

¢ >> 1 (corresponding to several liquids, such as water

(approximetely representative of gases),
and ¢ << 1 (corresponding to certain liquid metals).

For o >> 1, then, the following approximate relations result:

82 3'% cl/sz232%2;

?iu-; 2 - gEE:_l R'A(;é)

1/2
BA,

Gp

R

Ry & -

[
e
£

1i

=

15

03/3Rk232_

a2 - 1 5-1/%

16

'3

1/2 > (92)

N_hﬁ-lRAB(u—é)
2 )

gi/2
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Perhaps the most noteworthy feature here is that Kﬁ end Lg are both

much smaller than A, indicating that the temperature correlation curve

is much more strongly curved near the origin thasn the velocity correlation

curve and falls off to zero much more rapidly. It should be emphasized, of
course, that this case places rather severe limitations on R)- Since the

present theory is restricted to small values of P%g = (o%a/k)Rx = VEERA,

the Reynolds number Rk has to be extremely small if both the conditions
o> 1 ‘and Jg;ﬁk << 1 are to be satisfied.

For o = 1, the formulas become

2.1 2 a2 _ 1 5 2.2
K —1637‘21327\’ G = g FAP
—\1/2
Suy = - %Rx(u2)/;37\, Ry = -1
— __\1/2 0 (93)
" 1g,2 Grar= - g BB/ o
e T T T T S
M6 s B, | o)
A5 Ak
/

In this case, the characteristic lengths for the temperasture field are of
the same order of magnitude as those for the velocity field. The result
for Ry 1is very interesting, since it implies that the fluctuations

and -up = -ujA; &t a point are perfectly correlated. (Note that -up
is the velocity component in the direction of decreasing mean temperature.)
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For o << 1, the following approximate formulas are obtalned:

2 xllmBA s :%5 02R) 22
—\1/2

‘811p Y - = UR-)\(ug) BA, Rh Z - %

. (__ 1/2 ? (k)
~VUp 1 g 2.2 ~_ 1 B

v = -3— R)\ o=, G’i(.l)j = - -é- oR: ei,jkkk
A L
08, Ly 3Vex 2 1

_}\=61 7\= % (l+m)logea

Although Ay 1s of the same order of mesgnitude as A in this case, Lg

is ruch larger, indicating that the temperature correlation function falls

off rather slowly for large separation distances. In fact, the decrease -
of e(r m) for large values of r is so slow in the 1imiting case 0 -0 -
that the integral in equation (87) becomes divergent and Ly becomes

infinite. Thus, in this limiting situation the quantity Lg loses its

significance as a representative length for the temperature field. The
length A remains significant, however, as a measure of the radius of

curvature of the temperature correlation function near the origin. In

the next section, a more detalled analysis of the behavior of the cor-
relation functions for the temperature fleld will be presented.

A final cobservation of considersble interest is that, if the arbitrary
assumption 1s made initially that the turbulence is statlstically station-
ery”?, then the final results agree with relations (9L) when o is small.
The above results for Ay and Rp were obtained by M&l2se (ref. 8),
and most of the others were obtained in a preliminary version of the

This implies that eny mean value involving fluctuating quantities
at different times is dependent only on the time differences and not on
the individuel times. Thus, mean values involving quantitles at the same
time, such as those in the present investigation, are independent of the
time. The term nondecaying is also used in this sense. 2_
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present work, all on the basis of this hypothesis. Although stationary

isotropic turbulence is impossible, strictly speaking, 1ts assumption
evidently leads to & formulation of the problem that is a valid approxi-

mation when the Prandil number is small.

A clearer pilcture of the situation can be obtained as follows.
First, it is noted that the assumption of stationary turbulence implies
that the temperature field is also stationary, so that the time-derivative
terms in equations (13) to (15) are absent and Lji' = 0. On the other

hand, if the assumption is not made, it is found that OQ/dt =

o(Q/(t - to)) for any correlation & involving the temperature, so
that in each of equations (13) and (14) the time-derivative term is
OQdAa%/KES relative to the heat-conduction term and is thus negligible

when o is small. Moreover, it is also found that TLj + Li' ~ Ly as

t - to » =». Hence, as far as the solution of the problem during the
final period of decsy is concerned, the basic equations obtained with
the assumption of stationarity are valid approximstions for small values
of o, providing the correlation function f(r/h) describing the tur-
bulence is properly specified.

Physically, when the Prandtl number is small, the effects of time
veriation are negligible, and the dissipation through conduction is
balanced primarily by the convective heat transfer associated with the
mean temperature gradient. The dominating influence of the mean tem-
perature gradient in this situation appesrs to be the reason for the
basic difference between relation (94) for Aﬂ/A and the result obtalned
by Corrsin (ref. 9) in the problem with zero mean tempersture gradient,

namely, that over s wide range of conditions Aﬁ/% = 0(0'1/2) for all

Prandtl numbers. 1In the latter problem, the time varistion is alveys
a dominant factor. .

Some Detalled Properties of the Temperature Field

The results of the preceding section were concerned with mean values
at a single point and ylelded only limited information sbout the wvarious
correlations as functions of the spatial separstion. The characteristies
of the temperature field assoclated with the two-point mean values are
now considered in more detail.

The scalar Fourier transform relation between 8(r,m) end e(k,u)
which follows from equation (22) is
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oAl -
o(x,m) = 2 j; fo 8(k,1) cos(1ormy) Jo[kr\/(l - m2)(1 - ue)] apax  (95)

If a correlation coefficient for the temperature field is now defined in
the usual way as

_ 38 _ e(r,m)
M(r,m) = 5(0.m) (96)

then using egyustions (64) and (95) gives

J;ei/-.ol (1 - uE)(e-xE/Z - e'x2/20)2 cos (xyum) Jol:xy\/(]_ - ma)(l - uz)] ay ax

M(Y:m) = % L 3 (97)
_o2\.-x2f2 | -x2[ec
fo fo (- e2)le e 2/20)" 4y ax
where y==1r/V2v(t - to) = VEr/k. The integrals occurring in this
expression can be evaluated quite easily (e.g., see ref. 15, p. 57,
formula (52)) and the result written in the form
M(y,m) = Mi(y) + m@Ma(y) (98)

where

My1(y) - 2\ |22 Mll<3’ 29 >+ Vo1 (v\G
wa(y) \}1 T o T+o0 (v\%) (%9)

1 - 2y[20 & Yo
l+co
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and

20 20
Ma(y) = aly) - 2\ Mel(wl + U) " EMZL__(Y‘E) (100)
1-2(-22_+ 5
l+0
= 1lert(y/2 2 ~v2[k (101)
M1(y) = E%i erf(y/2) + ;[S%%L). - = y2/ }

Mo (y) = %35_‘: erf(y/2) - %[Er_i_%@l - -‘{% v L‘] (102)

£ _.2
The symbol erf(t) denotes the error function éi k/ﬁ e 2 dE.
T JO

For small values of y, M(y,m) has the typical parabolic behavior

20 + 0_3/2

)3/2

1- 2( :
M(y,m) = 1 - -l-<1 _ =) t*e 72 + o[yh(l + 02)] (103)

10 2/1_2<_2g_)1/2+01/2

l+o

while for large values of y 1t decreases 1n the manner

M(Y: m) = -

_1/2
—vafu 2 —av2 _1/2 —ov2/4
3(ly; ) e y2/ -2 —:—E) e oy f’2(1+0‘) + o l/2e oy2/ -I:l . 0(3_0;_20)] (108)
1/2
1-2Q2L? + al/2

l+ o
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It is noteworthy that, for o ¥ 0, M(y,m) =always becomes negstive for
sufficiently large wvalues of vy.

The limiting form of M(y,m) for zero Prandtl number is of particular
interest, in view of the remarks made in the last section. For ¢ -0, in
fact,

M(y,m) = M3a(y) + w@ipy(y) + 0(62/2) (105)

For smell velues of y, the limit function Mo(y,m) = M33i(y) + mMoy(y)
hes the parabolic behavior

Mo(y,m) = 1 - lio(l - ‘%Q)ye + ofy) (106)

but for large values of y 1t decreasses remarkably slowly, in the manner

Mo(y) = 2‘1’&—7‘ 5%1“-2- + O@) (207)
Y

The difference between the 1limit of relation (104) as o —» O and rela-
tion (107) is due to the fact that the ratio (Mo - M)/Mo does not

remein uniformly small for all values of y. TFor a very small but finite
value of o0, the function M(y,m) follows the limit function My(y,m)

very closely as y increases, but it begins to devliate appreciably when
y becomes very large. In fact, it can be shown from equations (104) and
(107) that Mo - M is of the order of magnitude of Mo when y 1is of

the order of 0'1/2. For cl/2y >> 1, IMI decreases to zero much more
rapldly then Mg. The decrease of lMI is, in fact, rapid enough to
insure ‘the convergence of the integral of M (see eq. (87)). On the
other hend, equation (107) shows that the integral of the limit fumec-
tion Mg diverges logarithmically. These remarks help to explain the

behavior of the thermsl integrasl scale Lg described previously.

The case o = 1 18 of considerable physical Ilmportance, since 1t
corresponds approximately to gases, most of which have Prandtl numbers
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slightly less than unity. The result for M(y,m) in this case, which
is easily obtained by taking the limit o —» 1 in equations (98) to (100),
hes the especially simple form

M(y,m) = e-v2/ 4(1 - y—f) + E; y2e-y2[k (108)

The functions Mj(y) and Mp(y) have been evaluated numerically

for the cases ¢ = 0, 0.01, 0.1, 0.71, 1, 10, and 100, respectively.

The results for all other cases can be readily obtained from those for

o =0 in table 1}, since the functions Mj(y) and Mpo(y) for this case
are the functions Mll(y) and Mgl(y) occurring in the general for-
milas (99) to (102). The numerical values for the case o = 0.71, cor-
responding to air under stenderd laboratory conditions, are presented in
table 3, since they may be of some genersl Iinterest.

The resultant correlations M(y,m) for m= 0 and 1 (corresponding
to a = 90° and 0°, respectively) are shown in figures 1(a) to 1(c), with

the velocity correlation f(y) = e'ye/h included in each case for com-
parison. The correlations for all other values of m lie between those
shown. The curves for o = 0.01 and 0.1 are included in figure 1 along
with those for ¢ = O in order to illustrate the approach to the limit
discussed previously. In contrast to the slow rate of decrease of M(y,m)
for small values of o, the rapid rate of decrease for large values of o
is to be noted. This behavior, it may be recalled, was indicated by the
previous results for the thermal integral scale. The physical significance
is just that for small values of the Prandtl number, the temperature fluc-
tuations remain significantly correlated over much greater distances than
the velocity fluctuations, while for large values the opposite is true.

Consider now the correlation L;(x,)). It is observed that if

Sup’ = MLi(L,3) (109)

hThere is a loss of accuracy near ¢ = 1 vwhen egs. (99) and (100)
are used directly, with functional values interpolated from table 1.
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(see fig. 2(a)), then the Fourier transform (eq. (24)) yields

dup' = lmj::/;l (1 - pz)kaj‘\.(k,p.) cos (krmu) Jo[kr \/(1 - ma)(l - ;@)] dp dk

(110)

Thus, letting

dup '
N(r,m) = —— (111)
éuP
and substituting for A(k,u) from equation (63) give
wnl 2 - ﬂxa
A e S R X ) CHNE TS| g
N(y,m) = ~2=0 . - = (112)
® - o.¢
LJ; (l - pa)x2<e'x2 -e =0 dp dx
where x = k\/2v(t - to) eand y = r//VZV(t - to). This can be evaluated
to give : )
N(y,m) = Ni(y) + m=No(y) (113)
where
2 3/2 2
g g
M () - (l + c) Nll(y 1+ cr)
Ny (y) = (11k)

3/2
1 - (iﬁL_)
L+ 0
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3/2
_(_eo \ ( 20 )
Na(y = Nal(Y) (l + 0'/ N21 d 1+ 0 (]_15)
1 20 \3/2
B (l + c)
_3 Jov2w _ \Elerf(y/2) 2 _y2/u
Na(y) = 2 / y2[_§{/2 = v2/ ] (116)
and
R At el

For smaell values of Yy, N(y,m) also has the familisr parabolic behavior

L \o/2
o) = 1 - _l%(l ] m_:->l - (3_2.,_ 0)5/2 v2 + ol}ll-(l + 02):| (128)
1 - (—21—-)

l+o

vhile for large values of y 1t decreases in the manner

-y2[h ( 20 )B/Ze-cy2/2(l+c)

3(1 - w?) © T+o

2 3/2
l_(ZU )
1+o0

Just as in the case of M(y,m), for o £ O, the function N(y,m) always
becomes negative for sufficiently large values of y.

N(y,m) = 1+ of2X U) (119)
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The limiting form of N(y,m) for small Prandtl numbers is also of
interest. For o —» O the following relation is obtained:

N(y,m) = Ny3(y) + m¥Nx (y) +_0(G3/2) (120)

For smell values of 1y, the limit function No(y,m) = Nii(y) + m2No1(y)
hes the behavior '

No(y,m) = 1 - 15—0<l - I—%2—>y2 + O(yh) . (121)

For large values of y and for m # lN_B_ it decreases somevhat faster
than Mo(y,m), in the manner -~ )

No(y,m) = 3T (5m2 - 1)—13 +'0<e'->’2/”) (122)
Y

The case -m = l/{—, for which .

No<y,l/J37 = e‘yz/LF (123)

divides the functions No(y,m) into those that are positive everywhere

and those that become negative (see fig. 3(a)).5 The differences between
the behavior of the limit function No(y,m) i for large values of y and

that of the actual function N(y,m), for any small but finite value of o,
are to noted. The reasons for these differences are very much like those

described for the function M(y,m).

o1t might be noted that there is no such dividing correlation when
o] 9! 0, since then the function N(y,m) always becomes negative for
large values of y.
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In contrast to M(y,m), the correlation N(y,m) has a limiting form
for large Prandtl numbers. Thus, wvhen 0 — «,

N(y,m) = (EE- 1)—1 [gv-mll(y\[é) - Nl]_(y)] + o(%-) (154)

The limit function in this case is obviously not radically different in
shape and asymptotic behavior from the function N(y,m) for a value of o
of order unity.

For o = 1, a simple result is again obtained, in fact, exactly the
seme functional form for N(y,m) as for M(y,m), namely,

M(y,m) = e h(l ) iﬁ) * mrz yee ¥k (125)

The functions Nj(y) and Npo(y) have been computed for the cases

=0, 0.1, O.71, 1, 10, and «. The numerical values for the cases of
most interest, that is, 0 =0 and o = 0.7l, are tabulated in tables 2
and 35, respectively. The resultant correlations for m= 0 and 1 (cor-
responding to o = 90° and O°) are shown in figures 3(a) to 3(c). The

velocity correlation f(y) = e-y2/h is alsg included in each figure.
For o =0, f(y) is the same as N(y,l/fgﬁ (see eq. (123)).

From these results for the correlation ﬁup' it is possible to derive
the corresponding results for the defining scalars of Li(g,h) and hence

to obtain the correlation of 4 with the veloclty in an erbitrary direc-
tion. Thus, from equations (17), (19), and (20),

—

%fLi(E,b) = [ﬁl - mE)rDr + ?]L(r,m) = EE%;E%l(Y) + mENe(yj] (126)

an equation that cen only be satisfied provided that L(r,m) is inde-
pendent of m, in which case
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L(y) = %3@@1@) + Na(y)] (127)

From these results, it follows that the correlation du,' (see fig. 2(b))
is given by

13 1 .-
_SE = mVl - meNo(y) = % sin 2o NQ(Y) (128)
S

D

The function No(y) i1s plotted in figure 4 for o = 0, 0.1, 0.71, 1, 10,
and. o,

Since the correlation of 3§ with the component of wuy orthogonal
to the plane formed by r and A vanishes by axisymmetry, it is necessary

to consider only the correlstion of d with a veloclity vector coplanar

with r and A. The results glven here for ﬂup‘ and du,' then suf-

fice to determine directly the correlation of 9 with the velocity in
an srbitrary direction without recourse to 1ts scalar representation,
such as those shown, for example, in figures 2(c) and 2(d).

The analytical and numerical results for N(y,m) described sbove
indicate that, although N decreases rather slowly for large values
of y when o is small, the Prandtl number dependence is not other-
wise very strong. This 1s in marked contrast to the results for M(y,m),
especially those for large Prandtl numbers. In particular, slthough
M(y,m) decreases at s much more rapid rate than the velocity correla-
tion f£(y) when the Prandtl number is large, N(y,m) still decreases
at a rate not significantly different from that for £(y), Jjust as it
does for Prandtl numbers of order unilty.

Mathematically, these conclusions are to some extent suggested by
the forms of the basic equations (13) and (14) for the double temperature
correlation © and the tempersture-velocity correlation Ls, respectively.

Tn particular, equation (13) involves only the parameter «, while equa-
tion (14) involves both ® and v in the combination ® + v. The form

of equation (14) then indicates that, when the Prandtl number is large
and ®k + v~ v, Lj 1is approximately independent of the Prandtl number
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and has a characteristic length scale essentially the same as that for
Rij (i.e., the microscale A). On the other hand, for small Prandtl

numbers, k + v 2 k, and Li might then be expected to depend on the

Prandtl number. Finslly, equation (13) always involves k explicitly
and k + v implicitly (in the term involving Lji), so that 6 might be

expected to depend on k and thus on the Prandtl number in general.

Physically, the temperature-velocity correlation is governed by both
momentum transfer and heat transfer, with only the convective part of the
latter (associated with the mean temperature gradient) being appreciable
when the thermsl conductivity is small. Thus, it is not too surprising
that for small thermal conductivity this correlation behsves much like
the velocity correlation. The double temperature correlation, on the
other hand, depends only on heat transfer, and in this case the molecular
part is always as important as the convective part. Comnsequently, the
conclusions for the temperature correlation ere also to some extent
expected. Consider, for exsmple, two fluilds in turbulent motion with
essentially the same dynemical and physical properties, except that one
hes low thermsl conductivity (large Prandtl number) and the other high
thermal conductivity (small Prandtl number). In order for the tempera-
ture fluctuations at two points to follow each other at all closely (and
thus be significantly correlated), it would be expected that the two points
would have to be rather close together in the first case but that they
could be much farther apart in the second. It should be recalled, of
course, that the present lnvestigation is restricted to low Reynolds
numbers, when molecular transport processes are the controlling factors.
For high Reynolds numbers, the inertlal transport processes neglected
here are usually more Ilmportant, and the final results may be quite dif-
ferent from the present ones.

Temperature and Heat-Transfer Spectrum Functions

In the last two sections the characteristics of the temperature f£ield
revegled by the one-point and two-point mean velues have been studied.
From some viewpoints, a further gain in physical insight is provided by
en examination of the properties of the Fourier transforms of the correla-
tlon functions. These transforms and some functions closely relsted to
them wlll now be consldered in more detail.

Since the behavior of the general three-dimensional Fourier transform
may in general be rather complicated, 1t 1s often convenient to define a
simpler function by averaging over all directions of the vector argument k.

Thus, by anslogy with the definition of the energy-spectrum function for the
velocity field, the three-dimensional (or spherically averaged) temperature-
spectrum functlon may be defined as
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N 1
8(x) = f oo a (129)

This is Just the Integral of the Fourler transform @(k,p)/znke of the

correlation 399' over the surface of a sphere of radius k. Thus, &

is the density of contributions to 82 associated with wave numbers of
magnitude k, so that

— o0
82 = f 8(k) dk (130)
0
From equations (64) and (129) the following results are obtained:

2
8(k) = %\E —23—337\2327\3(e‘x2/ 2 _ o-x2/20) (131)
(1 -a)

where x = kVEv(t - to). The meximum value of ©(k) is gilven by

2 = .
8, = %\F o1-G Ry2p203 (132)
n
and occurs at
i/e
20 1
Xp = <é — loge E) (133)

The function §(k)/8m has been evaluated numerically for Prandtl

numbers o = 0, 0.01, 0.1, O0.71, 1, 10, 100, and «», and the results are
shown in figure 5. The numerical values for the case o = 0.7l are
given in table 4. The wide range of varistion of the results with the
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Prandtl number is to be noted, as well as the dominance of the small
wave-number contributions (associated with the large-scale structure of
the temperature field) for small Prandtl numbers and the dominance of
the large weve-number contributions (associasted with the small-scale
structure) for large Prandtl numbers. This behavior of the spectrum
function is perhaps to be expected, on the basls of the previous con-
clusions for the correletion function.

The behavior 8 = klL for smell values of the wave number, wliich is
the same as it is for the turhulence-energy spectrum E(k), is to be com-
pared with Corrsin's result 6 =~ k2 in the problem with constent mean
temperature (ref. 16). It should be kept in mind that under considera-
tion is the asymptotic part of the spectrum for large values of the time,
vwhich has characteristics determlined meinly by the mean temperature gra-
dient and the turbulence. Even in the present problem a part of the
spectrum beginning with k2 could be present, in general, as Mé&lese
(ref. 8) has shown (see egs. (38) and (55)). However, as demonstrated
previously, even if such a part were present initially, it would even-
tuelly mske only a negligible contribution to the total spectrum function.

In a2 similar manner, a three-dimensional spectrum function ﬁ(k)
is now defined for the mean turbulent heat tramsfer -8up, where the

negative 8ign is chosen in order to have a positive gquantity (i e.,
-aqp as 8 result of the definition of Q):

. 1
A(k) = -a-rrszl Ap(k,u) au (134)

Thus, K(k) is the density of comtributlions to -dup assoclated with
wave numbers of maegnitude k, and

I - fo Ax) ax (135)
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Equations (30), (63), and (134) then give the results

8

Ax) = - 5 k2A (k)

__\1/2 - ligk%)
2,/2_0¢ z 2le-x2 _ o 20
3\/;1 — Rx(u ) [3?\23? <e X e (136)

The maximum velue Ay occurs at a velue of x given by

L
1 e 20 o
5 -
Xy~ = (137)
l-o 5
1+0  2g M
l - =——e=e
20

The function K(k)/ﬁm has been evaluated numerically for Prendtl

numbers ¢ = 0, 0.1, 0.71, 1, 10, and », and the results are shown in
figure 6. The numerical values for the cese o = 0.7l are given in

teble 4. In contrast to the conclusions for 8(k)/6n, the varistion of

A(x)/Am with the Prandtl number is not large. In fact, the main con-
tributions elways tend to come from essentially the same range of wave
numbers as that corresponding to the energy-containing eddies of the
turbulence.

Equation (136) shows that A(k) begins with a term of order k4
for small values of k during the final periocd of decay, Just as it
does, in general, initially (see eqs. (36) and (56)). The general con-
clusion that the hest-transfer spectrum begins with at least the fourth
power of k wes obtained previously by M&lse (ref. 8).

Although the three-dimensional spectrum, a5 described in the pre-
ceding two cases, has perhaps the greatest physical significance, it
cennot be directly measured. One-~dimensionsl spectrum functions are
more sultable for experimental purposes, since they can be obtained
falrly easily from correlation measurements and In fact can sometimes
be measured directly. Some useful results relating such one-dimensional
gpectrum functions with the three-dimensionasl ones are now presented.
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A one-dimensional Fourier transform of the double temperature cor-
relation 8 3,2\_’) = 38' can be made slong & line at an angle a; with A

as follows:
1 ® -1k7r
GI(kl,ml) = (2x) f 8(ry,0,0)e L ary (138)
-0

where the dependence on my = cos a3 due to the axisymmetry of the tem-
perature field has been explicitly indicated. Since 8(;5,2\‘) = o(r,m) is
an even function of both r and m, equation (138) cen be written as

1
exfim) - 3 [

Then, with the ald of equation (95), this becomes

co

G(rl,ml) cos (klrl) dry (139)

eI(kl,ml); 2 »/::/:i[;l 8(1,u) cos (kyry) cos(krlmlu)— I, l:k:rl (1 - “‘12) (1 - p.?)r,du dk ary (140)

After substitution for ©(k,p) in terms of (k) from equation (131},
the integration with respect to p and r; can be easily carried out

in the cases my =0 and my = 1 (see ref. 15, p. 43), with the results

© A 2
o1(k,0) = 2 f 8() (1 4 517 ax (121)
o« D k. 2
or(ky,1) = 2 f 8(]9/1 U (142)
b Jg k \ 12
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Since e(rl,mﬂ) = e(rl,o) + mle[é(rl,l) - e(rl,oj}, the general formula

is seen to be

81<kl,ml) = (1 - mlE)@I(kl,o) + mlE@I(kl,l) (143)
The inverse relations to these are as follows:

ker'(k0)

(k) = - %k e1'(k,0) - L = (1hk)
A "(k,1
8(x) = %1? %F‘I—i——)} (145)
omy 2 mq2+1
i : 1-3m2 1tm2 ¥ m2-1
(k) e1'(k, - k eT1'(x, ak
5(1 - m2) r'(m) L~ e J; T'(ksmy )

(146)

The prime denotes differentiastion with respect to k. The integral from
0 to k in relastions (144) and (146) can be replaced by the integral
from « to k, since it can be shown that the integral from O to
is zero in each cese. From eny one of these relations, then, the three-
dimensional temperature spectrum can be determined from a measured one-
dimensional spectrum. It appesrs that formuls (14%) should be the most
useful since @I(kl,o) is & Fourier tramsform in a direction normal to A.

~

In an experimental study of the present problem, the mean flow direction
would likely be normal to A, so that a direct measurement of @I(kl,o

would be possible (subject to certain spproximations), without having to
determine it from a correlation measurement.

It might be mentioned that in the limit o - 0 the one-dimensional
spectrum function ©y 1s well behaved for small values of X, in spite

of an apparent logarithmic divergence of the integrals in equations (141)
end (142) in the limiting case. Since & has a maximum value of the

order of 02 at a value of x of the order of (o loge 0)1/2 (see
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equations (132) and (133)), it follows from equations, (141) and (1hk2)
that ©7 has & maximum value of the order of crzlogeecr. Although this

is much larger than the maximum value of é, it still approaches zero in
the limit o — O.

For the temperature-velocity correlation Li(’z\",zg) = duy', since it is

a vector quantity, meny one-dimensional spectrum functions could be defined.
Two of the most useful ones gppear to be the following:

(2]
- -1k
A1(y,my) = (2x) 1f LPI‘l,O,O)e 11 arq
-00

% j;w IP(rl’ml) cos (klrl) ar, (247)

AII(kl:ml) = (31)_1[.: Ln(rl,o,o)e‘ﬂ‘lrl drq

i

% J; Ln<rl,ml) cos (klrl) dry (148)

With the aid of equations (110) and (136), the following special results
can be obtained in the manner described previously:

_ .3 [T R k? 1
Az(ky,0) = 5 Jy, x 1+ - dk (149)
Ar(kq,1 5 [7 M) () K dk (150)
I( 15 ) = - Z K =1 - —_ 5

From these, since L.P(rl’ml) = Lp(rl,o) + mlEE'_.P(rl,l) - Lp(rl,o)], the

general case follows:
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Ar(ky,m) = (1 - m12)AI(kl,o) + my2A7(ky,1) (151)

ml\,l - mlzl}"P(rl’I) - L_p(l'l;o)] L) (see fig. E(b)),

Also, since Ln(rl,ml)
the result for Agpp 1is

AII(kl,ml) = ml\’l - m2 E\I(kl,l) - AI(kl,O):I (152)

The inverse relations to relations (149), (150), end (152) are

Aoy h , K A7'(x,0)
AMx) = 3 kAT (k,0) - j; —— (153)
~ - a AI'(R;-'L) )
Ak) = - s k3. EE[_T—] (154)
k
N _ Lk 1 1
AK) = - —H Ay (k) - é j; kapr'(komy ) ak (155)

5ml\ ‘1 - m12

The integrals from O to k may sgain be replaced by integrals from o
to k.

Although the one-dimensional spectrum Ag(k,,0 could perhsps be’
T\ 51 P

measured directly in the experimental situation, such a determinabion is
not so easy as that for 87 (kl,O) , and s more satisfactory procedure

sppears to be to obtain a one-dimensional spectrum from a measured cor-
relation, such as Ln(rl,ml), for example. ¥From the corresponding one-

dimensional spectrum A-_[I(kl,ml), the three-dimensionel heat-transfer
spectrum A(k) could then be obtained by means of equation (155).
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It should be emphasized that all of the speclal relstions between
the various spectrum functions derived above are valid only under the
special restrictions of the present investigation.

CONCLUDING REMARKS

In the present investigation of heat transfer 1n isotropic turbu-
lence with a constant mean temperature gradient a variety of special
results have been derived for the final period of decasy. From these
results the following major conclusions emerge:

(a)} During the finsl period of decsay, the temperature field becomes
asymptotically independent of the initial conditions on the temperature.
Its characteristics eventually depend essentislly only on the mean tem-
perature gredient, the physical properties of the fluild, end the char-
acteristics of the turbulence.

(b) For a given field of turbulence, all results depending on btem-
perature fluctuations slone are strongly dependeént on the Prandtl number.

Examples are the results for the mean sguare 32 of the tempersgture
fluctuations and for the double-tempersture-correlatlion coefficient

ﬁﬁ'/ﬁz. It is particularly noteworthy that for smell Prandtl numbers the

temperature fluctuations remain significantly correlated over much larger
distances than the velocity fluctuations, while for large Prandtl numbers
the opposite is true.

(e¢) Many of the results depending on both the tempersture and velocity
fluctuations display much less dependence on the Prandtl number. For

exarple, the mean turbulence heat transfer ®du, is of the same order of

magnitude for wvery lerge Prandtl numbers as it is for a Prandtl number
of unity. The Prandtl number variation of such quantities is usually
more important for small Prandtl numbers. The quantity dup, for example,

approeches zero when the Prandtl number spproaches zero. However, the
behavior of the temperature-velocity correlation coefficient 6up' Sup
changes relatively 1ittle over the full range of Praendil numbers, in

marked contrast to the behavior of the double tempersasture correlstion
coefficient.

(a) Corresponding trends are present in the behavior of the three-
dimensional spectrum functions. For the temperature spectrum, the small
wave-number part is most important when the Prandtl number is small, while
the large wave-number part is most lmportant when the Prandtl number is
large. For the heat-transfer spectrum, however, the main contributlons
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alwsys come from essentlally the same range of wave numbers as that
corresponding to the energy-containing eddies of the turbulence.

In evaluating these conclusions, the restriction to small Reynolds
and Péclet numbers should be kept in mind; however, although the results
are strictly velid only in the limit of vanishing R; and PRB’ any

radicel changes for smell but finite values of these parameters would

not be expected. Experience with other such approximations suggests

that the present results might even be quantitatively accurate for values
of these parameters up to 1 and perhaps qualitatively correct up to values
of ebout 5. It would, of course, be desirable to investigate the devia-
tion from the limiting results for zero R) and an by means of a

retained. In such an analysis, the triple correlations, which are neg-
lected in the present study, would have to be considered. Thus, In
addition to corrections to the present results, conclusions regarding

the role of the triple correlations for smell Reynolds and Péclet numbers,
which are of great interest in themselves, would also be obtained.

The situation at high Reynolds and Péclet numbers, it should be
emphasized, 1is likely to be quite different from that described by the
present theory or any extenslion of it in the manner just outlined. In
these circumstances, the inertial transfer terms in the basic equations,
which should be small for the present type of analysis to be wvalid, are
normelly dominant. Consequently, a different mathemetical approach has
to be used, and the results would be expected to be quelitetively quite
different. For example, one would not expect to find a strong Prandtl
number dependence. of the properties associated with the large-scale
structure of the temperature and velocity fields, as found here in some
cases, although such a dependence would likely still be present in the
charascteristics of the small-scale structure. Tn an investigaetion of
this situation, the statisticel hypothesis mentioned in the introduction
appears to be essential in formulating a mathematical problem that is at
all tractable. As suggested previously, there are still serious analytical
difficulties, but it may be expected that éventually this approach will
lead to a solution of the problem.

The Johns Hopkins University,
Baltimore, Md., February 25, 1957, -

and i

Ballistic Research Laboratories, U. S. Army,

Aberdeen Proving Ground, Md., Februsry 25, 1957.

b
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TABLE 1.- FUNCTIONS DESCRIBING TEMPERATURE
CORRELATION M(y,m) = Mi(y) + m2Mo(y)

FOR PRANDTL NIMBER o = O

Y M3 (¥) Mo(y) Mi(y) + Mo(y)
o} 1.0000 0 1.0000
.2 .9960 .0020 .9980
A 9842 .0079 .9921
.6 .9650 L0173 .9823
.8 .9392 .0299 .9691
1.0 .9076 L0450 .9526
1.2 .8713 .0619 .9532
1.k .8315 .0800 .911k
1.6 .7893% .098L . 8877
1.8 .Th59 .1165 . 8624
2.0 .T022 .1338 . 8360
2.2 .6592 L1498 .8090
2.k L6176 L1641 L7817
2.6 5TT9 L1765 754
2.8 5405 .1870 -T275
3.0 <5057 .1954 L7011
3.2 4735 .2019 6754
3.4 ko . 2066 .6506
3.6 Jarl 2097 6268
3.8 .%926 211k .6040
k.o <3704 .2119 .5823
k.2 « 3503 .2113 .5616
.k L3321 .2099 5420
k.6 .3156 2079 .523k
4.8 . 3006 . 2053 « 5059
5.0 .2869 2023 L1892
5.2 .27 .1991 . <Jh735
5.4 .2630 .1956 14586
5.6 .2525 .1920 Qs
5.8 .2428 .1883 311
6.0 2339 .1846 1185
6.5 2142 1755 .3897
7.0 L1977 L1667 . 3643
7.5 .1835 .1583 .3419
8.0 L171h .1506 .3219
8.5 .1607 143k L3041
9.0 L1514 .1368 .288L
9.5 .1430 .1306 <2737
10.0 .1356 .1250 . 2606
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TABLE 2.~ FUNCTIONS DESCRIBING TEMPERATURE-VELOCITY

CORRELATION N(y,m) = Ny(y) + m@No(y)

FOR FRANDTL NWMBER o = O

y N1 (y) No(y) Ni(y) + Ne(y)
0 1.0000 0 1.0000
2 .9881 .0058 .99%9
b 9530 .0233 . 9763
.6 .8970 .0507 OhTT
.8 . 8236 .0857 .9093
1.0 .T369 .1256 . 8626
1.2 .6418 L1675 . 8094
1.4 5432 .2083 L7515
1.6 55 2455 .6909
1.8 .3526 .2768 .6294
2.0 .2676 . 3008 5684
2.2 .1926 .3169 . 5004
2.k .1286 3249 4535 -
2.6 L0761 .325% Lok
2.8 L0345 .3190 «3535
3.0 .003%0 <3073 .3103
3.2 -.0198 L2904 .2716
3.4 -.0353 27127 L2373
3.6 ~.0kk9 .2522 .207L
3.8 -.0500 2312 1812
4.0 -.0518 .2103 .1585
k.2 -.0513 .1902 .1390
bk -.0kg2 L1711k .1222
h.6 -.0463 .1540 L1077
.8 -.0k29 .1382 .0953
5.0 -.039k L1240 .0846
5.2 -.0359 L1113 L0754
5.4 -.0327 L1001 0674
5.6 -.0296 .0901. . 0605
5.8 ~-.0269 L0814 .0545
6.0 -. 024k L0736 .0hkg2
6.5 -.0193 .0580 .0387
7.0 -.0155 .0k65 .0310
7.5 -.0126 .0378 .0252
8.0 -.010k4 .0312 .0208
8.5 -.0087 .0260 L0173
9.0 -.0073 .0219 .0146
9.5 -.0062 .0186 .0125
10.0 -.0053 .0160 .0106
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TABLE 3.- FUNCTIONS DESCRIBING TEMPERATURE CORRELATION
M(y,m) = My (y) + meMp(y) AND TEMPERATURE-VELOCITY
CORRELATION N(y) = N1(y) + m°No(y) FOR

PRANDTL. NWMBER ¢ = O.71

Y Ml M2 Ml + M2 Nl Ne Nl + N2
0 1.000 o} 1.000 1.000 0 1.000
B4 .93h .033 .967 .929 .0%35 .96k
.8 .T55 .115 .870 ST3T .126 .86%
1.2 .51k .218 732 1482 237 .T19
1.6 . 270 .309 579 231 .326 .557
2.0 071 .359 130 .03h . 366 400
2.4 .| -.060 .358 .298 -.085 .352 267
2.8 -.124 L3317 <193 -.131 .298 L167
3.2 -.133 248 115 -.128 .225 .097
3.6 -.110 178 .068 -.101 .153 .052
4.0 -.084 .120 .036 -.069 .095 .026
5.0 -.024 .024 .000 -.016 .019 .003
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TAELE 4.~ TEMPERATURE AND HEAT-TRANSFER SFECTRUM

FUNCTIONS 6(x)/8n AND A(x)/Aw FOR

PRANDTL NIMBER o = 0.7l

x 6/8n /™
o 0 0

.2 .00hk1 .0034
4 .0561 .OkT79
.6 .2229 <194k
.8 .5035 4516
1.0 .798% .The2
1.2 L9784 .9k96
1.4 9751 .99LT
1.6 L8151 .8801
1.8 .5837 .6709
2.0 .3631 4068
2.2 .1983 .2625
2.4 .0959 L1371
2.8 .0160 .0269
3.2 .0017 .0035
3.6 .0001 .0003
k.0 .0000 .0000
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(e) Prandtl mubers ¢ =0, ¢ = 0.01, and o = 0.10.

Figure 1.- Temperature correlation coefficient M(y,m) = 68’ /62-

m=cosa; y = ﬁ r/A; A = Turbulence microscele;
f(y) = Velocity correlation.
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m=| ,a=0
m=0, a= 90°

{b) Prendtl pumbers ¢ = 0.71L and o = 1.

Figure 1.~ Continued.
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————— m=1| , @ =
m=0, a=
— — f(y)
\ ' c =10
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(¢) Prandtl numbers o = 10 and ¢ = 100.

Flgure 1.- Concluded,
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L= co-s o.E\Il(y) + NQ(Y)] .

NACA TN 4186

1

(&) ?iji = sin o Ny (¥).

Sup

Figure 2.- Temperature-velocity correlations.
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(a) Prandtl numbers o =0 &and ¢ = 0.10.

Figure 3.~ Tempergﬁgre-velocity correlation coeffliclent
N(y,m) = Bu'P/bup. m = cos aj ¥ = V2 r/A; A = Turbulence microscale;
f(y) = Veloeity correlation.
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(b) Prapdtl numbers ¢ = 0.7L and o = L.

Flgure 3.- Continued.
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(c} Prandtl numbers ¢ = 10 and o = =,

Flgure 3.- Concluded.
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1.0 ~.

\ : ———— =0 ,03=]l,0=©

Figure 4.. Temperature-velocity correlation coefficlent
No(y) = (2/8in En)eu'nlﬁ for various Prandtl numbers.
£(y) = Velocity correlstion; y = V2 r/A; A = Turbulence microscale.
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Flgure 5.~ Three-dlmenslonel temperature-spectrum function a(x) for

various Prandtl mmbers. x = KA\VZ; 6111 = Maximm value of 8;
A = Turbulence microscale; B(x) = Turbulence energy spectrum.
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Figure 6.- Three-dimensional heat-transfer spectrum function A(x) for
various Prandtl numbers. x = kA/|2; B, = Meximm velue of 3;

M\ = Turbulence microscale; E(x) = Turbulence energy spectrum.
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