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LTFT AND MOMENT ON THIN ARROWHEAD WINGS WITH SUPERSONIC
EDGES OSCILLATING IN SYMMETRIC FLAFPING AND ROLL
AND APPLICATION TO THE FLUTTER OF AN
ALL-MOVABLE CONTROL SURFACE

By H. J. Cunninghem
SUMMARY

A theoretical treatment is presented for determining lift and mcment
on thin arrowhead or pointed-tip wings of which the delta plan form is a
special case wilth an unswept trailling edge. On the basis of linearized
supersonlc potential-flow theory for the symetric flepping and rolling
modes of harmonlc oseillation, expressions have been developed for the
gsection and total forces and moments to the third power of the reduced
frequency. A limitation to the Mach number range is that the component
of flow normal to all edges 1s supersonic or sonic.

Sample results are given in the form of curves to show that retention
of terms to the third power of the frequency gives good accuracy over a
range of frequency that covers many practical flutter applications. Plots
are given of the spanwise distribution of section force and moment for
symmetric flapping and rolling modes. Approximating the section force
and moment by multiplying the section quantities of a rigid translating
wing by the flapping and rolling mode shapes (termed a "finite-wing strip
theory") is shown to result in an overestimation of forces and mcoments in
comparison with the results of the present analysis.

A modal type of flutter analysis for an sll-movable control surface
wherein all bending and twisting flexibilities are effectively concen-
trated in a supporting shaft is made by use of natural (coupled) modes.
A sample flutter analysis using two coupled modes is given for a Mach
number of 1.6 for an arrowhead wing with the leading edge swept back
45° and the trailing edge swept forward 15°. A near coincidence of the
first two natural frequencies 1s found to be detrimental as regards
stiffness required to prevent flutter.
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INTRODUCTION

In the continuing problem of analyzing the flutter of wings and
control surfaces on high-speed aircraft, the flutter of all-movable con- x
trol surfaces is of current concern. Inasmuch as such all-movable sur-
faces are controllable in pitch about en axis, their root support may
not be so rigid as that of a fixed-root airfoil. Consequently, the
nstural vibratory modes and the flutter mode may involve epprecilable
amounts of symmetric flepping and roll of the elastlcally undeformed
surface about & relatively flexible root support. In order for a flutter '
analysis to be carried out, the distribution of air forces on the har-
monically osclllating surface is needed.

The treatment of the present anslysis 1s limited to arrowhead plan
forms with supersonic leading and trailing edges. Expressions are pre-
sented for the velocity potential and the distributions of associated
forces and moments. The veloclty potential is obtained by expanding the
general velocity potential for "purely supersonic" plan forms, developed
in reference 1, in terms of a frequency parameter, as was done in refer-
ence 2. The expansion is carried to the third power of the frequency,
inasmuch as expansions of this order are consldered sufficient for a
large number of practical epplications. In reference 2 the arrowhead
plan form was assumed to be oscillating in vertical translation and pitch
end, in the present study, the plan form is assumed to be osclllating in
a symmetric flapping mode and in roll. The veloclty potentials for
flapping and roll are used to obtain force and moment coefficlents for

gtreamwise sections of the wing. Totael force and moment are also
obtained. v

Several other investigations have dealt with the forces on a rolling
arrovhead wing with supersonic edges. In reference 3 an expression is
given for the total rolling-moment coefficient for an osclllating delta
wing. This rolling moment is exact within the framework of linearlzed
supersonic potential-flow theory and is used in the present paper to
illustrate the accuracy of the total rolling moment approximated by the
frequency-expansion method for the special case of a delta wing. Refer-
ence 4 includes expressions for the dynamic stabllity derivative for
damping in roll of the arrowhead wing based on retention of only the
first term in the frequency expansion for the velocity potential.

For the purpose of illustrating a main use of the sectlion forces and
moments for flapping motions, a coupled-mode type of flutter analysis is
outlined for an ell-movable control surface. Each coupled mode 1s
assumed to contain components of flapping, vertical translation, and
pitching. A numerical example of such a flutter analysis 1s included.

Other uses for the section forces and moments for the flapping mode and
some properties of section and total force and moment coefficlients are
also considered. .
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SYMBOLS

velocity of sound in main stream, ft/sec

functions of x, &, and M defined following equation (4)

generalized mass parameter, Ai/8pb5 (See equations (21)
and (27))

generalized mass terms defined by equation (21), slug-ft©

Bip, Bor coefficlents in veloeity potential for flapping
wing defined by equations (AL) to (AT)

coefficients in veloclty potential for rolling wing defined
by equations (A9) and (Al0)

semichord of wing at root or at midspan, ft

generalized aerodynsmic force coefficients defined by
equations (24) and (25)

functions of x;, ¥y, and B defined in equations (BL)
and reference 2

angular flapping displacement of wing semispan sbout axis
¥ = 0, positive for wing tip down

amplitude of flappling displacement £, radians
component of flapping displacement f in mode i, radians

time derivatives of £, h, and ¢, respectively

functions of x3, ¥y, and B defined by equation (B9)

structural demping coefficients, general and in mode i1
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vertical displacement of wing at x = x5 and y = 0,
posltive downward, ft

ampllitude of vertlcal displacement h, ft
component of vertical displacement h 1n mode 1, ft

section mass moment of inertis in plteh about x =
and in flapping about y = O, respectively, slug-ftz/ft

function of X;, ¥, and B Gefined in equation (B2)

reduced frequency, bw/V

components of section 1lift and section pltching-moment
coefficlents due to vertlcal translation and pitching
of rigid wing, defined in reference 5 (1 =1, 2, 3, L)

complex sectlon 1ift coefflcient due to symmetric flapping
oscillation

camplex section 1lift coefficient due to rolling osecillation

ﬁi £ total coefficlents, spanwise integrals of section
? coefficlents under bar

section mess, slugs/ft
Mech number, V/a

section and total pitching moment about Xg» positive
leading edge up, ft-1b/ft and ft-1b, respectively

complex section pitching-moment coefficient sbout Xo due
to symmetric flapping oscillation

camplex section pitching-moment coefficient about xg due
to rolling oscillation

parts of Mi,f and Mi,¢ obtained when X = 0
total rolling-moment coefficlent due to rolling oscillation

local perturbation pressure difference, positive up, lb/sq £t
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P, P section and total 1ift force, positive down, 1b/ft and
1b, respectively

Rmf section cross product of inertia referred to x = xg,

y = 0, slug-ft2/ft

Qy generalized aerodynsmic force in mode 1, 1b-ft
R= f(x-8)2-8%G -2
ﬁm, Sp section statlec mass unbalance about xg (positive leading

edge up) and about y = 0 (positive right tip down),
respectively, slug-ft/ft

Smn function of x3, ¥, and B, defined in equation (B2)
t time, sec

u, Uy, V, Vg characteristic coordinates defined in appendix A

\'s velocity of mein stream, ft/sec

w dowvnwash at surface of wing; that 1s, increment of
vertical veloeity imparted to alr stream by position
or motion of wing surface, positive when air is deflected
away from that surface, ft/sec

W virtual work, see equation (22), lb-ft

x', y', 2! rectangular Cartesian coordlnates, ft

X, ¥ rectanguler Carteslan coordinates, nondimensional in terms
of chord 2b; x = g%, ¥y = g%

X0 x-coordinate at piteh axis and ecoincident pitching-moment
axis

X1 x-coordinate of tralling edge

Yy y-coordinate at wing tip, C/(1L - CD)

Zm(x,¥,t) vertical displacement of wing at point (x,y), positive up,

ft
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angular pitching displacement of wlng about X5, positive
leading edge up, radians

amplitude of pltching displacement o, radlans

half-spen integrals of 1ift and moment coefflclents,
defined by equations (26)

component of piltching displacement o In mode 1, radians

sweep angles of leading edge and tralling edge, respectively,
positive for sweepback, deg

rectangular Cartesian coordinates used to represent location
of sources in xy-plene

generallzed coordinate indleating amount of mode 1 con-
tained in & given displacement

emplitude of generalized coordinate §4

air density in main stream, slugs/cu ft

rolling displacement of wing about y = 0, positive right
wing down, radians

amplitude of rolling displacement ¢, radians

disturbance velocity potentlal, ftz/sec
circular frequency of oscillation, radians/sec

circuler naturel frequency of mode 1, radians/sec

frequency perameter, 2kM2/B2
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, , absolute value of quantity between vertical bars

A bar over a quantity indicates value of quantity integrated over
the span (except ®)

ANATYSTS

Equations for Velocity Potentisals

Integral form.- On the basis of a rectangular coordinate system
moving forwaerd with the wing at a constant supersonic speed V in the
negative x'-direction (see fig. 1), the differential equation for the
propagation of small disturbances to be satisfied by the velocity
potential @ is

1/(3 3\%; _[_? 32 32
a2<§%.+ v axf) Z (a(x|)2 ¥ a(y.)E * a(zx)é>¢ (1)

The principal boundary condition that the velocity potentisl must
satlisfy is that the flow at the wing be tangent to the wing surface.
This boundary condition can be expressed by

@L

BZ') =0 = w(x',y',t)
z'

(V 5%7 + g%)zm (2)

where %, 1s the vertical displacement from =z' = 0 of any point of

the wing (fig. 2) and w is the dowvnwash; that is, w 1s the vertical
velocity imparted to the air stream by the position or motion of the
wing surface, positive when directed away from that surface. In accord-
ance with linearized theory this boundsry condition is evalusted at the
projection of the wing on the z' = 0 plane, and thus no effect of
wing thickness is taken into account.

The solution for @ +that satisfies the present boundary-value
problem (wing with all supersonic edges) 1s similar to the solution
developed in reference 1 for an infinite swept wing. The problem is
satisfied by a distribution of sources on the upper (z = +0) wing sur-
face and, in the absence of thickness, the same distribution but with
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opposlte sign on the lower (z = -0) surface. At this point in the
development of ¢ and for the rest of this enalysils, it is convenlent A
to use the coordinastes x,y as nondimensional quantities, obtalned by
dividing x',y' by the root chord 2b. Then, in a form slightly dif-
ferent from that appearing in equation (9) of reference 2, ¢ can be
expressed as -

Blx,y,+0,¢) = 2 f f 28a1,8) (et MBop (B) oy oy (3)
—~ _ kM2 b 2 _ .2 2
where ‘”";32_ (with k-—v), R=J(x-§.) - p=(y - 1)<, and ¢

and 1, which denote the loeation of sources, are nondimensional varil-
ables of integration in the x and y directions, respectively. The
region of integration S i1s, for example, the shaded area in figure 3(a)
prescribed by the forward facing Mach cone with apex at the point
(x,¥,+0). The local downwash w 1is positive when the air is diverted
outward from the surface by the inclination or motion of the wing.

If the method employed in reference 2 is followed, the integrand of
equation (3) is expanded in a Maclaurin's series with respect to o.
When the series is limited to the third power of & and the terms are

collected with respect to £, the result is =
B(x,y,40,t) = 2 |[w(t,q,t){agt+a, £+ L2+
T T BRI RT P2 R
S
3
a5§R—+ b0R+b1§R)d'qd§ (%)
where
ag = 1 - 1iox QE X + 1 Eé-x3
6
&l=iw+a')2x_iﬁ)52
2, D
= - & W
as 2+12X
D
&3 = -1 - ;
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b0=-wé+im—3—-x
M oM
by =t B
mQ

A difference in the present notation from that of reference 2 1s that
herein §, 1n, and & and consequently R, a,, and b, are used in

nondimensional form.

Reference 2 treated the vertical translation and pitching modes of
osclllation. The present paper treats the symmetric flapping and rolling
modes illustrated in figure 3, and the integrated expressions for ¢ for
these modes are given in the following seections.

Integrated form for symmetric flapplng and roll.- The displacement Zy
and the resulting downwash w on the upper surface in equation (2) are:

For £,
" = el (58)
W= -2bfly|
For o,
= -2bgy
= (5p)
w = -2bdy

Evaluation of the integrals indicated in equation (%), after sub-
stitution of the eppropriate downwash, results in the following forms
for the velocity potential on the upper surfeace:

p: = :;(Eb)e[ﬁ-f‘jxa - 852 + ag* tanh-1 /x—-l—l-' giyl +
X + Bly

2
Byp cos™L E;E_EEQZ_.+ Bop cos—L X = BTCY (6a)

B(Cx + ¥) B(cx - y)
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Py = ?(Eb)z%cp,/xa - P22 - By cos~l X By

B(Cx + ¥)

-1 x - B=C
Bp cos E(cT:L%] (6v)

where, with reference to the shaded regions of integratlon of figure 3,
the terms involving the coefflcients Ap and A¢ contain contributions

from regions I, II, and III, and the terms with the coefficlents Ap¥,
Bir, and Bop are contributed solely from regions I, IT, and III,
respectively. The coefficients Ap, Ap¥, A¢, By, and Bop are glven

in eppendix A. Appendix A also indicates how the integrations of equa-
tion (4) were carried out, as in reference 2,~by the convenient use of
the characteristic coordinate system shown in figure 3(b). The tanh~1
function with its coefficient Ag* arises as & result of the dlsconti-

nulty of spanwise slope at y = O in the symmetric flapping mode.

For the limiting condition of sonle leading edges with BC =
(that 1s, with the Mach lines from the leading aspex coincident with the
leading edges and the entire plan form contained in region I of fig-
ure 3), equations (6) reduce to the forms

Pl 2 [2 ;- -1 {x - glyl
(¢f>BC=l = ?§(2b) <%lf x< - Bzya + Ag* tanh i " BIYI) (7a)
. _ =g 2 <2 _ 2
(¢q,)ﬁc=l = 22(2b)Aypfx? - By (70)

The coefficients Ajp and Alcp and the development of equations (7)
are also given in appendix A.

Concerning the development of veloclty potentials, it 1s to be
noted that thus far the only restriction with regard to the tralling
edge is that the component of flow normsl (in the xy-plane) to all
points of the treiling edge is supersonic or at least sonic. Thus,
the trailing edge can be Jagged or curved - or need not even be sym-
metric about the midspan.

A

N
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Section Forces and Moments

The foregoing expressions for velocity potential are now used to
obtain the forces and moments on any wing section y, as in figure 1,
and the observation is made that only those restrictions on the
tralling edge discussed 1n the preceding pareagreph for the veloclty
potential apply also to the section forces and moments.

The difference between local pressures on the upper and lower

surfaces of the wing is
= 2P+ L P) (®)

where p 1is the density of the main stream and ¢ is the velocity
potential for the upper surface, given in equations (6) or (7). With
the signs used, Ap 1is posltive upward.

The expression for the force, positive downward, on sectlon y of
figure 1 1s obtalned by integrating as follows:

X1
P=-2b Lp dx (9)
y/C

where x7(y) 1s the x coordinate of the trailing edge. The section
pitching moment (positive leading edge up) about an axls at x = Xg 1is
X

My = kb2 y/z(x - X0)0p dx (10)

Substitution of equation (8) into equations (9) and (10) yields
X X1

2ik @ ax (11)
y/c : y/c

X] Xy 1
- ax + 2ik xf dx}- 2x,bP (12)
y/C .[r/c paxs ;/;c o

P =209

My = LpbVixp
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Upon substitution of § from equations (6) or (7) into equa-
tions (11) and (12)5 the section 1ift and pitching moment can be
written as

g
|

= -ll-pbvzkzeim't' EfO(Ll,f + iLz,f) + (Po (Ll,qJ + iLa,(P)] (13)

My, -L»pb2v2k2eiw‘°[fo(ml,f + mg,f) + cpo(Ml,q, + ng,q,j (1k)

In the past, some writers (for example, ref. 2) have used the nota-
tions Ip, Lo, M, and My as flutter coefficients associsted with
bending or vertical translation of wings. Inasmuch as each section of
the wing translates vertically in the two modes of oscillation treated
in the present paper, the additional subscripts f and ¢ are used in
equations (13) and (14) for the purpose of differentiating these new
coefficients from those for a two-dimensionel wing or a wing translating
vertically as a rigid unit.

The section contribution to the bending moment about the wing root
as a result of symmetric flapping (positive in the wing-tip-down direction)
is

2p|y|P = -ll-pb2V2k2eiwtfo(2‘y|Ll,f + iZiy[La,f) (15)

snd the section contribution to the rolling moment due to roll (positive
right wing down) is

2oyP = -bobPVPKPelyq (2y1g o + 12¥Ip o) (16)

The sectlon force and moment coefficlents Li,f and Mi,f of equa-
tions (13) to (16) are given in appendix B.

Total Forces and Moments

The total aserodynamlc forces and moments needed for a flutter
anelysis or for any other use can be obtalned by lntegrating the section
gquantities over the span. At this point in the present analysis further
treatment 1ls restricted to plan forms with a symmetric tralling edge and
particularly to & swept trailing edge which meets the leading edge at a
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pointed tip as illustrated in figure 1. The angle of sweep of the
trailing edge is Aqp (sweepback is positive), and at the positive
Cc
wi tip the coordinate = = where D = tan .
ng tip oo Y =¥t = T~ oo) A

Integrating equations (13) and (14) across the span ylelds

B - f 2LP dy = 2 ﬁ ® oop ay = -8pb2V2k2eiwtfo<fl p+ilp g (D)
Span 0 ’ ’

¥ —
M, = f 2, dy = 2 f Y ow, ay = -8pb3V2keeiwtfo(ﬁl’f + iME,f) (18)
an 0

where the contributions due to roll are zero by virtue of their anti-
symmetry. The total root bending moment, obtained by integrating equa-
tion (15) over the positive half-span, is

Yy I
P |y |p ay = -BpbIviilelute, 2y<Ll s+ 1Lo f)dy (19)
0 O }) 2

and the total rolling moment, the full-span integral of equation (16), is

g | g
2 f ® 12y ay = -8ppPvikteltty 2 f K 2y(L1’cp + iLa’cp)dy
0 - 0

= -8pbvak2eivty (i 1M 2
P Ty, + cp,2)dy (20)

Bars over the coefficients in equations (17), (18), and (20) denote
total ccefficients; for example

= t
Li,z = 2J:' L, &

Expresslons for total force and moment coefficients are given in
appendix B.
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Analysis of Flutter Involving Flapplng and Pitching

On the besis of the simplifying assumption that 8ll flexibility is
concentrated in the supporting structure at the root, a method is out-
lined in this section for analyzing the flutter of an all-movable con-
trol surfaece. The support flexlbility allows the control surface to
pitch, to flep, and to translate vertically. Coupled modes are used
because experlience has shown that the natural vibratlion modes of the
control surface are often strongly coupled, and the necessity for
obtaining frequenclies of hypothetical uncoupled modes 1s thereby
elimingted.

The present analysis is adapted from thet of reference 6 and only
the essential points are glven herein. The use of two coupled modes 1s
illustrated, but any number cen be employed. For two modes

h(t) = hlgl(t) + h2§2(t)
a(t) = 8181 (t) + 0Ex(t)
£(t) = £18 () + £o8p(t)

where h, a, and f are the displacements in vertical translation,
pitching, and flepping, respectively; h;, 84, and f; are the components

of the three types of motion in mode 1 and are not functions of the
gpanwise coordinate in the present usage; §i(t) = ;ie“”t 1ls the gener-

alized coordinate In mode 1 and ;i is its amplitude, which in general
is complex to account for phese dlfferences of the modes.

The generalized mass of the semlspen for mode 1 1s

Tip
Ay = J; [mhiz + L9042 + Ipfy® + 2(scbhiei + Sehyfy + meeifi)] dy"

(21)
where
m wing mass per unit span
I pitching mass moment of inertis about x = x5 per unit span

Ie flepping mess moment of inertia about ¥

O per unlt span
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Se. static mass unbalance about x = Xg per unit spen
Se static mass unbalance absut y = O per unit span
Por mass product of inertis asbout x = Xgs ¥ = 0 per unit span

The virtual work done on the semispan control surface as it moves
through the (real) virtual displacements 5§l and 8o 1s

P
88 L/:“ (Pry + M0y + pryfy)) &' +

Tip
sgejo\ (Phe + Mo + Pfaly'l) dy’

W

Q1881 + QpdEo (22)

where

3

P = -upbv2k2eiw’°[-h§<Ll + iLp) + ag(ls + 11,) + £o(Iy ¢ + ug,f)]
- (23)

M, = -bpb2yBglelut Ij}iiol(ml + AMp) + a.o<M3 + mu) + fo(Mi’f + :.Me,f)]

J

The generalized forces Qi’ after expansion and collection of terms, can
be represented as

Q) = Bpblafelot (5.1011 + 52012)
(24)
Qp = 8ob%PelOM g 001 + £50pp)
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0117 T2
<Tsp

Bofo) [T'g

The minus signs appear with the genersaslized aserodynamic-~force coeffi-

cients

so that their sign in the flutter determinant to follow

coincldes with that of reference 6. As us€d herein the elements Cpy
are in a nondimensionsel form, however, and differ in that respect

from reference 6.

The lntegrals Pi are

r = J; yt(Ll + iLz)dy

Iy = ft<L5 + 1L1|.)dy

Ty = foyt(Ll,f + iLp g)dy

r; = J:y Sy + aep)ay

Yy .
P9 = o (Ml,f + ng,f)dy

To = J;Wt 2IyI(Ll + iLg)dy
T, = ft 2|y |(T5 + iLy) &y

(25)

r(26)
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where Yy, = ——il——. Expressions for the sectlon coefficients L and
tT 1 - cp 1

M3 (1 =1, 2, 3, 4) are given in reference 2 and their spanwise
integrals fi and ﬁi, In reference 5. It is to be noted that the
integrals Ty ere, for convenience, evaluated over the half-span;
whereas the barred quantities ii and E& represent the full-span

integrals. Accordingly, one-half of the latter quantities are to be
used. The integrals P5 and P9 equal one-half the full-span or

total coefficients appearing in equations (17) and (18), respectively.
The integral P6 appears on the right side of equation (19) and its

integrand is given by equation (BlO) of appendix B. The integrands of
T'> and I, are obtained by following & procedure parallel to that

described for obtaining the integrand of T¢ DPeginning with
equation (B8).

Finally, with the intermediate steps of reference 6 omitted, the
equations representing the dynamic equilibrium of flutter are

8ob3v2k2elctly al[ - (%)2 (1 + igl)J + Cu} + £5C10

\

=0
o > (27)
O ig{aa[ ()G~ 182)] + Caz]’ =0
where
Ay
8, e —
3 8pb?

In equation (27) a; and Cp, are nondimensional for convenience and

only In this matter of form and the number of modes treated does equa-
tion (27) differ from equation (12.30) of reference 6.

The nontrivial flutter solution is obtalned by requiring the
determinant of the matrix of coefficients of ii to vanish as follows

all:l - (%)2 @+ igl)] + Cpp C1n
Cop ae[l - (%)2(1 ¥ 1g2)] + Cop

A sample flutter solution is carried out in appendix C.

=0 (28)
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DISCUSSION

Some Charascteristics of Forces and Moments

Spanwise distribution of forces and moments.- The distribution over
the span of the various components of 1ift and moment is examlned as a
metter of interest. As an exemple the coefficients of equations (13),
(llr)6 and (15) have been calculated at a number of spanwise stations for
a 45° delta plan form (C =1, D = 0) with Xg = 0.5, M= 1.6, and

k = 0.5. These results are plotted as functions of the spanwise coordi-
naete in figure 4. For the symmetric flapping mode the section 1lift and
pitching moment ere shown in figures 4(a) and 4(b), respectively. For a
rolling oscillation the section 1lift is shown in figure 4(c). 1In each
of these flgures the solid-line curves result from the incluslon of all
terms to the third power of the reduced frequency k, and the short-dash
curves result from the inclusion of terms to the first power of k. As
can be noted from the proximity of the solid-line and short-dash curves,
the additlon of the second term wilth the next higher power of k to the
first term in each coefficlient has a moderate rather than a large effect
everywhere on the span for this sample set of parameters, even for the
rether high value of k = 0.5.

In flutter analysis a felrly common practice, when the exact span-
wise distributions of force and moment are not known, 1s to use the
spanwise distributions for rigid-wing motions multiplied by the mode
shape (a procedure referred to as strip theory). This method was used,
for example, in reference 9 in analyzing the flutter of cantilever wings
of rectanguler plan form. Therefore, as an interesting comparison, the
results of a "finlte-wing strip theory" are also shown in figure 4.
These curves were obtailned by multiplylng the section coefficients (to
the third power of k) for a rigid, vertically translating wing (with
the seme plan form and stream flow parameters) by the appropriate
deflection mode shape, 2 yl for symmetric flepping and 2y for
rolling. The factor of 2 appears with the strip-theory results because
the unit of vertical translation is the root semichord b, whereas the
flapping and rolling deflectlons are referred indirectly to the full
chord 2b. The strip-theory forces and moments are moderately to
appreclebly different from the results of the present method, particu-
larly in the cese of the in-phase components Ll,f’ Ml,f’ and Ll,@'

This difference is a direct measure of the effect of aerodynamic induction
agssocliated with the flapping and rolling mode shapes treated in the pres-
ent paper.

Accuracy as function of reduced frequency.- The coefficients of the
present analysls have been obtained from a power-series expansion in
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terms of the reduced frequency k. An evaluation of the loss of accu-
racy as k Increases from zero is necessary to establish confldence in
the use of the coefficients and to-determine an upper boundary of k
beyond which the present coefficlents, which extend to the third power,
should not be used.

As en exsmple, for & Mach number of 1.6 end with x5 = 0.5, the
total 1ift coefficlients Ll £ @end L2 ¢ of equation (B27), the pitching-
moment coefficients Ml £ and M2 £ of equation (B28), and the rolling-
moment coefficients M¢,l and M¢’2 of equation (B29) have been evalu-

ated and the expressions for delta wings with supersonic and sonic edges
are as follows:

L.
_l'é‘i: = 0.171077 - 0.134852k2 + 0.0568936k* - 0.0155879k%

c
__.Leéf = 0. 555761% - 0.168k42k + 0.0953473k> - 0.0312k71k?

c
M

i:éi - 0.102646 - 0.096323k2 + 0.okbkas0k - 0.0127538K°

c

- | > (29)
iéi = o.2668801-‘}I - 0:112297k + 0.071511k3 - 0.02k997Tk>

c
Mq’__;l = 0.136862 - 0.0770583k2 + 0.0252860k™* - 0.00566834k®
c
Mi;f = 0.533761¢ - 0.112297k + 0.0476736k> - 0.0124988k7

c

As explained in appendix B the totael coefficients for the speclal case
of the delta plan form are obtained to the seventh power of the frequency
by application of the reverse-flow theorem.

The coefficients of equation (29) are plotted in figure 5 in such a
way as to indicate the use of only the first term (the horizontal line
in each cage), then the successive addition of the second, third, and
fourth terms in easch coefficient in order to demonstrate the corre-
sponding progressive improvement in accuracy of these series for higher
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frequencies. The highest power of k conteined in each calculation is
indicated near the right end of the curve. For the rolling-moment coef-
ficlents of figure 5(c), the exact (not frequency expanded) result of
Miles (ref. 3) for delta wings 1s also shown and the convergence of the N
series result is evident. (The exact result was obtalned by using in

equation (70b) of reference 3 the aerodynamic functions £ tabulated

in reference 7.) The relatlon between the present notation and that of

reference 3 1s

1k<— + iﬁ¢ )

20, = —\wll o2 (30)
b c3

where Clp is the derivative of rolling-moment coefficlent with

respect to rolling velocity (dynsmic-stability notation). The deriva-
tive Czp of, for example, reference 4 corresponds to the first term

of Mp , with the relation

My o(1 - CD)3

= (31)

2y, =

If an inaccuracy of 10 percent can be tolerated, the first two
terms of equations (29) are acceptable over & range of @ from O to 2.2
for the coefficients of figures 5(s) and 5(b), and from O to about 2.7
for the coefflcients of figure 5(c). Over these ranges of @ the curves

utillizing as the highest power k7 and k8 are essentially exact, and -
in figure 5(c) the exact result itself from reference 3 is available for
comparison.

The accuracy of the curves of figure 5 extends to higher values of
® than was noted in reference 5 for deltas wings oscillating in vertical
translation and pitch, and also in reference 8 for two-dimensionsl wings.
The reason for the improved accuracy sppears to be that, since the local
emplitude of the oscillation modes treated herein (symmetric flapping and
rolling) is zero at the wing center section and increases progressively
toward the wing tips, the wing section that might be termed the "repre-
sentative section" is located farther outboard where the local reduced
frequency 1s smaller than the baslc or reference k, which 1s defined in
terms of the root chord, k = wb/V.

The accuracy shown by figure 5 applles specifically to delta wings.
Some information concerning the accuracy for the general arrowhead plan
form is shown by table IIT of reference 5 and the assoclated discussion,
where sweepforward of the trailing edge (decrease in aspect ratio) is
shown to result in improved accuracy, and conversely, sweepback of the
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trailing edge (increase in aspect ratlp) results 1n decreased accuracy
for the total coefficlents L; &and M; for transletion and pitching

modes of oscillation. In fact when App was decreased from 10° to -20°,

the accuracy espproximately doubled. For the modes of osecillation treated
in the present paper no reason for expecting a different trend of accu-
racy as a function of the tralling-edge sweep angle 1s epparent.

Results of a Sample Flutter Calculation

In the analysls a method is outlined for analyzing the flutter of
an all-movable control surface with the flexibllity concentrated in the
root support so that the motions of the surface are made up of flapping,
pltching, and vertical translation. A numerical example of a flutter
analysis for the configuration shown in figure 6 1s carried out in
appendix C, where the pertinent parameters and mode shapes are glven.
The results are plotted in figure 7 as functlons of the ratio al/“?'

Figures 7(2) and T(b) give the flutter boundaries in terms of the stiff-
ness parameters bwy/V and bwl/V, respectively, and figure 7(c) gives

the frequency ratios m/wl and myag. In figures T(a) and T(b) a rather

sharp peak of required stiffness appears near a frequency ratio of unity
vhen the structural-damping coefficient g I1s zero, as shown by the
solid-line curve. The peak 1s greatly reduced if g 1s increased to
only 0.03 (shown by the dashed line) and a further reduction is to be
expected for higher values of g, but even large amocunts of damping have
relatively little effect on the required stiffness for frequency ratios
less than about 0.6 or 0.7. In asctual structures, dampling greater than
the equivalent of g = 0.0L or 0.02 may be obtainable only by the addi-
tion of damping devices. Figure 7(c) shows the frequency ratlos m/wl

and w/wQ as functlons of al/ag. Agein the solld-line curve 1s for

g = O and the dashed-line curve for g = 0.0%5. For values of ai/wQ

less than 1.0 the flutter frequency e falls between w; and . As
GH/QQ increases toward a value of 1.0,  is seen to approach both ay
and wp; and as a value of 1.0 is surpassed, @ drops below both w; and
up. Structural demping has an almost negligible effect on the frequency.

In the final section of appendix C the effect of using strip theory
(multiplying the spanwise distribution of force and moment for a rigid
translating wing by the flapping mode shape) to obtain 1ift and moment
distribution for only flaspping motion 1s examined. The resulting flutter
boundaries are very close to those of figure 7 and have, therefore, not
been added to the figure. Thus, even though there are appreclable dif-
ferences between the spanwlse distributions of force and moment due to
flapping motion as obtained by the two methods, virtually no difference
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in the resulting boundaries was found for the particular parameters and
modes of the present exemple. No generalizeation from these results is
believed Justified, however, regarding the use of strip theory.

In sssessing the relative generality of the results of flgure 7, a
fact to be kept in mind is that each of the two coupled modes of the
control surface 1s held constant on the figure. For an actual structure,
1f the frequency ratio of the first two modes were changed by altering
the flapping or pitching stiffness, or both, the coupled mode shepes them-
selves would probably change and caleculation of a new flutter boundary
would be necessary.

CONCLUDING REMARKS

On the basis of linearized supersonic potential-flow theory, expres-
sions have been developed for the veloecity potentlal and for the section
and total forces and moments on thin wings of arrowhead plan form with
all sonic or supersonlc edges osclllating harmonically in symmetric
flepping and in roll. These force and moment expressions were derived
by using the velocity potential expanded as a power series in terms of
the frequency of oscillation and retaining terms to the third power of
the frequency. The resulting total forces and moments are shown to be
accurate over a range of frequencies wide enough to make them useful for
meny practical flutter applications. Multiplicatlon of the section
forces and moments of a rigid translating wing by the flapping and
rolling mode shapes (called & "finite-wing strip theory") results in an
overestimation of forces and moments in comparison with the results of
the present analysis, which includes spanwise induced effects of varia-
tion of section amplltudes. Use of the forces estimeted by strip theory
for the flepping motion in a single sample flutter solution, however,
gave flutter boundaries virtually the same as the boundaries obtained
wlth the forces glven in the present anaslysis; however, no generalizs-
tion is believed justlified regarding the use of strip theory.

A method of flutter analysis using natural (coupled) vibration
modes hass been specifically adapted to an all-movable control surface
configurgtion wherein all bending and twilsting flexibility is concen-
trated in the supporting shaft. With this method an example flutter
analysis using two natural modes of vibration is carrled out. A near
equallity of the first two naturel frequencies was found to be very
undesirable ag regards the stiffness required to prevent flutter.

Langley Aeronsutlcal Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., October 8, 1957.
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APPENDIX A
DEVELOPMENT OF VELOCITY POTENTTAL

The characterlstic coordinstes used in reference 2 are also used
in the present analysis, but in a nondimensional rather than a dimen-
sional sense. (See fig. 3(b).) Thus, equation (4) can be written

g = L/1 L[} w*(u,v,t) (u + v)Bdu av N
i Mn"l - J(vo - w)(vo - )

Bm'l' 2
w*(u,v,t)pm(u + v)mJ(uo - u)(vg - v) du av| (Al)
u

IIl
where
=M
u = 2B(§ Bn)
= M -
U éE(x BY)

v=X+pq)

vo = ==(x + By)

and w* 1is the downwash in transformed coordinates shown in figure 3(b).
As can be seen from this figure, the limits of integration 1in equa-
tion (AlL) are

Region up uo vy Vo
v (a2)

iT ¥ ug 749 0

IIT v 0 0 Vo
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Where

-1 -8C
1+ BC

Symmetrlec Flapping Wing

For the symmetric flapping mode of oscillaetion, the downwash

w*(u,v,t) in equation (Al) is

w¥(u,v,t) = %D- flv - ul

(83)

Upon substitution of equation (A3) into equation (Al), performance
of the indiceted integrations, and conversion to xy-coordinates, the
result can be put in the form given by equation (6a). The coefficlents

of this equatlon can be expressed as follows:

Ap = ajex + 12k (a,zfx‘? + a.ifya) + ll-ke(d:ll_fx5 +

or.5fxy2) + 18KkJ (or,6fxl+ + a7fx2y2 + Q:Sfyl‘-)
A'f* = elfy2 + ]-l-k2€2fy)+

Byp(x,¥y) = Bre(Cx + ¥)2 + Bsz?Cy(Cx +¥)+
iek[ﬁjf(Cx +y)2 + Bthsz(Cx + y)z:l +
hk2[55f(0x + )% + pgep2Cy(cx + y)3] +

181:5[';37&'(0:&4 -y)5_+_B8fB2Cy(Cx + y)ﬂ

(Ak)

(45)

> (a6)

Bop (}_c:Y) = B]_f<x1 -y}
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where
CE
“r = 5
-M2c2
aop = =2(20 + 3)
332 2
M2¢2
azp - (o + 3)
-MEC o
o M2(662 + 220 + 15) + 20° + 30
b 21{‘[3;_[_ [ :l
as5p E’ia(df2 + 350 + U5) + 30% 9c£|
21+B o
agr = E&a(ale + 15602 + 2350 + 105) + 2ko” + 756° + 450]
36013
2
o thh @2(205 + 28302 + 9000 + 630) + 270> + 2700° + 270<£[
360pM ot
4.2
agp MT 642(1“: P 650 + 105) - 65° + 1502 + ll-5cEl
36OB ot
€1¢ 2
M2
et = 5
~L
ﬁ —
i 200
Bop = —=
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Bzp = g2 ﬁ -
Bye = —o .
Ll-f EBzcﬁ
Bse = _____M2 E/[E(lw +5) + ci—}
168203 -

M2 2 .
Brp = ————[M“(20 + 3) + ©
6f 12B)+C0'2,/E[ ]

Bop = Mg(ho +7) + 30
2
B M=(20 + 5) + 30
8r = IEB]“U c[ ]
wherein ‘

o=5202-l ' -

At the limlting condition of the sonic leading edge, regions II and
III of figure 3 no longer exist end the integration of equation (Al) need
be carried out only over reglon I. Thus, the coefficient Ajp of equa-

tion (7a) 1s found to be

Avp = Typx + 12k2(72fx2 + -r}fyz) + hkz('rhf}& + 1'5fx,y2) +

18k5 (T6fx4 + 1'7fx2y2 + 'rsfyl‘) (AT)

where
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TBf =—2

2
The = —2—(13M2 + 7)

Mt a2
Tgp = ———(8M= - 9)
Sl

Wing Oscllleting in Roll
For the wing oscillating in roll, the integrations of equation (A1)

are carried out by using the following downwash in transformed coordi-
nates (fig. 3(b)) from equation (5b):

www¢)=%¢w-u) (A8)

Upon conversion to xy-coordinates, the coefficient A@ of equation (6b)
can be written
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hp = agy + i2kappxy + h-k2<a.3cpx2y + %cpYB) + 18k3(on5q,x5y + m6¢:qr5) (49)

where

g = F
_ 2m8c3
Cbch ——02

Mee3 2
Az, = =2 _IM=(280 + 45) + 90

e |2 2
Uy = M%(1ko + 15) + 20 + 30
he 2hp8g3 - J

)+5 e
- M'C 2 2 62 l
A5gp = B%hy (150 + 560 + 42) + 150= + 18¢

g = __E:éikf M2(220 + 42) + 302 + 185-[
pTo” — '

For the condition of the sonlec leading edge, the coefficlent Alqa
of equation (7b) can be expressed as

Alcp = Tlcpy + izkracpxy + L2 (-rwxay + -r)_@ys) + 18k> (T5q,x5y + qu,xy5) (ar0)

where
2
Tip = % Top = i’;%
T3p = 2E_(52 4+ 7) Tho = 22 - 7)
31587 3155
2 2 _ ot 2
Top = —==_(M= + 9) Tép = (M2 - 9)

o5’ 9h5p2
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APPENDIX B
FORCE AND MCMENT COEFFICIENTS

Section Coefficients

Symmetric flapping wing.- The coefficlents L:L,f and M:L,f of

equations (13) and (14) are obtained by substituting equations (6a) or
(7Ta), respectively, according to whether the leading edge is supersonic
or sonic, into equations (11) and (12). The general definitions uti-
lized in reference 2 are as follows:

E, = 2“**n+lymxln/x12 _ Bzyz

F & = oftmin |i(520y)exlm(0xl + y)Pcos

-1 X+ BeCy

mn B(Cxy + ¥)

2
820y M(Cx. - v)Beos-L X1 = B CY
(-BCy)~x%;™(Cx; - ¥)"cos 5(cx; = 3)

(B1)
X
Gy, = 2HPHET /lxn\lx2-f32.92dx r
y/C
By = o8Il (g0 e 1 ¥(Cx + y)Peos™t 21 B2y ax +
y/C B(Cx + y)
) be
(-82%y)® | © (Cx - y)eosl X = BXY_ d%
y/c p(cx - ¥)
The following genersl definitions are also introduced:
I, = 2%yl Dignp-1 x - Bly|
ma t x + BY]
' (B2)

- 2m+n+l *1 -1lix - glxl
" uy/c e Jx+ B[] .
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With the general expressions of equations (BL) and (B2) the coefficilents
Ly,r &nd My ¢ (1 = 1,2) of equations (13) and (14) for the condition

of the supersonic leading edge cen be written as follows:

L = Loy oGy + Eqo + @ + € + B 0+ B LI

1,£ = 5o|o1efor + opefop + o3efp0 + 12520 + Pusfoz” + Parfor
BxFazl + 1+ k2(oypGaz + Geplor + + +
3£F03° + BurFoz 4£Go3 + s5pl21 + agpBoy + X7elop

1
ogrElLg + €28540 + ﬁ5fHol+o + B6fHo3l + B'rfFoso + BgrFol ):‘

> (B3)

Lo, = 5= %(-@1@01 - e1e7p0 - B1eForC - BaeFor’) + k(“'afGoe +

azpGpg - ourEos - Asel21 - €2rdho + BBfH030 + Byelos" -

1
BssFou’ - B6£Fo3 )]
.

My ¢ = -;% {“ﬁ%z + C’ve;e(Eo3 - Goa) + °~5f(E21 - Gao) + €1¢5p1 +

BysH 0 + BogByyl + B3e(F130 - Hs0) + Bue(Fiol - Hopl) +

k2 EmfGou + asslpn + age(Eos - Gou) + agz(Baz - Gpp) +

age (E —G)+e + B o+[3Hl+

8e (Eul - Guo 2£5)1 + Pseily) 65813

Brs(F1s® - Hos®) + Bee (Fuy? - Houl)]} \ (B4

%\E"lf (G0 - Eoz) + e1e(Seo - J21) + pre(Hoe0 - F120) +

Pl

Mp ¢'=

Ef(HOll - ] + kkefG% + OL31:"3'21 + aup (Go5 - Eol;)

w

S

5f(G2l - Eee) + €2f(sho - Jlkl) + BzgHyz0 + BygHiph +

5£ (Hol;o - Fluo) + Ber (Hoal - le)]}

w




TECHNICAL LIBRARY

ABBOTTAEROSPACE.COM

NACA TN 4189 31

where Mi,f' and Mi,f are related by the expression

Mip+ Mo p =M o'+ IMp o' - 2"0(1-1,f + iLz,f) (85)

The coefficlents ayps Byp, and egp are defined in appendix A
following equation (A6).

For the condition of the sonic leading edge the coefficients Li,f
and M; p' reduce to
2

_ -l 2
In,r = o7 [M£C01 + Torfoo + TagBop + €1£530 + k (TlLfGO3 + T5pGp1 +

TerEol + TrrBop + TgeE)yq + ezfshoil

> (B6)
-1f1
Lo,f = g[;("’lf%l - elfJ2O) + k(TarGop + Tzplng - TueEqs -
Tsefo1 - “:Ef‘Ili-O):'
-1 )
Mi,e" = 5= {T1eC02 + Tzr(Eos - Goa) + T3f<E2l - Geo) + €1£5p1 +
k2 Etho)_!_ + T5fG22 + Tee (E05 - GO’-I-) + Tr?f (Ee} - G'22) +
T8f(E)+l - Gho) + ‘521‘314-]-_.]}
> (B7)

Mp ¢! = ;;L {%Elf(%l - Eoe) + elf(s20 - JElB + k[Tszos +

T3plo1 + The (Gos - Eou) + Top (GQZL - Eaz) +

ezf(slpo - lel)jl} J

Equations (B6) and (BT) are obtainable from equations (B3) and (B4) by
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substituting T3p for ayp and dropping ell terms involving the
multiplier B4p. The coefficlents €4y and Tvyp are defined following
equations (A6) and (A7), respectively.

The mein text of this paper includes & procedure for analyzing the
flutter of wings or control surfaces of arrowhead plan form when the
flutter involves vertical translation, pitching, and symmetric flspping.
Equations (26) show that not only are section 1ift and pitching moment
required, but also the product of the absolute value of the span coordi-
nate and the section lift. This latter quantity for symmetric flapping
is

The quantities 2|y(L1,f and Elyng,f are obtained by multiplying

both sides of equations (B3) and (B6) by Eéyl. A comparison of the
resulting equation with equations (Bl) and (B2) shows that ;, on the

right-hand side of equations (B3) and (B6), the index m i1s replaced
by m+ 1 in the quantities Ey,, Gu,, Jpn, and Sy, whereas Fp,©

is replaced by’ Emné+l/820, and Hﬁné by Emne+l/BEC. To be precise,

this substitution gives the desired quantities on the right (y positive)
half-span, but since the 1ift P eand the product P|y| are symmetric
about y = 0 they become known also on the left half-span. The general

definitions of F,. .S+l and Emne+l are as follows:

imn
Emné+l=.QBECyane W
1 2 m n,..-1 ¥+ B2Cy _
= &+ +m+n‘EB Cy)e+lxl (Cxy + y)'ecos Eza;zf:j;y
e+l m _ n -1 X - BECY -l
(et hagon, - 3)Peos™ oo, |
Emne.l-l = 2B2CyHmne " (}39)
= pe+a+min | (g20yyetl " L(Cx + y)Peos™L Ezi—ﬁfgz— ax -
B Py y/c B(Cx + y)
_ e+l 1 JUCx - v)Peos~l X pecy ax
(-g2cy) JETC (cx - y)Pcos ]
/
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The general definitions of equations (B9) (with the distinguishing bar
under F and H) are thus seen to differ basically from those of equa-
tions (Bl) only in that the second term within each square bracket is
preceded by a minus rather than by & plus sign. Thus, on the right half-
span, for the supersonic-leading-edge condition,

2[y[Iy,¢ = % {“‘lfGll + appBip + azpfz + €550 + Blz(ﬁlfgogl +
BQfEOlQ + B5f§03l + Bhf£022) + k2[§thl3 + GSfGBl +
geByy + OpeBap + ag oy + €x8oh + ;:2%(‘351?301;1 +
BeEqs + BrsFost + Bsfzof)]} > (B10)

2|y|La, e = il'{%['“lell - edzo t B%C('Blfgozl - Bﬂola)] *

k[“’EfGlz + azsGzg - aypliz - agpBzy - €ppdgg +

B‘%'C‘(Bﬁgo; + ByeHop” - BseFou" - ‘36:'2032)]}

L.

For the condition of the sonic leading edge the quantities 2|y|Li,f

are obtained from equations (B10) by dropping all the terms that include
a multiplier B35 &and replacing oyp by Typ. The terms that include

a multiplier e€4p remaln unchanged.

When the section coefficients are calculated, the chordwlse inte-

grels Gyn, Hmne, Eﬁne+l’ and S, are needed. Most of the required
integrals are glven in sppendix B of reference 2 or can be directly
deduced from the spanwise integrals of equations (A23) and (A24) of ref-
erence 5. A few printing errors in reference 2 are noted in reference 5,
end an errate has corrected equation (A23) of reference 5 as follows:
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_ 2 _
Goz =11; 03 - Eg_ 21 - QB“IA,u (B11)

Certain additional chordwise integrals needed for the flapping wing
are as follows:

H050 - '6}6 Foe® - .2%:- 100’4'523 + 5C2(30 + 11)Eyy +

64(1502 + 700 + 63)yOcosn-1 %—;z\

81,0 = <= Fog0 + Fl50 -

S [58041523 + C2(570 + 113)Ey; +
30C 120c2

64(570% + 1700 + 105),'y'6cosﬂ_1"--L }Bc_ﬂ

2
Hoal = % Fo3 - 13_?@ 02E21 + 16(c + B)yL‘cosh“l ;—ﬂ
> (B12)
1 B2Jo
Byl = 5_ Fos 20 2C4Ep5 + 3C2(c + 9)Ey +

64(302 + 300 + 35)yPcosh™t %]

5 _
Hyol = = Fyt - F -EgEz +(26+3)E]
12 = 775 Fou 35203 03 Eop 40
_ 1 1 BT | ool 2

64(30° + 150 + 10)3&'6c~:>xsh':L x—]]
BY )

The chordwise integrals gnne"'l contained in equations (BlO) are

defined by equations (B9) and thus can be directly deduced from Hm® -
For exsmple, equation (A241) of reference 5 gives ﬁojl , from which the
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chordwise integrel HOBl is obtalned by merely removing the bars over
the E's and the F. Then §032 is deduced to be

La2 f
2 1 2 B*Ceyo
Hp,® = i g, - B8 C2E32 + (20 + ll)E5c£I (BL3)
Similarly, from equation (A2kc) of reference 5 I-I:5:L is deduced to be
1_ 1w 1_.a2/532 Senap-l X1
H03 = Lc FOII LI'B U[—lz- EBl + 2(30’ + 5)5’ cosh By (Bl)-l-)

Consequently, a list of all the expresslons for gﬁne+l appearing in
equations (B1O) is not needed herein.

The remaining chordwise integrals needed in equations (B3), (B4),
and (BlO) are represented generically as follows:

X
Gpo = %ﬂEml - lp2ymt2e gy -1 E%

G = %(EmZ - Beﬂm-z,o)
2 1 X
Gpo = % Bz - %‘Em+2,l - 2tlglhymthcogn-l é
L o N . (B15)
w3 = 5 Bmb - % Emi2,2 - 15 Bl'Emlp,o
Sm0 = Jml - % Emo

=1 _1 - am-lg2,m2 -1 X
Sp1 5 Imo g‘Eml am-lgeyitteecogh =

Other general expressions that can be useful for calculations are
the reduction formulas
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F_L = poc(F CF ‘
mn m,n+l m+l,n
1_ 0 _ 9)
B = Bec(Em,ml C-E.m+l,n )

> (B16)

2 L2 (0] 0 2 0
Fan~ = BC (Fm,n+2 = CFpy1,n+1 + CFpyon )

e
n
|

ka2 0o . 0 2 0
= B Em,n.+2 2cEm+l,n+l +C §m+2,n

Rolling wing.- The coefficients Iy o and My o of equations (13)

and (14) are obtained by substituting equations (6b) or (7b), according
to whether the leading edge is supersonlc or sonic, into equations (11)
and (12). With the use of the general definitions of equations (BL) and
(B9) the coefficients may be written, for the condition of the supersonle
leading edges, as follows:

N

-1 0 1 0 1
I, = 5. |%9%10 + %pgfiy - Prglon™ - Borllyy - Bxefos - Busfon +
0 1
k2 (%op“'le + apglsp + asefys + %gelz1 - Bsellgy ™ - Beeloz -
0 1
Brefos  ~ Paefon i] L (BLT)
-1 0 1 .
te,p = ‘gli%(*"lqﬁlo + BisFop” + Borkoy”) + K{uaglua - onghaz -

0 1 0 1
Wuglz0 = Bzellys - Byrlop + Bsefon * Pgrfos ):l

)
- 0 1
M, = E:L{“’lcpcll + oy (Byp - G1y) - By - Borllyy -

0] 1

BBf(E-IS - E030) - Bll—f(-F-‘-lz - I—Iozl) + K2 E“mGJ.} +
> (B18)

ayelsy + a5¢(E14 - G15) + “6¢QE32 - G31) - B5f§140 -

Beel s - B7f(3150 - T5[050) - ‘381‘(3141 - I—iohl)}} |

(Eq. (B18) concluded on next page)
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Mop' = 5 {%E‘l@(‘}-lo - E1a) + Bye(B1p° - Egp®) + \
Boe(F11™ - E011)] ¥ k[} 2912 + esp(Cr2 - Bi3) +
(B18)

( Concluded
%cp(G}o - Ezp) - Byglps0 - Bl ol + Bop(Fp0 - Hy,0) +

Ber(Fas” - Hoal)}

wWhere Mi,¢' and Mi,@ are related by the expression

Ml)@ + iM2:¢ = Ml:¢' + 1M2:¢‘ - Exo(;l’¢ + iL2;¢D (B19)

For the condition of the sonlc leading edge the coefficlents Lj_’qJ
and M; o' are obtainable from equations (B17) and (B18) by substituting
Ty Tor aye end dropping all terms involving a multiplier Bye.

In the section contribution to the rolling moment of equation (16)
the quantities 2yLl’¢ and 2yL2,¢ are obtalned by multiplying both

sides of equations (Bl7) and (B18) by 2y. On the right side of these
equations this procedure is equivalent to replacing E,, by Em+l,n:

e e+l/q2 e e+l
CGmm Y% Cmyi,ns Epy Y Fmn /B C, end H ~ by Hpy /BEC' The
quantities are presented for completeness as follows:

~

- 1
21,0 = 5 {“‘lq>G20 * aogfipy - g%(ﬁlfﬂozl + Parlign® + BasFos™ 4
B}_l_fFogz) + k2 \'GBCPG22 + a')-I-Q)G’-I-O + ach:,Eai + a‘6qJE11-l -

E%-E(Bsfﬂol;l + BgrHos® + ByeFost + BsfFol@)_\}

> (B20)
-1 |1
iz, = 3 {k‘['“lcpan + _L<;32c B1eFoe’ + BafFOla)] + k[“chGZJ. -

Ozpfon = Wyoflg - B—%(;(%fﬂoal + Blelge® + B5fFO)+1 +

BeeFos- )] ‘j’
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For the condition of the sonic leading edge the quantities 2yL1,Q are

obtailned from equations (B20) by dropping all the terms that include a
multiplier Bjp and replacing oyp by Tip in the remaining terms.

For calculation of 2yLl’¢ and 2yL2’cp the following integrals,

not included in equations (Bl2), (Bl5), nor in references 2 and 5, are
needed: ’

2
Host = & Fogt - %@Eo%m + C2(ko + SU)Ey, +

(802 + 1160 + 185)E60]

2t = glé_g_ Fogt - _5;;_0_5. Fos? - 5%3[30%24 + 2o + 300810 +
(802 + 680 + 65)E6é] . ? (5e1)
Ho 2 = ughczyeﬂmo - :LE Fop? - 16g%¢/5 y*cosh~t %
Boo® = bptcByPg® = L Fos? - £ 8HOR(T myg
Hoz? = 4p4C2y2H0

1 p. 2 1 Qb 2n . 6 -1 ¥
15 Fou lL;ac\[c?[5<:EM+6L+(3c:+5)y cosh =

If the sectlon quantities of equations (Blz) and (B18) are degired,
the quantitiles Emne can be obtained from H,,~ given in equations (B12)

and (B2l) herein and in reference 5 by use of the relations

N

0 1 1
2
2B“Cy

Em

> (B22)

]

1 0
B 1 = 2%y

4
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Thus, for example, in the first of equations (B18) can be deduced

0
Eos
from Ho5l in equation (B21) to be

—050 - %3'2060 - %gl%chElh + C2(ka + 54)Ezp + (802 + 1160 + 185)E5é] (B23)

Total Coefficients

The total 1ift force is obtained by substitution of equation (B3)
(or equation (B6) for the sonic leading edge) into equation (17). Total
pitching moment is obtained by substitution of equation (B4) (or equa-
tion (B7) for sonlc leading edges) into equation (18). Root bending
moment is obtained by substituting equation (BLO) into equation (19).
Total rolling moment is obtained by substituting equation (B20) into
equation (20).

In order to obtain the spanwise integrals of Ep,, Fp.®, Gun,
Hon®s Fgns Spmy E.%, and H €, it 1s convenient first to reduce Gpy,

—mn

This reduction is obtained by use of equations (A23) and (A24) of refer-
ence 5 and by means of the approprlate equations in the present sppendix.

e ad E & 1 £ e 17l ana F_©
Hpn» Spps an n terms of Ep,, Fpn~s Jyps COSh -5? an .

Formulas for obtalning the spanwlse integrals Eﬁn and fﬁne are

given in the sppendix of reference 5. (Equation (A1k) of reference 5 has
been corrected in an errata. The expression multiplying the quantity

1
Kon Jo = e
should be ). The integrals F are obtained
CD m

Ko n" (n+1)(1 %
from Fﬁne merely by chenging the sign from plus to minus on the second

major term (the term which involves the double-primed quaentities) in
equetions (Al7) of reference 5.

The only other integral needed 1s

= Yt -1f1+ (D -8By
T = 2 R.P.j; oL 4 Dy)tanh /1 RGP dy (B2k)

where R.P. means the real part of the succeeding quantity. By means
of integration by parts
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¢,

mO

where Ih,m

expression
obtained in
then
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Yt l i ’ -
2 R.P. -1 ’ + (D - 3)y
o 2Myltanh T (0T By dy _

1/(-D)
27 : yiay = m-1p B2
m+ 1 j: Jl + 2Dy + (D2 - B‘)y‘ 4om (225)

1s the Ih,n of equation (A19) in reference 5. If the

(L + Dy)?® of equation (B24) is expanded, T, cen be
terms of jﬁO or Ih,m' The needed recursion formuleas are

= 2Jpo *+ PIme1,0

E,c_'

> . (B26)

54

o = Wpo + uﬁ:m+l,0 + D23ﬁ+2 o)

For the special case of the delta plan form (Aqmp = O), the total

1ift and pltching-moment coefficients due to flapping and the total
rolling-moment coefficients due to roll réduce to concise forms, as
follows! )

_ 2 2
I p =< - EEQ-(&ME + 1)k2 + -M&SE-(8M# + 1242 4 1)kk -
5 3p3 uspl 8hogt

--lfkfi-—(6um6 + ehavt + 12042 4+ 5)K6

11340087 }
= 2c2 1 M3c? M*c2 .2 3
T, p = L. k + (LM x3 -
ST 738 kT o5 o
M6Ci (84 + 20M2 + 5)k5
3240813

(B27)
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N2 )
M, = 802 MMECE 2, 4),2 ﬁ"’%(&mlF + 12M2 ¢ 1KY -
7 1583 10587 9hs5B

M2 (g6 4 ohaatt + 12082 + 5) - 20Ty ¢

62370815
> (B28)
— 2 2 4.2
M, . =021 _ M2, M'C2 ()2 K3 -
28 T K T St et v
M2 . ) 2 =
—__(8M* + 20M ko - L
1800‘313( + + 5) ZXO 2,f /
Wy =402 WB3ny2 , 1y, M gl g, 1yl |
’7 1583  Z5p7 1890p1L
J_C}_(suﬁ + 2hovt + 1202 + 5)x6
311850p15
> (B29)
% 2631 _ P03 M3 2 L ayd
= em—— e - — \ 3)k -
Y9,2 38 k1585 25289
6
—M_EB_(BMlL + 20M2 + 5)KD
8100pL3 )

The first two terms in each of these total coefficients were obteined by
spanvise integration of the section coefficients and also by the reverse-
flow theorem as & check. The remaining terms containing higher powers of
kX were obtained by the reverse-flow theorem (using the veloelty poten-
tiel for two-dimensional supersonic flow given by eq. (23) of ref. 8)

and were used in obtaining figure 5. ’

From equations (B27) to (B29l_the leading-edge sweep angle is seen
to appear in such a menner that F/C2, ¥,/C2, and (Rolling Moment)/c>

ere independent of the sweep angle of the leading edge for symmetrically
flepping and rolling delta wings with supersonic leading edges. This
result corresponds to the finding in references 2 and 3 that- B/C and
M&/C are independent of A for the supersonic-leading-edge deltsa 'wing

oscillating in vertical translation and pitch. Such Simple dependence
on A does not occur for the spanwise integrals of equation (19).
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The total coefficients of equations (B27) to (B29) are plotted in
figure 5 as a function of frequency for a Mach number of 1.6; a dis-
cussion of figure 5 is given in the section entitled "Accuracy as &
function of reduced frequency."
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APPENDIX C

NUMERICAT, EXAMPLE OF A FLUTTER CALCULATION

Calculation by Present Method

A numerical example 1s now given of the method of flutter analysis
outlined in the main text. The configuration chosen (see fig. 6) is
that of & half-span all-movable control surface of arrowhead plan form,
with A = 45° and ATE = -150, mounted on & shaft and with the wind-

tunnel wall presumed to act as & reflecting plane. The control-surface
pltch axis is located at x, = 0.558 (40.5 percent mean aserodynsmic

chord). The location of first-mode and second-mode node lines are given
in terms of the nondimensional coordinates (x,y) and these node lines
are straight because all flexibillity is considered to be concentrated

in the supporting shaft. The camponents of deflection, normaslized to

a tip vertical deflection downward equal to the root chord 2b, are

as follows:

B Bp
l = — = -

= o.oéoo. 5 = 0.232

8; = 1.07L 8, = -6.02 (c1)
£, = 0.855 ' £o = 2.77

4

The integrals over the half-span model of the necessary mass properties
are as follows:

L[h dy = 0.00253 s%ug

J' Sq dy = 0.0000211 slug-ft
f Sp dy = 0.000232 slug-ft L

(c2)
f I, dy = 0.0000227 slug-£t2

f Ip dy = 0.0000433 slug-£t2

f Pye dy = 0.00000855 slug-ft |
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Insertion of these gquantities in equation (21) gives the generalized
mass terms

0.0000880 slug-ft2

Al =
5 (c3)
Ay = 0.001014 slug-ft
and with b = 0.2375 and p = 0.00066,
a.l = 12.01"
8.2 = 25)4'.}4-
For a Mach number of 1.6 values for the aerodynemic hslf-span
integrals of equation (26) are as follows:
;
Iy = 0.10695 - 0.11813k% + 1(0.30190 & - 0.12790k)
Iy = 0.041546 - 0.033206k> + 1(0.093984 & - 0.040g31k)
I, = 0.30190 & - 0.1446k + 1(-0.07825 L. 0.16227k)
3 2 k
Iy = 0.093984 L. . 0.053708 + i(-o.o3uh56 L4 o.o51k61k)
2 k
I's = 0.048896 - 0.035692k° + 1(0.16455 % - 0.046946k) S (ck)
T = 0.016912 - 0.0045837k? + i(o.oéhgso % - o.013625k)
I, = 0.01884 - 0.04704k2 + 1(0.01525 % - o.ohoouk)
Ty = 0.01525 =< - 0.029437 + i<0 ok  + 0.05277k)
g = O =~ 0 ' k
Ty = 0.014556 - 0.023L79%k2 + 1(0.0282& % - 0.0186h4k)
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The serodynsmic integrals Cpn ©Of equation (25) for the coupled
modes are specified by equstion (Cl) are then

-

1 1
Cy; = -0.22841 at 0.095154 + 1(-0.1&118 E- 0.118151:)

1 1
Cip = 1.2839 - 1.03499 + 1(-0.66961 Et 1.18221:)
L L > (c5)
Cy = -0.60934 Bt 0.15620 + 1(0.23419 7 - 0.0531319;)
1 1
Cop = 3.L4259 5" 1.2857 + 1(-3.9816 E+ O.23698k)

4

The values of &3 and Cpn listed sbove are applied in the flutter
determinant (eq. (28)), and the determinant is solved over a range of
values of k for the two real unknowns aﬂ/m and w2/m. Of course,
g1 and g, can be varied independently, but 1n the present example the
simplification g; = g5 =g 1is made. The flutter results, shown in
figure 7 as functions of the frequency ratio wl/m2 for two values of

the structural damping coefficient g, are discussed in the body of the
report in the section entitled "Discussion.”

Effects of Using an Aerodynamic Strip Theory
for Flapping Motion

In the discussion of figure 4 in the main text, the differences in
the section 1ift and moment coefficients as obtained from the expressions
of the present analysis and as obtained aelternatively by & "finite-wing
strip theory" were compared and found to range from moderate to appre-
ciable. In order to determine what effect the use of such strip-theory
coefficients has on the present flutter example, substitutions can be
mede in equation (26) as follows:

In P5 and Pg:

Use 2|y|(Ll + 1L2) for (Ll’f + iLz,f) (c6a)
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In P9: B
Use 2|y|(Ml + 1M2) for (Ml,f + 1M2’f) (cép)

As a result of these substitutions,

T = 0.083092 + 1(0.18797 % - 0.081862k)
Tg = 0.03963L + 1(0.082213 % - 0.035867k) L (c7)
Iy = 0.0189k9 + 1(0.028100 % - 0.025)41;21{)

The other I values are as listed in equation (Ck). A brief discus-

sion of the effect of usling an aerodynamic strip theory to account for
flepping motion in the present exsmple is also Included in the section
entitled "Discussion" in the main text.
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Section ¥

x,x', &

LS

(a) Projection of plan form on xXy-plane.
€ = cot A; D = tan Agp.

x=—cL x = {+ Dy

X, %' &
o) IZ"’

(b) Vertical displacement of section 7.

Figure 1.- Sketch i1llustrating arrowheed plan form, coordinste system, -
and displacement of section.
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(a) Symmetric flapping wing.

(b) Rolling wing.

Figure 2.--Vertical displacement Zy of wing sections.

L9
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(&) Plan form in xXy-plane.

I\L.;“'-.

U,Uo

(b) Plan form transformed in uv-plane. (See eq. (Al).)

Figure 3.- Plan forms ln xy-plane end in transformed uv-plane, showing
regions I, IT, and III defined by leading edge and Mach lines.
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(a) Section 11ft coefficients for symuetric (b) Bection pitching-moment coefficients for
f1lapping mode. gymetric flapping mode.

Figure 4. - Spanwise distribution of section lift and pltching-moment coefficients for symmetric
flapping mode and of 1lift coefficients for rolling mode for a 45° delta wing (C =1, D = 0)
with x5 = 0.5, M=1.6, and k = 0.5. Shown is the effect of using one and two terms of

the frequency expansion for the flepping and rolling wing end of using two frequency terms
from a finite-wing strip theory.
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»
y

2 terms
———— term
— 2 terms, finite—wing
strip theory,

-’

rolling wing

(c) Section lift coefficients for rolling mode.

Figure Y4.- Concluded.
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(a) Total 1lift coefficients for symmetric flapping mode.

Figure 5.~ Total 1i1ft and pitching-moment coefficlents for symmetric
flepping mode and rolling-moment coefficients for rolling mode for
supersonic- and sonic-edge delta wings for M = 1.6 and X5 = 0.5

as a function of the reduced-frequency parsmeter @& and the
reduced frequency k. ©Shown is the effect of using 1, 2, 3, and
L terms of the power-series expsnsion for each coefficient. The
highest power of k contained in each curve 1is indicated.
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(b) Total pitching-moment coefficients for symmetric flapping mode.

Figure 5.- Continued.
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(c) Total rolling-moment coefficients for rolling.

Figure 5.- Concluded.
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Stream flow
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‘ el |5° Mach line
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7
4\- wind - funnal wall

Figure 6.- Schematic dlagram of arrowhead-plen-form all-movable control surface analyzed In
appendix C.
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Figure 7.- Flutter boundaries in terms of the stiffness parameters
bcnz/V and bcnl/V as functions of the natural-mode frequency

ratio wy /cng for two values of the structural damping coeffi-
cient g and the assoclated flutter frequency ratlos cu/a)l

» and wfw, at M= 1.6 for the configurstion shown in figure 6
and analyzed in appendix C.
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Figure T.- Concluded.
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