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< ANATYSTS OF STRESSES AND DEFLECTIONS IN A DISK
SUBJECTED TO GYROSCOPIC FORCES
By M. H. Hirschberg and A. Mendelson
SUMMARY
The differentisl equation governing the deflection of a disk of var-
igble thickness subjected to gyroscopic loading is derived. For the case
of a digk of constant thickness, solutions are obtained by & finite-
difference method for a remnge of centrifugal loading parameter M from
0 to 50, and the ratio of shaft to disk radii varying from 0.1 to 0.3.
Results are presented in dimensionless form suitable for design purposes.
The method for solving the problem of a disk of variable thickness with
a temperature gradient is also presented.
INTRODUCTION
- When the axis of rotation of a disk 1s itself rotated, forces are

set up normal to the disk. These forces, or gyroscopic loads, occur on
jet-engine compressor and turbine disks whenever the airplane changes

. direction either in the air or on the ground. These gyroscopic forces
will deflect a disk out of its plane of rotation, Induce vibratory bend-
ing stresses, and produce a bending moment that will increase the shaft
bearing loads. This problem may be even more serious for the high-speed
disks used in missiles undergoing high accelerations. Although the
stresses thus produced msy not themselves be very large, the combined
effect of thegse stresses with the already existing stress distribution
nay be sufficient in some cases to cause a failure. It is therefore nec-
essary to investigate both the stresses and the deflections of a disk
under gyroscopic loading.

By considering the gyroscopic forces and centrifugal forces acting
on an element of a disk of varisble thickness, the general differential
equation describing the deflection is derived. A finite-difference solu-
tion of this differential equation is obtained for a constant-thickness
disk rotating sbout its center at a comstant sngular velocity. The com-
puted deflections and the corresponding stresses are plotted in dimen-
gionless form for a wide range of a centrifugal-loading parsmeter, and
for a number of different ratios of shaft to disk radii.
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PROCEDURE

The general differential equation governing the deflection of a
disk of variable thickness subjected to gyroscopic loading is derived in
eppendix B and the solution of this general equation is discussed in
RESULTS AND DISCUSSION. In this section the procedure used for obtain-
ing numerical solutions of this equation is presented for the special
case of s constant-thickness disk rotating about its center st & constant
angular velocity ® and at the same time gbout a dismeter fixed in space
at an angular velocity Q and en angular acceleration . (The symbols
used in this report are defined in sppendix A.) Figure 1 shows such a
disk along with the type of loading that results from such rotations.

If the deflection at any point such as P is given by w for this
disk, and if the dimensionless deflection for s given angle & is de-
fined by '

Y =

aQls

where

5h .Q
C=2m» a -5(m—sm6+cose> (1)

end m, a, h, ang¢ D are the mass density, xim radius, disk thickness,
and flexural rigidity, respectively, and 6 is the anguler coordinaste
on the face of the disk measured from the dismeter about which the disk
is rotating, the general differential equation (B19) describing the
dimensionless deflection Y Tbecomes

2 2
oy 2 g _|3 o2y |3 Q-se) ,_S_MQ-39> _
™+ oY [2+M(l P )|Y +‘—03 M Y 2 oz Y=0p

(2)

where p 1is the dimensionless radius defined as the ratio of the radius
at any point P to the disk rim radius, and where M 1s a centrifugel
loading parameter defined by

Sty Im)za.4 h (3)

M= —

8 D

where v is Poisson's ratio for the disk materiel. The primes in equa-
tion (2) denote derivatives with respect to p.

Yo

80.L%
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The bopnda:cy conditions used for all the solutions obtained herein

(a) The deflection at the shaft is zero.

(b) The slope of the disk at the shaft is zero.
(¢c) The totel shear at the rim is zero.

(d) The radial bending moment at the rim is zero.

The equations expressing these boundary conditions as derived in appendix
C are given by

At p=8 Y=0
At p=8 Y'=0
(4)
At p=1 YN o4+ ¥ - (3-9)Y -(3-v)Y=0
At p=1 Y +vY' -vY¥I=0

These are by no means the only set of boundary conditions that could be
used. For example, if a disk were to have radial rim loading, boundary
condition (d) which states that the radial bending moment at the rim is
zero would be replaced by one thet states that the radial stress at the
rim is equal to the known rim load.

The solution of this problem involves the solving of the fourth-
order linesr differentisl equation with varisble coefficients (eq. (2))
subject to boundsry conditions at two points (eq. (4)). For the case
where M equals zero, the exact solution can be readily obtained.

For M not equal to zero, recourse must be mede to an approximate
solution. The method used hereln was to reduce the fourth-order differ-
ential equation (2) to a set of four first-order differential equations
and then to solve these by a Runge-Kutta finite-difference technique as
described in appendix D. The method used for satisfying the boundary
conditions is aslso described in appendix D. Once the differential equa-
tion (2) is solved along with the chosen boundary-conditlion equations,
the radial and tangential bending stresses og and oOp on the face of

the disk due to the gyroscopic bending moments can be obtained by equa-

tions (B20) as
R k ) Y )

1 (5)
- 1 .:_l: - —
Op = KQJY + 5 T pz Y)
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where - . . . —

_ a°( @
K= -12 0 3 S S1n 6 + cos 6 ()

RESULTS AND DISCUSSION

Solutions were obtained using the finite-difference equations de-
rived in appendix D for disks of constant thickness with the centrifu-
gal loading parameter M varying from O to 50 and the ratio of shaft to
disk radii varying from 0.1 to 0.3. In order to make the calculations
for so many cases, a high-speed digital computer was used. For the lim-
iting case of M equal to zero, equation (2) reduces to the case of a
stationary disk with normal loading. This problem is solved in closed
form in reference 1 (p. 260). Figure 2 shows plots of dimensionless
stress against dimensionless radius for both the exact- and finite-
difference solutions at this limiting condition of M equal to zero and
for variocus values -of B. It can be seen that excellent agreement has
been achieved for sll the cases investigated.

Figure 3 shows plots of dimensionless stresses and deflections
against dimensionless radii. Each of these plots is for one particulaxr
value of B and for a range of values of the centrifugasl stress param-
eter M. PFor a given set of operating conditions and disk gecmetry, the
parameters C, M, and K are calculated from equations (1), (3), and
(6), respectively. The stresses and deflections at any point in the disk
can then be determined from the curves for the sppropriate value of 8.
It should Pe nobed from this series of figures that the dimensionless
stresses and deflections both decrease as M incresses. However, the
actual stresses and deflections will always incresse as M increases.
For a given M, the effect of increasing B is to reduce the deflections

and stresses as would be expected. These trends can slso be seen in fig-

ure 4, where the dimensionless stresses at the shaft and the dimension-
less deflections at the rim of the disk are plotted against the centrifu-
gal stress parameter M for various values of B. These plots are used
to determine the most critical values of stresses and deflections for
this type of problem.

For an example of the use of these figures in solving the problem
of a parellel-sided disk, consider a disk with s thickness h of 0.50
inch, an outside radius a of 9.0 inches, a shaft radius of 1.35 inches,
an angular velocity w eabout its center of 2000 radians per second, an
angular velocity Q and acceleration O sbout a diemeter of 1 radian
per second and zero radiens per second per second, respectively, and a
mess density for the disk material of O. 0008 1b-sec /in.*, Poisson's
ratio of 0.3, and a flexural rigidity of O. 345x10° pound-inches. By
using these values to determine conditions along the radius 6 = O, the

80.L%
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centrifugal stress parsmeter M (from eq. (3)), the bending stress param-
eter K (from eq. (6)), and the deflection parameter C (from eq. (1))
are found to be 12.6, 28%103, and 0.275, respectively. For the value of
M of 12.6 and the calculated value of B of 0.15, the dimensionless
stresses at p = B and the dimensionless defiection at p = 1 are found
from figure 4 to be 0.750, 0.225, and 0.580. When these dimensionless
gtresses are multiplied by the bending-stress parameter X, the radial
and tengential stresses at the shaft are found to be 2000 and 6300 pounds
per square inch, respectively. When the dimensionless deflection is mul-
tiplied by the deflectiom parameter C, the maximum rim deflection is
found to be 0.016 inch.

It should be pointed out that these computed gyroscopic stresses are
alweys vibratory stresses. As can be seen from the right side of equation
(B17), the gyroscopic load is a function of the angle 6 and, therefore,
as the disk rotates, the load varies with the frequency cn/ 2. The
stresses, therefore, are vibratory stresses also with the frequency w/2x.
The complete stress distribution for this disk is obtained by adding these
vibratory bending stresses to the stresses due to the centrifugal loading.

Although these calculations have been performed for the special case
of a constant-thickness disk, the solubions for the more general equation
(B19) for a varisble-thickness disk may be performed in a similar wey
using the same finite-difference gpproach, the only difference being in
the coefficients of the last of the four finite-difference equations (D8)
and (D9). The radial and tangential stresses R and T due to the cen-
trifugel loading will have to be calculated in advance by any of the
availsble methods such as in reference 2. It should alsc be noted that
variations of Young's modulus E, due to either temperature or material
variations through the disk, can be taken into account very easily by
adjusting the flexural rigidity term D.

In meking calculations of this type, the problem presents itself
concerning what values of O and Q are likely to occur during opera-
tion. These values, in general, would be determined by the type of
meneuvers the airplane or missile is capeble of performing. However,
the occurrence of air -gusts and ground bumps msy produce grester values
of Q@ and Q. These effects are, of course, difficult to determine but
some estimate would have to be made before a reasonebly safe analysis
could be made.

CONCLUDING REMARKS

The enalysis of the gyroscopic loading on & constant-thickness disk
has shown how this effect can be considered by the designer. For the
case of a wniform-thickness disk, curves are presented that can be used
for design purposes. The disk of varisble thickness with temperature
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gradient requires individuel calculation, which can readlly be performed
by the method outlined in this report.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, December 19, 1957

80.L%
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APPENDIX A
SYMBOIS
disk radius
sh{ o _.
deflection parameter, Zmnia D \opg S0 6 + cos 6)

flexural rigidity, EnS/12(1 - v2)

Young's modulus of elasticity

disk thickness

bending-stress parameter, -12mn{ %3— (% sin 6 + cos 9)
centrifugal-loading parameter, §_§_X mmzaé %

mess density

normael load intensity

radial stress due to centrifugal loading

radial coordinate of point in disk

. tangential stress due to centrifugel loading

disk deflection, function of p and 6

dimensionless disk deflectlon, function of p omnly

retio of shaft to disk radius

angular coordinate in plane of disk

Poigson's ratio

dimensionless radius, r/a

radisl bending stress on face of disk due to gyroscopic loading

tangential bending stress on face of disk due to gyroscopic
loading

angular displacement of disk about a dismeter x - x (fig. 5)
angular velocity ebout disk diameter, rad/sec

angular velocity about disk center, rad/sec
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APPENDIX B

DERIVATION OF DIFFERENTTAT, EQUATION FOR DEFLECTIONS OF VARIABIE-
THICKNESS DISK SUBJECTED TO GYROSCOPIC LOADING

If it is assumed that the load per unit area q acting on a plate
is normsl to its surface and that the deflections w are small in com-
parison with the thickness h of the plate, the equation of equilibrium

becomes (ref. 1, p. 85)
P, aE 32
m‘f 2 ot - - (1)
2

where the bending moments M., My, Mxy are gilven by
M, = - D(w,, + vay)
My = - D(wyy + Vi) (B2)
My = D(1 - v)wxy

where v 1is Poisson's ratio and D 1s the flexural rigidity of the
plate. The bending stresses on the gurface of the plate are

——
Ux = hz
) (53)
g =
¥ h2

By substituting equations (B2) into equation (Bl) and letting D be a
function of x and ¥y, equation (Bl) becomes

D(w. + W )+D (W + VW )+Dw(wyy+vwm)+

ZDX(Wm + wm) + ZDy(wm + wm) + 2(1 - v)nywxy =q (B4)

where the subscripts on D and w represent psrtial derivetives with
respect to the subscript. If equation (B4) is converted to polar coor-
Ginates and it is assumed that D is only a function of the dimension-
less radius p, equation (B4) becomes

-

80L¥
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1 D 1 D' DF 1 D' D"
v +gm-2Vw -l (2 v) -2 = - 2+
pPop (p D) pop l;z ( ) 5D D]pr +(p3 pzD+ pD)WD N

E—w _ZQL_L)W .|.(_4_=_-.§D_,.+V_D".)W + = W =
p2 ppoo 03 p2D pBo ot psD pzD ee ot 6068

(85)

where the superscripts on D 1indicate total derivaetives with respect to
p, and & is the outside radius of the disk. If equations (B2) are sub-
stituted into (B3) and conversion to polar coordinates is mede, the stress

equations become
6D ( 1 1 )
On = = e—m——— |W + VYVl =_w. + — W
R a2n2 [DD p P pz 96:|

(B6)
[s] = - _6.:D_ .]: W + _]_'- W, + VW )
T a?n2 \p P = 2 66 pp

The normal load intensity term q in equstion (B5) may be analyzed
as being composed of two separate loading terms. The first term, g, is

due to the so-celled "gyroscopic forces,” and the second term, g, is

due to the normal components of the stresses in the plane of the disk
when the disk undergoes bending out of this plane (fig. 1). For the
derivetion of the q; term, the coordinste system of figure 5 will be

used. For &n aircraft or missile meking a turn, the turbine or compres-
sor disk is rotating sbout its axis and at the same time about & diam-
eter fixed in space. Consider a point P on a disk as shown in figure
5. The disk is rotating sbout its axis and also about a dismeter that

ig at any time coincident with the X-axis. From reference to this fig-
ure, it can be seen that the angular velocity ® is equal to 6, and the
angular velocity @ equals . Also, if it is noted from the figure
that the magnitude of the vector r remains constant with time €, the
orthonogal components of the acceleration of point P are given by

2
rd
= —— (cos @
A, " ( )
ra® , . R )
A.y =— (sin 6 sin @) (B7)
dat

2
A =£5_~_2_ (sin 6 cos @)
dat


http://www.abbottaerospace.com/technical-library

10 NACA TN 4218

wvhere 6 1s the angle between the radius vector and the X-axis, and ¢
is the angle between the Z-axis and the projection of the radius vector
on the YZ-plane. The acceleration of point P normal to the plane of
the disk is given by

Ay = aly + DAy + chy (B8)

where a, b, snd c¢ are the direction cosines of the normal to the plane
of the disk For this case

a=20
b = cos @ (B9)
c=-sin @

When equations (B7) and (B9) are substituted into equations (B8), the
accelerastion normal to the disk becomes

A = v(q 8in 0 + 299 cos 6) (BLO)
The force per unit area on particle P is then given by
= mhA, = whr(Q sin 6 + 200 cos 6) (B11)

For the derivation of the second part of the normel load intensity
do due to components of the centrifugal forces when the disk undergoes
bending, an element of the disk as shown in figure 6 will be used. Sum-
ming up the Z-components of the forces on this element results in the
following equation:

oR ow ow h {dw ow
thi+§£dr)(r+dr)d9&ll-Rrh2d9§2+Tdr;(¥|3-'5-54)-
3Pw
mrd.rdeh-a—t—2=q21fdrd9 (B12)

where R and T are the centrifugel radial and tangential stresses,
respectively, and the numerical subscripts on the thickness h and the
partial derivatives of the deflection w represent their values at d4if-
ferent locations in the disk element as shown in figure 6. To relate
both the thickness and the derivatives of the deflection at points 1,

2, 3, and 4 to a camon point at the center of the element, the first
two terms of a Taylor series expansion is used, from which

80L¥
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dw| _dw  fwar

&1—85 arZZ w

| _ dw  dwar - -

Jrj, T T L2 8 18752

2 5 (B13)

Jw| _ ow A o°w de _p.Shdr

|z =W T2 2 b =8 -3 2

| _aw_dwas

¥4‘¥‘8622 J

where hz = hy = h. Substituting equations (B13) back into equation (B12),
dividing through by r dr d8 and dropping higher order terms, results in

o P (aa Rh 3k dw . Th d%w 32w
qz—RthE-[- hﬁ+?+35§>gf+?-&7-m}l—a—;§ (314:)

The term BZW/Bta in equation (Bl4) can be written as

P ae>2 Pw 3% dw
Lo A =2 =22 (B15)
362 O/ 3p2 T 342 O

Substituting equation (Bl5) into equation (B14) and letting » = ap
yields

Rh R
o2

L (g + 2B 4 nem) w + 2T 20 4
W +a2(hR +p+hR W + wee-mh(cnw99+ame) (B16)

_ h

When equations (B16) and (Bll) are added to give the total normal
loed intensity term q, and this term is substituted into equation (B5)
and terms involving like derivatives of w are collected, equation (B5)
becomes

1 D! 1 D! D" hRs,
Yoppp + 2(3 +3>prp [;E -+ -5t —]TZ-]WDD *

1 D' ,vD" &3 N 2
[—-—-‘--pﬁ--—D-(hR +-p—+hR Wp+';2-wpp96_

p° 0%
' ' " 2 4
2("1'5 - P'{)Wpee +<i4 -+ vg B za + m? %‘)Wee +
p°  p°D ot oD %D p%D .

1 . atn ha® Q
-p—4w9999 + nn)—D—- Wg = ZIIKDQ—D—' p(—ﬁ sin 6 + cos 6) (Bl7)
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If it is assumed that the disk is rotating about its center at a constant
angular velocity during a change in direction of its axis, o is equal to
zero and a solution to equation (Bl7) may now be assumed to be of the
form

W = CY (B18)

where Y is only a function of the dimensionless radius p, and where

C = 2mph a® %(5%5 sin 6 4+ cos e)

Substituting equation (B18) into (B17) results in the total differential
equation _ .

) 2
e l. .D_’ 4] .i .Jlx-_.D_" .h&_ Ll
Y +z(p+D>Y' '[ps'(z‘”')pD 5+t | Y+
3 3D’ vD" a.zk 1R ):\
= + Y2 & ' +2 4+ n'R)| T -
[93 o?p PP b e
3 " 2 4
(—z‘z 2+ -hga +nm2__——-hg)Y=p (B19)
o] psD p~D

and the stress equations (B6) become

F-loeiron)
2

> (B20)

where

- 3 &
K=-—l-@fbhﬁ- —s-z—sin6+cose)

) (B21)

80LY
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Por a solid disk of constant thickness, the centrifugal radial and
tangential stresses are given simply by

R = §_§-2-mm232(1 - p?)

3+ v 1l + 3v
=3 mzaz(l-s—wpa)

where the centrifugal stresses due to the disks rotation sbout its diam-
eter have been neglected since  will always be much smeller than ®
for all practical cases. All the derivatives of D and h with respect
to p are equal to zero and under these conditions, equation (B19) re-
duces to

Yo % v Es_z. +M(l - pz):l " o+ L% - M (l -p3pz)] Y -
. 2

where the centrifugal loading parameter M is given by

(B22)

3+v 24bh
D

M= —F— ma (B24)
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APPENDIX C

BOUNDARY-CONDITION EQUATIONS

A set of four boundary conditions are needed for the solution of the
fourth-order differential equation of the deflection of a disk under nor-
mal loading. For a freely rotating single disk such as & turbine wheel,
the boundary cornditions will be taken as follows:

(a) The deflection at the shaft is zero.

(b) The slope of the disk at the shaft is zero.

(c) The total shear at the rim is zero.

(&) The radial bending moment at the rim is zero.

The total shear V 1is given by (ref. 1, p. 259)

V=0Qp -2 E;rg_ (c1)
where
2\ ]
Q= - D ?( s, = ?)
and 5 (c2)

1% 1w
Mw=(l'”9(§&w';§&)

if equations (C2) are substituted into (Cl) and r = ap then

l(asw_'_}_azw__l_aw_'_z-v Bsw_s-vazw) (c3)
P32 2 T2 3362 | o3 o8

If the total shear i1s equal to zero at the rim (or p= l) equatlon
(C3) becomes

= - (3= v) = (ce)

80LY
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The radial moment i1s equal to (ref. 1, p. 259)

3% 13w 1 d°

If r = ap and if this radisl moment is equal to zero at the rim, equa-
tion (C5) beccmes

2 2
3w ow 3w
0= S;§ +Vv s + v Sg— (cs)

The lest two boundary conditions are given simply by
w=0

and at p=8 (c7)

=0

where B 1s the ratio of the shaft radius to the disk radius.
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APPENDIX D

FINITE~DIFFERENCE EQUATIONS

In order to obbtain a solution to the general differential equation
(B19), it is convenient to reduce this fourth-order equetion to & set of
four first-order eguations as follows; let

Y'=J
Y= J" akK (p1)
¥ =K'= L
and equation (B19) becomes
L'=E - AL - BK - CJ - DY (p2)

where A, B, C, D, and E are the corresponding coefficients appearing
in equation (B19). These equations can now be written in finlte-
difference form using & simple Runge-Kutta method (ref. 3, p. 233). Con-
sider a section of a disk as shown in figure 7 where there sre n equally
spaced stations between p =B and p = 1. Consider the following Taylor
series expansion for Y at the 1 + 1 station in terms of the value of
Y at the 1 station . —
208,
Yo = Yy + 00 + 55X + e (p3)

If the first three terms of equation (D3) are used and it is assumed that
the second derivative 1s approximated by

il - Y1
Y; = T (D4)
equation (D3) reduces to
YaYe)
Tyga = Yy +5 (Y +¥i,) (05)

If the first of equations (Dl) is substituted in (D5), equation (D5)
becames

80L%
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17
v Ap
Tigp = ¥y + 3 (g + 35g) W
- and in & similar manner the values of J, K, and L at the
i+l station are obtained with the aid of equations (D1) and
(p2)
= Lo *
Jigp =91 + 5 (K + K y)
2 )
= Ap * (D6
* K1 = Ky +5 (Dg + Lyya) ?
Lp
Lygy =1y -5 [(AiLi + B;Ky + CyJ; + DyY,) +
2] * C3 ¥* %
& (A141T341 + BiyaKiy + Ciqadiaa + Di+lYi+l)] +
(&)
% (By + Eqyy)

where the starred exponents represent first approximations to these val-

. - ues. These terms will be obtalned from the first two terms of the Taylor
series or

¥*
- Tig = Y5 + 40y
Iy J. + /0K
141 = Jq T OAPKy

* (D7)
Kiyp = X + O0Ly

*
Ly =Ly - Ap(AiLi + ByK; + CyJy + DiYi) + ACE,

If the problem of a solid disk of constant thickness is to be solved,
equation (B23) is substituted into the last of equations (D8) and (D7) and

the values of Y, J, X, and L at the i+l station can now be written in
terms of the i station as
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Ty =Y+ Gy + L)
Ty =0+ &+ ’l)

K1+1'K1"'%(I‘J."'L:+l)

2L -p : - of (v8)
4 3 2 3 4 3 i d
—— +M(1-pi)] -[—-M(1 Z)J]-l- -¥ Y.
N [;‘g K pi Py 1 :{ _ piﬁ 3
Legy = Iy + 2 r ; *
2L{4 3 a2 * [ 3 (1 - DE+'.L)] 3 L-pfa\| #
T e e e M{1-p2 ) - - M P -M Y.
P14l ["?ﬂ 14 ] B PoeL Praa /] i m,_z+1 poa 1
oy +05,4)
%' i 141 _ J

where the starred terms are given by

Yip = Yy 000y )
Tin = Ty + 20Ky
iyl = Ky + 29Iy - (09)

2L 1 - p2 1-p
L, =L+ -M—i+[f§-+n(1-p§)] Ki-[;%-u( % i)]Ji+[-t:_1'-M( pgg)]zi + % (py)

o~

The solution of the differential equation (B23) has thus been re-
duced to computation of a set of deflections and corresponding deriva-
tives by means of the recurrance relations (D8) and (D9). It must be
remembered thet the solutions which satisfy equations (D8) and (D9) must
also satisfy the boundary conditions (C8). Such a set of solutions can
be obtained in the following mannexr:

ret (1), 5(1), g1}, 1(1)) ang ¥(3), 5(2), (2} 1(2) ) pe two

homogeneous solutions for Y, J, K, and L (that is, solutions for egs. (D8)

80L¥Y
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and (D9)) with the last terms in the Lj,7; and L¥,; expressions, namely

20/2 (py + py41) and 2o(p;), respectively, being equal to zero) and let
(3) (3) _(3) (3)

Y s, d S, K ,and L be particular solutions for Y, J, X, and L.

Furthermore, let these three solutions satilsfy the boundary conditions

that Y=Y'=0 at p = B. This corresponds to ¥; and J; Dbeing

zero. $Since equation (BZS) and the corresponding finite difference equa-
tions (D8) are linear, the camplete solution to equations (D8) can be
written as

Y, = aYgl) + inz) + ¥§3) w

Jdj = aJ§_l) + bJj(_z) + J§_3)

& (p10)
e e o

Ly

= aLil) + bL§2) + Lgs)

where a and b are determined so as to satisfy the two boundary condi-
tions at p = 1. It should be noted that if the solutions were not chosen
in order to satisfy two of the boundary conditions, two additional sets

4 4 5]

Y( ), Y(S), J( ), J( ) ete. would have to be included to satisfy the two
boundary conditions at p = B. To obtain a and b, equation (D10) is
substituted into the last two of equations (C8), or at p = 1.

(u.l(‘l) + bL’(f) + Lﬁ"”) + (&Kil) + bK:(f) + K!Es)) - (5-v) [ka.rz(ll) + b.rgz) + Jﬁ"’)) - kaxﬁl) + bzgz) + zﬁs))] =0
(p11)

va(l) + ol & 1:(3)) v [Q.rgl) + ngg) + Jf’)) - Q’YS) " b!ﬁz) + 21(15))] =0

n n n
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The starting values for the three solutions that were sssumed and that
satisfy the boundary conditions at the first station p=p or i = 1
are

¥(1) - o ¥(2) 2 o ¥(3) . o W
A oo 72) 2 o 73) 2 o
Y (oi2)
<3 6 LC-) R ¢ A
1) L (2 L ¢ 3) o J

When these starting values are used in the recurrance relations (D8) and
(DQ), values for Y, J, K, and L can be computed successively for all
other statlons. Once the values are computed for the last, or n station,
the constants a and b are obtained from equations (D1l) and the com-
plete solution ls then given by equations (DlO).

REFERENCES

1. Timoshenko, S.: Theory 6f Plates and Shells. MeGraw-Hill Book Co.,
Inc., 1940.

2. Manson, S. 5.: Determination of Elastic Stresses in Gas-Turbine Disks.
NACA Rep. 871, 1947. '

3. Hildebrand, F. B.,: Introductlon to Numericel Analysis. McGraw-HilLl
Book Co., Inc., 1956.

80LY


http://www.abbottaerospace.com/technical-library

4708

NACA TN 4218

9,6 ¥
~
Gyroscopic
loading
b surface
-, P
0
/N
/
r \
oy — —
/l / I
/ ]
/ ~
/
/

X

Figure 1. - Loading on disk due to rotation gbout two

axes.
force.

Arrow length 1s proportional to gyroscopic

2l


http://www.abbottaerospace.com/technical-library

22

Radlal bending stress, GR/K
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Dimensionless radius, p
{a) Radlsl stress.
Figure 2. - Comparison of exact dimensionless stress with stresses

obtained by finite difference solution for various ratios of
shaft to disk radii. Centrifugal loasd perameter, zero.
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Tangential bending stress, UT/K
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Figure 2. - Concluded. Comparison of exact dimensionless stress T
with stresses obtained by finite difference solution for vari-
ous ratios of shaft to disk radii. Cenirifugel load parsmeter,
zZero.
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Dimensionless tangential bending

Dimensionless disk deflection, w/C

stress, UT/K
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(a) Ratio of shaft to disk radius, 0.100.

Pigure 3. - Variation of dimensionless radial stress, tangential

stress, and deflection with dimensionless radius for various
values of centrifugal loading parameter.

Dimensionless radiel bending stress, UR/K
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Figure 3. - Continued. Variation of dimensionless radisl stress,

tangential stress, and deflection with dimensionless redius for
various values of centrifugel losding parameter.
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Dimensionless tangential

Dimensionless disk deflection, w/C

bending stress, GT/K
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Figure 3. - Continued. Variation of dimenslonless radial stress,

tangential stress, and deflection with dimensionless radius for
varlous values of centrifugal loading parameter.

Dimensionless radial bending stress, QR/K
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(d) Ratio of shaft to disk radius, 0.175.
Figure 3. - Continued. Variation of dimensionless radial stress,

tangentlial stress, and deflection with dimensionless radius for
various values of centrifugsl loading parsmeter.

Dimensionless radial bending
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Figure 3. - Continued. Variation of dimensioniess radial stress,

tengentlal streses, and deflection with dimensionless radius for
varlous values of centrifugal loading parsmeter.
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Figure 3. - Continued. Variation of dimensionless radial stress,

tangential stress, and deflection wlth dimensionless radius for-
various values of centrifugel loading parameter.
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various values of centrifugel loading parameter.
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Flgure 3. - Concluded. Varlatlon of dlmensionless radisl stress,
tangential stress, and deflection with dimensionless radius for
various values of centrifugal loading parameter.
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Dimensionless radiel bending stress, UR/K

NACA TN 4218

1.4
¥
[«
c

1z —— Retio of shaft .

: to disk radii
\\ .lo
l.Oh\\~\~
\\
—
80 I—
L} ‘\
\\
\
—]
\\ \\ .15 v
& \\ e
\ \\ —
\\\ -
.20
0] 10 20 30 40 50

Centrifugel loading parameter, M _
(a) Radisl stress. i

Figure 4. - Variation of dimensionless stress at shaft with
centrifugael loading pesrsmeter for various values of ratios
of shaft to disk rasdii.
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Figure 4. - Concluded. Variation of dimensionless stress with
centrifugal loading parameter for various values of ratios

of shaft to disk radii.
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g CD-5984

Figure 5. - Coordinate system for calculating acceleration of point P in disk.


http://www.abbottaerospace.com/technical-library

386 NACA TN 4218
Thy dr
h 3R _
1 1R + 5 ar) (x + ar)ae
hoRr &6
é‘_ 4
- r » - l dr -
Th, dr
14
m (R + g—i dr) (r+dr)ds
wrer dr @0 h
2
hyRr 40 mh r dr &9 %

—_ 1

Figure 6. - Equilibrium diagram of disk element.
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Figure 7. - Section of disk with stations for finite difference
equations.
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