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By Emanuel Schnitzer
SUMMARY

Theoretical equations are derived for the motion of aireraft equipped
with hydro-skis mounted on shock struts during take-off and landing opera-
tions on a water surface. The case considered involves a ski which is
fixed in trim relative to the alrcraft and which translates upward during
impact and thus telescopes the shock strut. Two hydrodynamic force rela-
tions, one more accurate but more complex than the other, are considered.
Incorporation of sultable shock-strut spring and damping aspproximations
along with the simpler hydrodynamlc-~force term allows the equations to
be written in nondimensional form for design~trend studies. Such trend-
study solutions have been made for a broad range of practical water impacts
and are presented as dimensionless plots. The equations involving the
more accurate force term are usable only in the dimensional form as pre-
sented, but they allow any spring type, any exponentlal damping constant,
and a veriety of ski bottom shapes to be included in the solutions. Thus
the trend-study solutions may be used for rough preliminary design and the
more accurate solutions for final design. An appendix is included which
gives a simple step-by-step procedure for solving any of the sets of equa-
tions derived in the paper.

INTRODUCTION

This paper deals with theoretical methods for treating oblique water
impacts of aircraft equipped with nontrimming hydro-skis mounted on shock
struts. The shock-mounted hydro-ski has become of interest in recent
years primarily as & landing device for high-performence aircraft capable
of operation from water, snow, ice, or sod bases. In addition to softening
the impacts encountered in operations from the solid-material runways,
the shock strut allows a wider ski to be used on the water runweys with-
out increasing the loads over those encountered wlth the narrower rigldly

lSupersedes NACA Research Memorandum L54HIO by Emsnuel Schnitzer, 195k,
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mounted ski. Since the wider skl permits easier teke-off because of its
increased lift-dreg ratio, the shock strut indirectly improves take-off
performance without increasing the landing load.

Although severasl ways have been conceived to mount hydro-skis on
shock struts, such as, for example, the translating ski mounting, the
trimming ski mounting, and the varying-dead-rise skl mounting described
in reference 1, this paper is concerned only with the simple translating
ski mownting. This design (see fig. 1) incorporates a ski which is fixed
in trim relative to the aircraft and which translates upward under load,
telescoping the shock strut. It is the purpose of this paper to derive
and solve theoretical equations for this case.

The theoretical equations derived in this paper employ the
hydrodynamic-force terms of references 2 and 3 in combination with the
shock-strut spring and damping terms. The equations employling the force
term of reference 2 are simple enough so that with suitable spring end
demping restrictions they can be solved and plotted in nondimensional
form for use in design-trend studies. Such e study has been mede for &
broad, practical range of aircraft landing conditions and is included
herein. The more accurste equations employing the force term of ref-
erence 3 were too complex for expression in dimensionless form and so
are presented in the form suitable for dynamic calculations involving
a wide range of bottom shapes, spring types, and damping exponents. These
more accurate equations might be employed for final design calculations.

The paper is organized as follows: +the equations of motion are
derived for shock-strut damping proportional to an arbltrary power of
the velocity, first for arbitrary spring force, then for constant spring
force, and finally for lineer spring force. The hydrodynemic-force term
is next developed using reference 3 or planing data, and then using ref-
erence 2. Following this, the motion equations employing the force term
of reference 2 are nondimensionalized for the arbitrary-, constant-, and
linear-spring-force approximations and for damping proportional to the
square of the strut compression velocity. A discussion of the trend-
study solutions of the dimensionless linesr spring-force equations is
included. An sappendix gives a simple step-by-step procedure for solving
any of the sets of equatlons derived in this paper.

SYMBOLS

b beam of skl

Ca beam-loading coefficient of ski, M/pbd
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planing lift coefficient based on ski beam, Fy , /g %202

Cy speed coefficlent, i/VEB
c damping constant of shock strut
F hydrodynamic force on ski
Fg spring force
.1
£(1) trim function, 0.0067" , where T 1s in degrees

sin5/2% COSQT

g acceleration due to gravity
H constant shock-strut spring force
K spring constant
M effective mass of aircraft attached to each shock strut
n damping exponent
Z
T nondimensional time varisble, t ??
t time after contact
u generalized displecement of ski normal to water surface relatilve

to its position at water contact, z/1

1 generalized velocity of skl normel to water surface, %% = éL
Zo
u generalized acceleration of ski normal to water surface,
@y
ar2 2g2
v resultant velocity of alrcraft

X forward velocity of ski parallel to undisturbed water surface
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Z vertical displacement of ski normal to undisturbed water surface
relative to its position at water contact

Z vertical velocity of ski normsl to undisturbed water surface
b vertical acceleration of ski normel to undisturbed water surface
¥ flight-path angle relatlve to undilsturbed water surface
o) constant spring-force parameter, H E—Egg;[
Mz g
£ displacement of ski keel normal to itself relative to its posi-
tion at water contact
Qs displacement of ski-step normal to its keel relative to undis-
turbed water surface : -
. Z + Kig
4 velocity of ski normel to its keel, ———
cos T
E acceleration of ski normal to its keel
CAP3/2 2/3 v
1 nondimensionalizing length, _E(;T_
2 LJ
9 linear spring-force parameter, K 73——
z_2M
o]
K spproach parameter, ST cos(r-+ ¥ )
sin 7, 0,
A ratio of mesn wetted length to beam for a flat rectangular
plate based on undisturbed water surface, —2—
bsin T
Ny ratio of mean wetted length to beam based on elevated water
surface
B arbitrary spring-force parameter, n/cos T
é forward velocity of ski parallel to its keel

3 forward acceleration of ski parallel to its keel Yo
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o) mass density of water
54 ski cross-sectional shape factor
T trim of ski relative to undisturbed water surface
¢ arbitrary spring-force coefficient, 3729541
Zo
. n=-2

¥ strut damping perameter, ¢ _IEEl?;:f_

M cos T
Subsecripts:
e at exit
m maximum value
N normal to ski keel
(o} at water contact
P planing
v normal to water surface
Supersecript:

! referring to fuselsge of aircraft instead of to ski

THEORY FOR IMPACT OF SHOCK-MOUNTED HYDRO-SKT

Equations of Motion

In the following derivation of the equations of motion for the hydro-
dynamic impsct of shock-mounted hydro-skls, a system is considered in
which the ski keel is orlented parallel to the plene of symmetry and nor-
mal to the axis of the shock strut (see fig. 1). The ski is assumed %o
remain fixed in trim and since its weight 1s usually less than 5 percent
of the weight of the airplane, the ski mass is neglected. Since the beam-~
loading coefficient of hydro-skis is usually large, the force due to
acceleration of the virtual mass of water is also neglected (ref. 3).

In order to further simplify the problem, an sdditional idealization is
made that the aircraft is rigid.
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The selection of a shock absorber with desirable force character-
istics 1s a difficult problem in view of the many variables involved in
hydro-ski landing operstions. The selection of the proper character-
istics is therefore left open insofar as possible by writing the equa~
tions of motion first for a shock strut having a general type of springing
as some arbitrary function of the strut telescoping displacement; two
approximate forms for the spring-force function will be considered later.
In the derivation the assumptions are made that the shock-strut damping
force varies as some arbitrary power of the velocity of compression, that
the wing 11ft of the airecraft is balanced by its weight, and that fric-
tionless flow exists in the water impinging on the skl.

On the basis of the foregoing assumptions, the equation governing
motion of a shock-mounted hydro-skl normal to its bottom and neglecting
strut telescoping friction (see fig. 1) is

Fy = c(f' - £)® + £1(¢g" - &s) (1e)

when the shock strut is compressing and

Fy = ‘cg(i - é')n + £1(Lg" - &s) (1b)

when the shock strut is exten . In these equations Fy 1s the hydro-
dynamic force on the ski, fl(gs - Qs) 1s the spring or air compression

force in terms of the strut telescoping displacement (5" - {5, c3

and co are the damping constants, n 1is the demping exponent, and §

and é' are the normsl velocitles of the skl and aircraft, respectively.
Although, for convenience, the full demping force is sometimes assumed
to reverse on shock-strut extemsion so that c¢q = cp, actuaslly in practice

a fluid-return dump valve might be employed so that the strut damping
force would approach zero on shock-strut extension, and if the ski were
in the water during this time the normsl load extending the ski would
approximate the spring force. Since the lower mass (ski and lower part
of shock strut) is neglected, the hydrodynamic normal force of equa-
tions (1) is communicated directly to the alrcraft fuselage, and since
the wing 1ift is assumed equal to the weight of the alrcraft the equa-
tion of motion of the fuselage is expressed by Newton's third lew as

Fy + ME' = 0 (2)

where M 1is the mass of the aircraft and E' is the acceleration of
the fuselage normal to the keel. If equation (2) is substituted into
equationsa%l), the following equations result:
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ME' £ o(xf' T E)R 4+ £(L.t - bg) =0 (3)

where the upper signs signify strut compression and the lower signs strut
extension. Equations (2) and (3) may be rewritten in terms of the coor-
dinate system normal to the water surface by means of the following sub-
stitutions (see velocity disgrsm in fig. 1)’

t = (k)
cos T
g=Z+KiO (ll-b)
cos T
oz
S = cos T (ke)
where
c = SERT_BIRT oog(r 4 p) (a)
Zo sin 7

and £ 1s teken equal to O Dbecause of the assumption of frictionless
flow and no external force, thus rendering ¢t a constant. The rela-
tionships between the primed guantities are expressed by similar equations.
The substitution of equations (4a), (4b), and (4c) and the primed equiva-
lents into equations (2) and (3) leads to the following expressions:

. E
Z2' + Y =0
i (5)
and
1
Bt 2 (#3" F2)0 o4 5 (2 20° T _ g (6)
M n-1 cos 7/ M
cos T
since 2Z,' = Zo. In these equations F, is the vertical component of

the hydrodynamic force, z and z' are the vertical velocities of the
ski and fuselage, respectively, and #' is the vertical acceleration
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of the fuselage. Specific solutions of equations (5) and (6) can be
effected, provided that suiteble expressions for F, and f7 are avall-

able and the constants M, ¢, n, T, and 9, are given.

Spring Force

In some instances it is believed that a shock strut having a constant-
force spring exerting a force of slightly greater than 1 g may be desir-
able. Such a strut would be extended between impacts and during plening.
It would therefore maske available its entire stroke for impsct load reduc-
tion. For this case and for those cases where the spring force may be
approximeted by a constant with reasoneble results, the spring term in
equation (6) may be written

z' - =z
g (2=2). g (7)
cos T
wvhere H 1is defined as & constant spring force. It should, however,

be remembered that when z'< %-cos T and ;' - {5 = 0, equation (6)

modified by equation (7) for constant spring force no longer applies,
since the shock strut behaves as a rigid link zg = 2zg', 2z = 2', and

Z = z'. In this region, equation (5) and its integrated form will yield
solutions for the acceleration of the alircraft.

The alr springing force on some existing landing-gear shock struts
may be roughly approximated by a stralght-line force-deflection curve
for some applicetions. TFor this approximstion the force curve is assumed
to intersect the origin of zero force and zero strut compression, although
in the actual alr-spring case a substantial force exists for negligible
strut compressions which enables more repid reextension of the strut for
subsequent impacts. This linear springing reaction is defined as

1 T
fl<__§.) = K(Z__:_&) (8)
cos T COoS T
vhere K i1s the spring constant and z' and 2z are the respective

displacements of the fuselsge and hydro-ski normasl to the undisturbed
water surface.
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Hydrodynamic Force

The hydrodynaemlc impact force for use In solving the equations of
motion can be obtained from theoretical or experimental high-speed planing
data for the case of the usual heavily loaded hydro-ski under considera-
tion in this paper. An empirical formula for the instantaneous planing
1ift may be derived from reference 2 or planing experiments, and a theo-
retical one from reference 3. The application of these formulas to the
impact case is given in the subsequent sectlons following the expression
of the impact force in terms of the planing reaction. Although the equa-
tions of motion involving the hydrodynamic force from reference 3 or
planing experiments are believed to be more accurate than those using
the hydrodynamic force from reference 2, the latter equations are simpler
and so can be applied in nondimensional form to trend-study solutions.

In order to express the hydrodynamic impact force on a heavily loaded
prismatic hydro-ski 1n terms of the planing reaction, this forece, which
is directed normal to the keel, is first written in the form

Fy = pbzgafe(%,’r,c) (9)

where p 1is the mass density of the fluid, ¢ is the cross-sectional
shape factor, and the effect of flight-path angle on the pressure distri-
bution 1s considered secondary. The hydrodynamic-force term proportional
to the normal acceleration of the ski is neglected since it is usually
small for large beam loadings. The vertical component of the normsal
force can be expressed as

Fy = pbPL2es (%—,T,G) (20)

or

. . 32
Z + KZp
Fy = ob2 L_L fa(%,-r’g) (11)

0082'1'

through the introduction of equation (4b) into equation (10).

The funection f5 can be evaluated for the case of steady planing

(y = 0) for which £ = x sin v (see Ffig. 1), where % is the forward
veloclity parallel to the undisturbed water surface. Substitution of
this expression for € in equation (10) results in the equation
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FV:P

222 2 (12)
pPh=xc sin‘T

f5(%,7,0) =

Bydrodynamlic force from plening experiments or reference 3.- For
the flat or V-bottom ski, fz can be evaluated by means of the theoret-

ical equations in reference 3 (see especially equation (11) in that ref-
erence), while for the prismatic bottom of arbitrary cross section experi-
mental planing data obtained with a ski model may be used as in reference k.
In order to make- specific solutions of shock-mounted hydro-ski landings, B
the force term defined by equation (11) is substituted into the equations

of motion. Thus equation (5) is replaced by the equation of motion

+ (ﬁ. + K.Q.O)E f5<':tz>"7:a) -0

bCp coslT

..
zl‘

(13)

where the beam-loading coefficlent Cp = —Mg.
pb

Solutions may be obtalned, by any of the usual numerical methods,
for equation (13) in combination with equation (6) for arbitrary spring
force or with modifications of equation (6) which incorporate equation (7)
for constent spring force or which incorporate equation (8) for linear
spring force. One method of solution is illustrated in the appendix of
this peper.

Hydrodynamic force from reference 2.- In order to obtain nondimen-
sional solutions of the equations of motion, a simple expression for the
vertical hydrodynemic force on an impact rectangular flat plate must
be derived for substitution into equation (13). Thls expression 1s
obtalned from the empirical equation for the planing 1ift coefficient
given in reference 2 as

Fy 1 My 2

S 3 T 5§ P ISV W L o.oo95<—> (1k)
£ ;22 v

2
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where A, 1is defined as the ratio of the mean wetted length to the beam
of the model, Cy is the speed coefficient defined as i/VEE, and T
is expressed in degrees. Since values of Cy encountered in landing

impact are usually large, the second term in equetion (14) becomes quite
small and may be neglected. The hydrodynamic planing force may therefore
be expressed as

Fv,p = O.Oo6pi2b271-lkwl/2 (15)

Since the equations of motion are written in terms of the time deriva-
tives of 1z, it is desirable to write equation (15) in terms of these
variables. If the water rise in front of the model is neglected, the
error introduced will not be excessive for meny applications (see ref. 3)
and the mean length-beam ratio mey be expressed as

= /=3 —Z
s A bsesin-T (16)

A combination of equations (12), (15), and (16) yields the value of
f3(z/b,T,c) which upon substitution into equation (11) gives the verti-

cal hydrodynamic force

1.1
Fy = zl/E(é + néo)epb3/2 0.0067
sin5/2T COSET

or

Fy = zl/e(é + Kéo)zpb3/2f(7) (1)

Ql
where f(T) = 0.006tt end T 1s expressed in degrees.

sin5/2T cong


http://www.abbottaerospace.com/technical-library

1é NACA TN Lk256

Substitution of equation (17) into equation (5) results in the
equation of motion

z' o+ zl/Q(é + nio)z _fSI%__= 0 (18)
CAP3 2

Solutions maey be obtained by numerical methods for equation (18) in com-
bination with equation (6) for arbitrary spring force or with modifica-
tions of equation (6) which incorporate equation (7) for constant spring
force or which incorporate equation (8) for linear spring force. One
method of solution is 1llustrated In the appendix.

Nondimensional Equations of Motion

Nondimensionslizing the equetions of motion allows a large number
of specific solutions to be represented by a smaller number of nondimen-
sional plots. In this section nondimensionel verisbles are derived and
in the following sections of the paper the arbitrary-, constant-, and
linear-spring-force equations are nondimensionalized in that sequence
through substitution therein of these new variaebles.

In the nondimensionalizing process, new dimensionless independent
varliables are formed through division of the basic independent variables
of displacement z and time t by physical constants of like dimension.
Thus, the nondimensional vertical displacement wu 1is obtained through
division of the displacement 2z by the constant 1 which has the dimen-
sion of length, or

u=2 (29)

and the nondimensional time T 1s obtained through division of the
time t Dby the constant n/io which has the dimension of time, or

P % (20)

The nondimensional veriebles of higher order are obtalned by taking
successive derivatives of the nondimensional displacement with respect
to the nondimensional time. Thus, the nondimensional vertical velocity
is defined as
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du _ du dt (21)

g dd_ ddat _ d2u<d.t>2 (22)

Since W _ 2 gy A, equation (21) for the vertical velocity can
at 1 ar éo

be restated

U= = (23)
Zo
2 .
and since ngi--E, equation (22) for the vertical acceleration can be
dt
restated
= 2l (2k)
202

Equstions (19), (20), (23), and (24) define the dimensionless variables
of the problem whlch permit nondimensionalization of the eqpations of
motion. An exactly parallel set of equations for u' ;. u , and i' may
be obtalned in terms of the quantities z', z', and 3z’

Arbitrary-spring-force equations.- Equations (6) and (18) are the
equations of motion for the arbitrery-spring-force case. These equa-
+tions are nondimensionalized through substitution therein of eguations (19),
(23), and (24) and the primed equivalent expressions. The resulting
reletions are, from equation (6):

u' oyt F )t + ¢flE(u' - E} =0 (25)

and from equation (18):
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'+ uwl/2(a +k)2=0 (26)

if the erbitrery constant 17 1s defined as

2/3 '
3/2
S ji (27)

£(r)

and where

q,:c_z."___._ (28)

g=18T (29)

po= —d (30)

cos T

and u and u' are functions of T. (Note, in these and the following
generalized expressions, that 2o = Zo', that uy, us', Uy, and Uy' = O,
and that Uy = 4,' = 1.) Thus the nondimensional motion equations (25)
and (26) completely define the time histories of the nondimensional vari-
ables u, 4, u', U', and #' din terms of the arbitrary paresmeters n,
n, K, V¥, ¢:3nd- M.

Constant-spring-force equations.- Equations (6), (7), and (18) are
the equations of motion for the constent-spring-force case. If eque-
tions (19), (23), and (24), the primed equivalents, and equation (27) are
substituted into these motion equations the followlng relations are
derived:
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+ y(#a' F4) +8 =0 -~ (3L)
and (eq. (26))
u' o+ ul/e(ﬁ + k)2 =0

where

1 cos T

Mz 2

8 =H (32)

Equations (31) and (26) completely define the dimensionless time histories
for the constant-spring-force case.

Linear-spring-force egquations.- The equations of motion for the
linear-spring-force case are nondimensionslized exactly as were the
constant-spring-force equations, with the result that equations (6) and
(8) become

1t ok (et FA)® + e(u' -u) =0 (33)
and equation (18) becomes equation (26):
i+ ul/2(8 + k)2 = 0

where

2

=K _"2 (34)
zo™M

Equations (33) and (26) completely define the dimensionless time histories
for the linear-spring-force case.

A numerical step-by-step procedure for obtaining solutions of any
of the foregoing sets of equations of motion 1s described in the appendix.


http://www.abbottaerospace.com/technical-library

16 _ NACA TN 4256

DISCUSSION OF NONDIMENSIONAL SOLUTIONS

In order to provide trend studies for use in preliminary design of
shock-mounted hydro-skis, solutions were made of equations (26) and (33)
on a Reeves Electronic Analog Computer for a wide range of parameters.
The equations for the linear-spring-force case were chosen since they
wvere essler to handle than the constant-spring-force equations end slnce
preliminary solutions indicated that differences in the results between
the linear- and constant-spring-force cases and the exact alr-spring case
were small in the practical region. The value of 2 was selected for the
damping exponent n. In order to apply these sclutions to a practical
problem, a set of scale factors may be obtained by evalusting eguation (27)
in terms of the constants of the actual problem. New scales may be com-
puted for eny given aircraft and written in over the existing scales on
the plots of figures 2, 3, 4, and 5. The parameters &k, , and 6 may
be evalugted for the cases of interest by substitution of the sppropriate
appr?aﬁ? conditions and design constants into equations (L4d), (28),
and (34).

Figure 2 presents nondimensional acceleration time histories for
most of the region embraced by the values of kK, V¥, and 6 from 0.1
to 100 and n equal to 2. These curves give the varlation of the accel-
eration of the aircraft normal to the undisturbed water surface for dif-
ferent spproach conditions and shock-strut spring and damping constants.
The general trends which are apparent asre as follows.

(a) The effect on the acceleration of varying the demping constant L ]
becomes smaller as © increases, since the ratio of the spring force to
damplng force increases.

(b) The acceleration time history has the appearance of a combina-
tion of two separate curves. One, arising from the strut damping reaction,
has an early peak, and the other, arising from the strut spring reactilon,
has a later peak. This 1s reasonsble since the highest strut compression
veloclty occurs early in the impact, making for large damping force, while
the maximum strut compression displacement occurs later in the impact,
giving the large spring force. For intermediate spring and damping
reactions the peaks approach equal heights, resulting in a flat-topped
or rectangular forece curve.

(¢) As rk increases (approaching the planing condition) the effect
on the acceleration of varying ¥ 1is increased over that of wverying 6.
This probably is the result of very small strut compression displacements
at substantial compression velocities.

14

The maximum velues of the dimensionless acceleration -u are
plotted against the damping parameter ¢ 1in figure 3 for the different
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values of spring paresmeter © and the approach parameter k. The
demping parameter rather than the spring parsmeter was chosen as the
ebscissa since damping is usually the more importent factor in shock-
strut design. For a given aircraft at a given trim and vertical velocity
at contact, the scale values on the plots of figures 3, 4, and 5 can be
uvsed directly for deplcting relative trends of the dimensional quantities,
as their magnitudes bear the correct ratios to each other. TFor example,
in figure 5 the acceleration is proportionsl to -u', the spring constant
to 0, and the damping constant to ¥, while k sapproximates T/yb for

the low trim angles.

From this figure it is evident that, in general, the maximum sccel-
eration increases with the spring constant and the damping constant and
decreases with increasing flight-path angle. From a dimensionsal viewpoint
thls last rerult may be explained by assumling the sbove conditions of con-
stent initisl wvertical velocity and trim, for which a reduction in Yo

would mean an increase in resultant velocity at contact with correspondingly

larger loeads.

The effect of varistion of shock-strut and spproach parameters on
the verticael veloclty at water exit, which affects the severity of sub-
sequent impacts, may be observed from figure 4. It does not appear that
any general comment can be made regarding the trends in this figure,
although such trends would probably become more pronounced for a given
alrcraft with its more restricted practical range of k, ©, and V.

An 1dea of the required shock-strut length for an alrcraft may be
obtained by means of filgure 5. This figure presents the maximum strut
stroke utilized in impacts for the ranges of Kk, ©, and V¥ covered by
the previous figures. The general trends apparent from figure 5 are
that the strut stroke decreases with inereasing damping constant, spring
constant, and initial flight-path angle. The decrease with increasing
flight-path angle is probably a result of the lower loasds arising from
the reduction in horizontal veloclty occurring at the higher flight-path
angles. From the foregoing figures the desligner may reach the best engi-
neering compromise between a rectangular shock-strut force-time curve,
minimm rebound velocity from the water surface, and shortest required
strut stroke. :

CONCLUDING REMARKS

Theoretical equations have been derived for treating oblique water
impacts of an aircraft equipped with a flat-plate hydro-ski mounted on
a shock strut. These equations were nondimensionalized and solved, and
the results were plotted for the case of velocity-squared damping and a
linear spring reaction for a wlide renge of design psrameters. On these
plots the following trends may be observed.
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A tendency toward a double pesk exists on the acceleration time
histories, mainly because of shock-strut characteristics. The early
peak results principally from the large damping force at high initial
telescoping velocity while the later one results principally from the
large spring force at large telescoping deflection.

The effect on the acceleration time history of varying the dasmping
constant becomes smaller as the spring constant is increased.

The effect on the accelerstion time history of wvariation of the
demping constant becomes greater than the effect of variation of the
spring constant as the initisgl flight-path angle is decreased.

For a given initlal vertical velocity and trim, the maximum accelera-
tlon increases with the spring and damping constants and decreases with
increasing flight-path angle. Also the required strut stroke decreases
with increasing damping constant, spring constant, and initisl flight-
path angle.

Langley Aeroneautical Laborsatory,
National Advisory Committee for Aeronautics,
Langley Field, Va., July 27, 195h4.
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APPENDIX
NUMERICAL SOLUTION OF EQUATIONS OF MOTION

The equations of motion derived in the body of this paper may be
solved by any of the standard numerical procedures (refs. 5 and 6). One
such step-by-step process involving incremental linear extrapolstion of
vertical velocity wlth a correction to this velocity at each step is
described below. In order to avoid duplication, any of the sets of equa-
tions proposed in this paper can be replaced by two equivalent expressions
for which the numerical procedure is set up. These expressions are as
follows:

V' o4 £ (v)(F + k¥0)2 = 0 (A1)

and
¥'E AV F NP+ I5(v - v) =0 (a2)

wvhere v and v' are functions of some sort of time, say +t, for example.
In these equations v, ¥, and ¥ are, respectively, the displacement,
velocity, and acceleration of the ski normal to the water surface while
the primed equivalents refer to the fuselage motions. These equations
are used for illustrsbtive purposes and the actual solutions should be
cerried out with the specific equations of the problem after the proper
functions have been evaluated and substituted therein.

The step-by-step computation can be carried out by selecting several
successive values of v designated v&, Vb: and vé for wvalues of

time t separated by increments designated At. The values of ﬁg

and ﬁb will be considered known from previous steps or from initiasl
values of the varisbles. Since 35 = 0, the velocity can be assumed to
be constant over the first increment; hence Vg = ¥, = Vo. It is desired

to obtain successive values of some of the derivatives of v and '
with respect to +t, and especially accurate values of ﬁb since this

quantity is extrapolated. The equations selected to accomplish this are
Vx = 20y - Vg (A3)

Vo = Vp + Xz_g-fh-am (Ak)
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Vo' = ~f(ve) (Vx + 8¥0)2 (85)
. 1 . t ..v.-cl + ;;'b'
Vo' = W' + ———— Ab (A6)
2
Vo' + V'

1/n
. . wve' F fg(ve' - vé;]
]
where x indlcates a trial value at point ¢ obtained through extra-
polation, and the upper and lower signs refer, respectively, to strut

compression and extenslion. A switch is made from the upper to the lower
signs when V' Dbecomes equal to or less than v.

(A8)

&

n
&
-H

The value of V, 1s the required accurate value which for the next
increment becomes Vg, the previous W, becoming Vg. Although the

operstions carried out with equations (A3) to (A8) could be repeated for
the same increment of time At with v, substituted for vy, one cor-
rection for each step is believed to be sufficient, provided a small
enough incremental time is chosen. For many applications, it is belleved
adviseble to select very small inecrements for the first four or five
steps and larger increments from there on, although it must be remembered
that in g1l cases the time increment from a to b must equal the time
increment from b to ec.

The correct increment size may be esteblished by experience acquired
in meking several solutions for a given problem and using different incre-
ment sizes for each solution. The increment size may be increased untll
the point 1is reached where the solutions diverge from the more accursate
curve obtained with a very small increment size. If a small-period oscil-
lation is present in the curve, too large an increment size is also indi-
cated. The values determined from the repeated aspplication of equa-
tions (A3) +to (A8) when plotted against t give the motions of the ski
and fuselesge throughout the impact.

If it is assumed that & dump valve exists in the shock absorber,
then the damping on strut extension becomes considerebly less than on
compression. When this condition exists, the valpe of A, and possibly
of n also, will become different during the extension part of the stroke.
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Nondimensional acceleration, -ﬁm'
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