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TECHNICAL NOTE 4318

ON FULLY DEVELOPED CHANNEL FLOWS: SOME SOLUTIONS AND
LIMTTATIONS, AND EFFECTS OF COMFRESSIBILITY,
VARTABLE PROPERTIES, AND BODY FCORCES

By Stephen H. Maslen

SUMMARY

An exsminstion of the effects of compressibility, varisble proper-
ties, and body forces on fully developed laminar flows has indicated
several limitations on such streams.

In the absence of a pressure gradient, but presence of a body force
(e.g., gravity), an exact fully developed gas flow results. For a liquid
this follows also for the case of a constant streamwise pressure gradient.
These motions are exact in the sense of a Couette flow. In the liquid
case two solutions (not a new result) can occur for the same boundexy
conditions. An spproximate enalytic solution was found which sasgrees
closely with machine calculations.

In the case of gpproximetely exact flows, it turns out that for
large temperature variations across the channel the effects of convec-
tion (due to, say, a wall temperature gradient) and frictional heating
must be negligible. In such & case the energy and momentum equations
are geparated, and the solutions are readily obtained. If the temper-
ature veriations are small, then both convection effects and frictional
heating can consistently be considered. This case becomes the constant-
property incompressible case (or quasi-incompressible case for free-
convection flows) considered by many authors.

Finelly, there is a brief discussion of cases wherein streamwise
variations of all quantities are allowed but only in such form that the
independent varisbles are separaeble. For the case where the streamwise
velocity varles inversely as the square root of distance slong the chan-
nel, a solution is given.
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INTRODUCTION

Among all possible fluid flows, one of the most useful is the fully
developed (i.e., independent of streamwise distance) chammnel flow. The
flow 1s taken to be the motion generated by a constant pressure gradient
(the familiar Poiseuille flow) or by & body force (ref. 1). In either
case one usually considers only an incompressible or quasi-incompressible
flow with fixed fluid properties. This is in marked contrast to the case
of Couette flow where two parallel walls move with respect to each other.
In such & case there is no need to limit oneself to a perfect gas or to
any particular varistion of the transport properties (ref. 2 is a case
in point).

The crucial difference between the Couette and the Poiseullle flows
is that the former admits a stream wherein nothing depends on the stream-
wise distance, while the latter requires that the pressure vary in the
flow direction. Hence, to some small degrée, at least, the other fluid
properties will also vary in that direction if the state equation in-
volves the pressure. The present study is an exemination of the general
circumstances under which there can be a fully developed laminar flow
past fixed boundaries.

One special problem considered is an unusual situation found by
Ostrach (refs. 1 and 3 to 8). He discusses the flow of a fluld in a two-
dimensional channel under the influence of gravity. Incompressible flow
1s assumed except as 1s.required to generste a varying body force, and
the fluid tramsport properties are assumed not to vary. Under these
assumptions, the surprising result is found that there are two solutions
to the flow in question for a certain range of values of the flow parem-
eters. The first corresponds roughly to the neglect of frictional heat-
ing, while the other 1s near the (nontrivial) solution for homogeneous
boundery conditions.

There mey be some doubt as to the stability of one of the solutilons,
presumably the secord one. In eny case, a question arises sbout the ef-
fect of considering a real fluid having variasble viscosity and thermal
conductivity as well as belng truly compressible.

Accordingly, the present paper treats the consequences of such gen-
erslizetions. However, to reiterate, one serious restriction is made on
all the flows considered herein: The flow 1s always fully developed,
with the result that the effects of conditions near either end of the
channel are ignored.

TSSY
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ANALYSTS

Consider a two-dimensional flow of a viscous compressible filuid
acting under the influence of an axial body force such as gravity. Var-
ieble viscosity and thermal conductivity are admitted. The configura-
tion is shown in the following sketch:

/ u Y/
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The equations of motion are

(pu)y + (pPV)y = O (1)

plusg + vuy) + Py = -pf + 2(uug)x _+. [u(uy + VX)]Y - %[u(ux + vy)]x (2)

pluvy + vvy) + By = 2(uvy)y + [u(uy + VX)]X - -:,Z;[M(ug + VY)] y (3
pC,(uTy + vIy) + P(ux + vy) = (kIyx)y + (kTy)y + P[Zu;% +ug + g+

ng + Zqux -~% (ux + vy)é] (4)

Symbols are defined in appendix A.) Consider, in addition, two possible
(ym DD ) )

forms of a state equation, one epplying for a gas, the other, for e
liquid:

P

ORT | (cas) (52)
?5[1 - B(T - E)] (Liquid) (5b)

P
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In equation (5b}, B is the (small) volumetric expension coeffi-
cient, and p and T are reference values. The significant difference
between the two state equations 1s that the second is independent of
pressure.

The boundary conditions on the channel walls are

u(X,0) = u(X,d) = v(X,0) = v(X,a) = 0
Ty (%) (e)

T (%)

7(X,0)

T(X,d)

where 4 1s the distance between the channel walls. The temperature
boundary conditions could, of course, be replaced entirely or in part by
a heat-transfer condition but, for the purpose of this report, such a
change is unimportant.

Bquations (1) to (6) are sufficient to define the fully developed
flow in & channel provlded the viscoslty and conductivity wvariations with
temperature are known end provided further that the forced-flow pressure
gradient, if any, is specified. In seeking solutions of these equations
for flows in & very long chamnmnel (i.e., fully developed) we are led to
consider three gpproaches: first, exact solutions entirely independent
of distance (X) along the chammel; second, solutions epproximately inde-
pendent of X; and third, solutlons whereln the variables are separable.
In each case the results can be expected to dliffer according to which of
the state equations epplies. In this connection, it is important to ob-
serve that the viscosity and thermal conductivity vary differently in
liquids and gases. In particular, the viscosity rises with temperature
for a gas and falls for a liguid. o '

The phrase "exact solution" should perhaps be defined. In this re-
port it 1s understood to mean a solution which satisfies equations (1)
to (6) rigorously. However, no conslderation ls glven to condlitions
near the ends of the channel. There are two relatively simple circum-
stences under which such exact solutlons can be found. For e gas nothing
can vary with X, not even the pressure. For a liquid thils restriction
is moderated to the extent that only the gradient of the pressure need
be independent of X. This relaxed condition occurs because of the
pressure~-independent state equation {eg. (5b)) for a liquid.

Exact Flow of Gas
If nothing depends on X, equations (1) to (5a) and (6) become

v=20 (72)

TGOV
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(huy)y = of (7p)

PY =0 (70)

(kTy)y = -nul (74)

P = pRT (7¢)

u(0) = u(a) = o
2(0) = Ty, (8)
T(d) = Tyy
Assume that the viscosity and thermal conductivity vary as powers
of temperature, and also, for convenience, change the independent

verisble (Y).

Thus, suppose

oy
p = al
n (9)
k = bT 2
and let T
Y
2/ m dY
0 "o
1= -1+ 3
B = -7—--‘33{
= wy ;
0 (10)
orxr
|
¥ [
= =
1 [‘Lwo )
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vhere the constant B is as yet undetermined. Then equations (7)
become - —

~
oy - (aazﬂ:) St
n - 2
4Rqu

P = Constent > (11)
%
(k ) 2 . H
wtn) =%
n J
If the viscosity varies linearly with temperature (nl = 1), then these
equations are separated. If n, 1s also unity, the solution is
aB®fP\ , 2
ws (o) (- 1) (22)
p'WO
- 2
Twg * Twy Twy - Twg) & feBZPe\“fn® - 1
T= 2 + Z "B 2 12 (13) .
Ry
o
Finally, B can be found from the second form of equation (10). Thus *
+1
2
o [ nan- (o +m ) .28 (%)
B 1= Gy * 5! 155 ey
L1 (0]
or
2023
1 (BT, \ |fe2za f_d)} B\, (10
240 dTwO km“m Tm dTwo
where
T,. + T
Y0 1
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The quentity in brackets is essentially the parameter K defined
in reference 1. This is always positive. Under these circumstances
equation (13) has only one resal root, that root being such that

BTy
O <— <1
d'
T"‘-0
For example, for air under standard conditions, if d =3 and £ is
gravitational acceleration, equation (14) yields Bmm/dTwO = 0.904. A

convenient standard for comparison of the present solution with more
approximate results is given by the mass flow. This is

d +1
BP
./f pu ay T j{ u dn
0 0 Ji

3
BT, \ (p2rad (15)
dTwO lme
The corresponding result for incompressible flow with constant fluid

properties, or for compressible flow with variable properties, bubt ne-
glecting frictional heating, is

a .
p2pad
Pu &Y = - 12u
0

For the case cited prior to equation (15), where BTm/dTWO = 0.904, the

actual mass flow is sbout 25 percent below the incompressible wvalue.
Unfortunately, the mean flow velocity is about 800 feet per second. This
high velocity would probably preclude the possibility of laminar flow
even existing. If an example leading to slower flow were considered, the
difference between the two results would have been small. This demon-
strates that the varistion of viscosity 1s unimportant.

A final comment: If the viscosity is not assumed to vary linearly
with the temperature, the momentum and energy equatlions cannot be sepa-
rated. As this circumstence (lack of separation) led Ostrach (refs. 1
and 4 to 6) to find two solutions for the flow rather than one, it is

perhaps worth examining further. Define

k
H=[ S ar (186)
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Then equations (11) become

appr (8H(ny - np + 1) -(1-n7)/ (1-ny+np)
LU 4Ru? ( b (172)
Yo
P = Constant )
fn = -uﬁ (17b)

For gases, one expects that n; < 1 and n, > 0; thus the right side of

equation (17a) 1s a decreasing function of H. 1In this case there can
be at most one solution of the problems. The argument goes this way.
Suppose one solution is known. If a second solution has larger H, then
by equation (17a), Ung is smaller. Hence, for a reasonsble profile,

is reduced. Then, by equation (17b), Hnn is of lesser magnitude. Hence
for a reasonable case, H must also be small, which is a contradiction.

It should be emphasized, however, that this case of no pressure gra-
dient whatever has no connection wlth the work reported in references 1
and 4 to 6.

This completes the solution for the exact fully developed flow of a
gas. There are two generalizstions which can readily be made. These in-
volve the addition of =2 body force transverse to the channel and the ad-
dition of heat sources in the fluid. The solutions are given in appendix
B.

Exact Flow of Liquid

Here it is assumed that there is a pressure gradient such that, at
least, PX and Py are independent of X. No other X-dependence is ad-

mitted. Then the system is that given in eguations (7) and (8), except
for the X-momentum equation, which can conveniently be written as

(wuy)y = =B(T - T)f + (By + p£) = pBE(T - T*) (18)
where
o _ Py + p(1 + BE)¢
pPBE

(19)

TS9P
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It is worth observing here that, if the reference point is changed in
equation (Sb)}(i.e., a new T), this has no effect whatever on the
value of T*. This is because the state equation (eq. (5b)) is really
of the form p = A - BT, wvhere A and B are fixed. In thalt case
equation (19) is really

% Px‘l'Af

T = Bf

Hence T is a function only of Py, f, and the material. Then if 1y

and H, defined by equations (9) and (16), respectively, replace y and
T, the momentum equation becomes

Upg = = (Ez-.‘:z’i'z) u(T - T*) (20)
4uwo

while the appropriate energy equation is, again, equation (17v).

Now the forcing term (the right side of eq. (20)) should be consid-
ered. According to its definition (eq. (18)) H is an increasing func-
tion of T. Hence, at least for constant viscosity, the forcing term is
an lncreasing function of H. If P and Xk are constant, then the
forcing function is linear in H and, for this case, it has been shown
(refs. 1 and 6) that two solutions occur under certain conditions. In
the present situation things are not that simple, and the results depend
on how p and k vary. For many ligquids the conductivity varies only
moderetely over a falrly wlide range of temperature, while the viscoslty
mey change severalfold. Two cases, water and liguid sodium, are illus-
trated in tables I and II. In the present discussion the variation of
conductivity is neglected. The wviscosity can be written to good approx-
imation as

]

=TT (21)

where s and T, are constants (for water s = 0.36 (centipoise) (°C),
and Ty = 20° Cif T is in OC)}. This expression is compared in tables

I and IT with experimental values. Tt is to be expected that
(T + Ta) > 0 in the range where the fluld remains a liquid. Under these

circumstances, equation (18) yields

E = éL.s o(T + 2T,) (22)
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and equation (20) becomes

B25Ers kT2 + 2sH(T*)
U = T 3 1- 2 (23)
4*‘“0 kT, + 2sH(T)

From equation (17b), it is seen thet, if u% is large, H mnmust
vary more or less parabolicelly upward across the channel. Then it fol-
lows (eq. (23)) that, when EH - H(T*) has a large msgnitude, the forcing
term incresses only slowly with H, while for small H - H(T*), the
forcing term is linear in H. The latter reduces the problem to the
ususl free-convection situastion (ref. 1), while the former (Large
H - H(T")) approaches the usual Poiseuille case, wherein the forcing
term is conmstant. This circumstance at least restricts the range of
flow parameters for which two solutions, as found in reference 1, can
exist.

Stated more explicitly, if (T - TWO)/(TWO + Tg) remains small, the

viscosity is essentially constant and the system becomes that solved in
reference 1.

Had the variation of conductivity been allowed for, a small modifi-
cation of the foregoing argument might occur. If the conductivity drops
as the temperature rises, the forcing term would move toward a more lin-
ear varistion with H.

In general, the solution of the system given by equations (23),
(170), and (8) is not simple. However, after two limiting cases are dis-
cussed, the general case can be described. The first such case is that
of small frictlional heating; the second is for smell temperature varia-
tions, ahd therefore viscosity can be considered constant.

Small Frictionel Hegtling

First consider the case of small frictional heating. The formula-
tion involving 7 and H (egs. (23) and (17b)) is not convenient for
this case. Hence, consider equations (18), (7d), and (8). The viscosity
is defined by equation (21), and the conductivity 1s assumed constant.
When the frictional heating is smsell so that the right side of equation
(7d4) is negligible, one obtains

T =T+ (T - Ty (24)

TS9%
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Then equation (18) can be integrated to gi-ve
oBeal v\* Y\3
= - 9246 (TW]_ - TWO)Z [5(E> + (4(:(,2 + Sd.l)('d-_) +
2
(12a1ap - %)%) - 2%@3(%)] (25)
where
Typ = T )
1 Ty - T
'I‘wo + Ty
G = F—— > (26)
2 Ty - Ty
l2aqag + 4(as + 20q) + 3
%3 = T + 2ap)
J
and T is defined by equation (18). From these, the wall shear is
(buy)yo = PEBA(Ty - Ty ) (os/12)
(27)

(buy)y_q = PEBA(Ty, - Ty )(az/12 - o - 1/2)

The net mass flow is

a 2
—2.% — 5(1 + Y(L + 6o, + 6a3)
‘/.pudx=p:‘5<fiso§‘3 (TWJ_'TWO)Z 1+ 20-:JL.+2<1~2 : =| (@)
(o}

These results can be compared with those for constant fluid properties.
(This case is given on p. 10 of ref. 1.) Im such a case, the temperature

is again given by equation (24). The velocity distribution, wall shear,
and mass flow are given, respectively, by

i Eﬁfd(T;%S' Tyo) (1 + 2ap) [% (% - )Gi + 1+ 3@1)] (29)
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(huydyo = PERA(Ty, - Ty,) [(1 * 3«11)/6]
(30)

i

(huy)y_q = PEBA(Ty, - Ty M |-(2 + 3%)/6
Yy/y=q w1 0

d- — —
/ ou &Y = %gﬂ (T - TWO)Z[(l + 2ap) (1 + 2a,2)] (31)
o

In these last equations the viscosity has been taken as that correspond-
ing to the average tempersture; that is,

28

+ Two

(32)

K Twl + 2T

A comparison of the results obtained for the cases of constent and
variable properties is given in figure 1. The fluid is liquid sodium, .
and the temperatures of the two walls (100° and 900° C) differ enough
that the viscoslty varies by a factor of ebout 4. In spite of this there
is no significant difference between the results for the two cases. That
1s, the effect of variable viscosity is unimportant even though the tem-
perature variations are large.

It is interesting to observe the case when T* = (TWO + Twl)/z, the

average fluild temperature. Then oy = -1/2, az = -1, and the shear is

not only the same at each wall, but is the same in the constant- and
varigble-viscosity cases. However, the veloclity profiles differ slight-
ly, and, vhile the mass flow is zero for the constant-property case, it
is not for wvariable properties.

Small Temperature Varistion

In the case where the frictional heeting 1s considered but where the
temperature varlations ere small, the fluld properties can be considered
constant. This case has been solved by Ostrach in some detail (refs. 1
and 6), by machine methods. However, another method of getting the same
results is now presented that has the advantage of giving the parametric
dependence simply. The same method 1s applied later to the genersl case
(lerge temperature variations). However, the justification of the pro-
cedure is most convincingly displayed by comparison with the foremen-
tioned machine solutions.

In this case of small temperature ‘differences, it 1s again conven-
ient to work from equations (18), (7d), and (8). If the temperature

TG9%
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changes are small enough that (T - TWO) / (TWO + T,) is small everywhere,
the viscosity and conductivity can be considered constant.

The following dimensioniess quantities are defined:

U=.F£f.d'_u

4y

528%r2a% _ x(T - T)

L3
T=(T-T) 16km“m=l5(Two'?7> (33)

n=2%-1

where

(EEfdz)z(mwo - )
)} Kyt

is the parameter defined in reference 1. In terms of the new varisbles,
equations (18), (7d), and (8) become

X

(34)

Uy = =7 (35)
2
Ty = -UTl (386)
U{sl) = 0
7(-1) = K/16
L3
T, =T
K (™M _ (37)
T(+l _1—6 Tw—:——lf,-(_ =mK/16, say
o}

An approximate solution of this system can be found by iteration. The
veloeity profiles are usually parabolic. Thus, suppose

5@ _ aq1 - 1) (38)

where A 1s an undetermined parameter. Then equation (36) yields, sub-
Ject to the boundery conditions,

T=%[(m+l)+n(m-l)]+ﬁl‘—;——q4—) (39)
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If this is put into equation (55), the resulting velocity distribution

1s
() =--3—Kz[-m--%i (n2 - 1) +£'6—%l (n® - n)] -
6
_Aé_z [(nz 1) - ﬁﬂ#l)] (40)

This process could be continued, assuming convergence, but is stopped
at this point. If equations (39) and (40) are put into equation (38)
and the result is integrated across the channel, a quadratic equation
for the unknown parameter A2 follows. This is

a4 22 [17!325 ( _K(m + 1))] 4 1,155 K(m+1)] 2 [1 _ m ]= o

808 210 103,424 a(m + 1)2
(41)
Real solutions exist if
210 <K(m + 1) < 210 (42)

707 m 707 m
1 - - 1+ 4 -
/\/2,640 [ (m + l)z] ’\/2,640 [ @+ 1)2]
The boundaries defined by equation (42) are plotted in figure 2 for

K >0. Some limiting values found in reference 6 by machine methods are
shown for comparison. Agreement is excellent.

The two solutions can be examined generslly in the following manner.

If K(m + 1) is moderate (say, in the range O to 40), then equation (41)
yields, approximately, the two results

A% [0.016 K(m + 1)] 2

or (412)
~ 42
The mass flow and heat transfer to:the walls are, respectively,
¢ km
f ou aY ~ = K(m + 1)
0 pra 24
or (43)
ki
&~ —— 186

Bfd

TS9%
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Al Ty) = &y [(Ty)yo - (TE)Y=d] )
256k, (T, - T°)
~ = [0.016 K(m + 1)] 2 # (44)
or %
_ ZSSJsm(TWO -T) ©
3Kd J

The first (smaller) solution 1s one in which there 1s negliglible friction-
al heating and, hence, heat transfer, while the second is quite the oppo-
slte. The second case 1is, as is pointed out in reference 4, one of regen-
erative heating. There is & large amount of heat transfer to the walls
(eq. (44)); this heat is supplied by frictional heating of the fluid
occasioned by large mass flow (eq. (48)) and the resultant high shear.
Notice that even when Twl =-TWO = T*, so that the problem is an homoge-

neous one (K = 0 in eq. (37), slthough K/(TWO - T*) in eq. (33) is not

zero), this second solution does not vanish. For that matter, the second
solution i1s virtuselly independent of K and m, provided XK and m take
on moderate values.

The range of validity of these results is limited by the condltion
that (T - TWO) / (TWO + T*) be small so that the viscosity variation is

negligible. In the case of the second solution (large Az) the maximum
of T occurs neer the center of the channel, and thus equations (38),
(44), and (462) yield

%

- -
Too * Ta K Ty, + T

If, for example, X = 10, then Ty - T 1s limited to & few degrees.

This implies also that the wall temperstures must be virtually e%ual. On
the other hand, for spplications of the first solution (small A%), the
only restriction is that (Two - Twl)/(Two + Tg) be smell. However, if

the viscosity is that for some sultebly defined average, the error due to
larger temperature variations should be unimportant. This conjecture is
based on the example discussed after equation (32).

Before giving a numerical example, it 1s worthwhile to examine the
order of magnitude of the numbers one obtains in physlcal problems for
the present case of small temperature differences. From equetions (33),
(34), (40), and (4la), one has, very roughly,
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\
u(n = (Small solution)
or
(Large solution)
- (45)
m - 1 ¥ .
T(n = 0) - TWO R=<-—§——) (TWO - T) (Small solution)
or
~ (E%g - ) (TWO - %) (Large solution)
/
For example, for water at 0° C, if X = 25;_TWO - TF = 0.25° C, and
m = 1, the numbers for the various cases are
Small | Large
u(n = 0), ft/sec 25 200
T(n=0)-Tw0, S¢ o) 2

This case corresponds to & channel width of 14.6 inches. A more general
idea of the orders of the numbers involved in the second solution can be
obtained as follows. From equation (33)

2 2

u kU___ (
2 - X 46)
T-T B

However, from equations (39), (40), and (4la) the meximums of U and <

for the second solution ususally occur near 1 = C and have the reepective

values of about 6% and 14. Hence, for the second solution,

(—-‘ﬁ—*-) ~ 3k/u (46e)

T-T) o

Actuslly there 18 no combination of X and m such that equations (41),
(39), and (40) yield UZ__/t __ < 1. For water, 3k/p is of the order

10%(ft/sec)?/9C, and hence if T - TF 1g 10 G, the velocity maximum is

100 feet per second. For liquid sodium, 3k/p is sbout 107(ft/sec)2/?9; -

TGV
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thus a temperature difference of only 1° C corresponds to & maximum ve-
locity of 3,000 feet per second. It therefore gppears that, if the ve-
locity is to be kept moderste to maintain laminar flow, the tempersture
varistion must be small. Hence, the assumption of constant fluid prop-
erties is a good one.

To compare the present method of calculating the velocity and tem-
perature profiles with the more exact solutions obtalned by machine meth-
ods (ref. 1), a single example is shown in figure 3. Remember that this
is & constant-fluid-property situation. The example is that of water
flowing in a channel 14.7 inches wide end for which TWO - ¥ = 1/10° c.

The wall temperatures are 20.0° and 20.1° C. This leads to K = 10. The
sgreement is within 10 percent for the second solution and, not surpris-
ingle, virtually exact for the smaller one.

Before ending the discussion of exactly fully developed flows, it
should be observed that the lterative procedure used to get solutions
here can be applied in the other cases considered in references 1, 4, and
6, namely those involving well temperature gradients and heat sources in
the fluid.

As is stated earlier, the present lterative procedure can be gpplied
directly to the originasl problem wherein the frictional heating is con-
sidered and large temperature changes are contemplated. The solutlon for
such a flow 1s given in appendix C for the case of equal wall temperatures.
The only difference from the case Just discussed is that some of the in-
tegrals are rather involved and the equation for the amplitude is more
complicated. However, as is observed previously, if the velocities are
to be kept moderate in the second solution, the temperature variation will
be negligible.

Approximate Solutions

The results thus far presented have the beauty of being exact within
the limitations of fully developed flow. However, several cases arise in
which such a limited view is unscceptable. The simplest such case is the
flow of a gas with a pressure gradient, the ordinary Poiseuille flow. An-
other case of some interest is that involving a wall temperature gradient.
The extent to which such flows can be considered fully developed is ex-
amined in what follows. )

We seek solutions of equations (1) to (6). Again, a long channel is
assumed and end effects are neglected. In such = case, any gradients in
the X-direction (in the flow direction) must be small. Hence, write the
varigbles as follows:
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P='13El.+eg(x)+. ]

p = plog(y) + Bpy(x,y) + . - .

H
n
=t

(y) + aTl(x;'.Y) + .

+

(Y) + Sf-"-l(x:y)

ko(.')’) + Skl (X)Y)

=
]
=1
T H S

+

-
H
|

g

=
I
gl
+
)
v

o) + By (x,y) (47)

<;
rﬂm
=

E)+ &vy (x,5) + . . ]

x = X/L

= Y/d
y =Y/ J

where d/L is small, & being the wall spacing and L being a length
of flow, as yet undefined. The other two parameters, € and B are
small but unrelabted at this time. For a gas © must be at least as
large as € for the state equation (eq. (5)) to mske sense, while for

a liquid the number & is determined by the temperature boundary condi-
tions. The barred quantities are, except for u, given parameters chosen
so that Pos ko, IRY, and so forth, are of unit order. The value of u

is initially unknown becsuse there is no characteristic veloecity for in-
ternal flows of this kind.

Had the term g(x) in the pressure (the first of eqs. (47)) been
considered as & function of y also, then added terms would be intro-
duced because of the y-momentum equastion (eq. (3)). However, these are,
analogously to the usual boundary-leyer analysis, of higher order than
what 1s retained in the other equabtions of motion.

If equations (47) are put into equations (1), (2), and (4) and only
the dominant terms of each kind are retained, there follows

pO(ul,x ) * p0 yyi * pl X 0 =0 (48)

—

o 3 _
_8%?3 [pO(uOul,x *+ VluO,y)] * zﬁ;{,—(ﬁ + pf(po + 501)} = Lﬁ% [(“'Ouo,y)y]

(49)

TS9F
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8pC. UL 8 kT
—%— [Po(uoT:L,x + vlTO,y)] 5 I:(ul,x + Vl,y)] - 32 [(kOTO,y)y *+

o
—~
un
O
S

—2
8(koTy,y + leo,y)y] + z—;' [(”oucz),y)

Finally the state equations (egs. (5)) yield

P = pRT
polg = 1 (Gas) (51)
pOTl + plTO = (e/S)g(x)
Po - 1= ‘E(To - 1)
} (Liquid) (52)
P = '-B—.TI]_

Now observe that the terms in the braces in equation (49) describe
the driving forces of the flow and must therefore be of the same order
of magnitude as the viscous terms (which contain the highest deriva-
tives). The following four cases will be considered in turn:

Case |Body force | Large tempersture variation
(Tp variable)
I Yes Yes
IT No Yes
ITT Yes Ro |
Iv No Ko

Case I - T, Variable, Free Convection

For case I, terms of order '8 can be neglected as compared to cor-
responding zero-order terms. Thus, p; can be set equal to zero in equa~-

tion (49), as can kl and Tl, in equation (50). Assuming po and
gx(x) to be of unit order, the {ody force and pressure gradients must be
of similar size so that

= pf (53)

Sk
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Actuglly, it is only necessary that %s pf in order to have the body
force matter. However, it can be assumed that equation (53) holds, end
€ can be discarded later i1f it is small enough.

( Then, using equations (51) and (52), the driving term in equation
49) is

Pe 4 (x) + 52(g) = af[l + g (x) - T—‘%E] (Gas)
or o (54)
- BFET [_1_4'_5(&)_ - (Tg - 1)] (Liquid)
BT

For a mixed flow, g,(x) = 0(1) for a gas or g(x) = -1 + o(BT) for a
liquid. A pure free-convection flow might arbitrarily be defined as one
for which gx(x) = =1, but, for convenience; any flow involving body
forces is henceforth referred to as a free-convection flow.

Definitions of the barred reference velues in equations (47) are all
straightforward, except that for wu, and a selection of values can read-
ily be made a priorl. However, u must be chosen such that is of

unit order, and there is no way of knowing shead of time how big the

flow will be. Hence, for the moment, let us beg the question and define
simply
B _ 5457
Cz 75 = PIP (55)

where C, 1s unknown and, for a gas, BT = 1.
Cz 1s a number in the range 10 to 50.
(50) can be written

It is shown later that
Then equetions (48), (49), and

po(ul,x + Vl,y) + Po,yV1 t P1,x4 = O (56)
m-1 [ TR )
0~ u L2
(”Ouo,y)y + Cp {T - jL + gx(x)]}= :E‘]'_,E—‘Z'[" E’O(uoul,x"'vluo,y):l
(Gas)
- 2
— 15} Cz
(“Ouo,y)y + Cp {TO - 1= 3‘ + gx(x)] /BT}= FLpT I}O(uoul,x"'. Vl“b,y{l
(Liquid)

(57)

7

TS99
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(kOTO,y)y = _kY — {l:po(uOTl,x + VlTO,y):l +

P —2
P n
BT [po(uoTl’x * Vifo,y) - Yo g gx(x):l} - (Hov,y)

- —2q (Gas) >
(koTo,y)y _“_;y_ 511_2 {[po(uotnl <+ 1T 3’)] +
’ FLRT 4 ’
cELT [éT (uOTl x + 1T y{]} I (“Oug,y) (Liquid)
~(58)

The system whose solution is sought is given by equations (58),
(57), (58), and (51) or (52) plus the boundsry conditions (eq. (6)).
Assuming that gx(x) is given, the unknown dependent varisbles remain-
ing are seven i1n number, ug, Wy, V3, Pg, P1s Tg, and Ty. With five
equations and seven dependent variables, some further restriction must
be made. The difficulty arises mainly in the terms u; and vy - For
8 gas it appears p;, wy, and vy are of the same order as T; and
hence thet the inertia term in equation (57) is of the same size as the
convection term in equation (58). Hence, it follows that, in order for
the solution to be determined, both of these terms must be negligible.
The same result follows for liquids, although perhaps not so obviously.
In this case (eq. (51)), p; is very small, of the order of BT, where

B is the volumetric expansion coefficient. However, for liquids the
viscosity is a very sitrong function of temperature, end thus By = O(Tl).

Hence, there is no particular reason to assume that uw; and vy are

not the same size as T;. Accordingly, if these terms matter, the pres-
ent formulation is useless.

For these terms to be negligible two courses are open. One is to
have everything x-independent as in the exact solutions described ear-
lier. The second is that the parameter Cgdu /fLBT be smell. This is
not simple. For example, if equation (55) is used and a channel 1 inch
wide and having a characteristic length L of 10 feet is assumed, then
under standard conditions and gravitational acceleration

Co8u?/fLET

66,000 8/Cy (For water)
} (59)

6,400 8/C, (For air)
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Consider C, = 1. For the air case, 8 must be as large as ¢, which is
about 1/3,000 here. For water 8 can be chosen by an applied wall tem-
perature gradient. In either case it seems difficult to make CZSEE/fZET
small, in fact, unless Cp 1s a large number. .

If this question is ignored for the moment, it can be observed for
a gas that, if & = ¢ (and © must be as large as €), the coefficients
of- the inertia or convection terms and of the dissipation terms are

C,8u?/fIBT = Cpeu?/fL = Cppul/F
and (60)

-—2 —
du” _ RPr —p2
-k—T = CP (p_u-/ﬁ)

(where Pr is a Prandtl number) which are both essentially the sguares
of a Mach number and are the same size if Co = 1. Hence, for the gas

case, at least, the frictional heating must also be negligible because,
as is shown leter, Cy> 1.

For a liquid it can be seen, by trying some cases, that the fric-
tional heating must again be very small provided S/e is not virtually
Zero.

Now to return to the question of & value for Co. Suppose that equa-

tion (55) is used together wilth its subsequent consequences. Then, for
the sake of an example, let gx(x) = -1 and assume a gas. The differen-

tlal equations become

(oug,y)y = Ca(1 - To)/Tg

(kOTO,y)y =0

The boundary'conditions are

u,(0) = u,(1) = 0
To(0) = T
To(1) = T

Teaw
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To meke the point sbout orders of magnitude, consider that pp and
kg are proportional to the temperature (i.e., Mg = kg = TO). Then the

equations can be solved very readily. Maximum speeds have been computed
for several cases and are shown In the following table:

Twg | Twy '-;—2
max
/a1 0.12
1/2 | 3/2 .01
1| 2 .03

Then |up|max 18 Of unit order if Cp is, say, 40. Thus for the condi-
tions cited in conmnection with equetion (59),

C,Bu2/fLET = 1,650% (For water)
or
= 1608 (For air)

which, particulerly for the air case, can readily be made smgll. TIn a
case (such as egs. (35) to (37)) where two solutions occur, the same con-
clusion ebout C2 follows, although the argument is rather tortuous.

Finally, then, the inertia terms must be negligible for the flow to
be fully developed. In that case the thermal convection and frictional
dissipation are negligible. The equations for fully developed free-
convec?ion flow in a channel are (eq. (55) is assumed to apply with
Co=1

1- T,
(houo,yly = —q5— *+ 1 + &
(Gas) (61a)
(kOTo:y)y =0
1+
([J'ouo,y)y =1 - TO + —_E'?g}c'
(Liquid) (61b)

(koTo:y)y =0
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Co =1 1s used here and also in equation (55) because Co was intro-
duced only as an ald in determining what matters in the equations of

motion.

With these small terms eliminated, Co

can be dropped.

It should bhe remembered that these equations correspond to cases
where the temperature varistions across the channel can be large.

solutions are valid provided only thet Sugax/fﬁﬁf is small. For con-
sistency, of course,'gx(x) must be constant.

The

The system is reeadily solved by first integrating the energy equa-

tlon. The result in paremetric form is
T
ko 4T
W,
0
y = T (62)
w1
L, e
Yo
T i (T T p )
Wl 1 1
2 koR dTp JaTy -0 koR dTp)dT1 20 an
Ho Jm Ho )
Tw W, W, Tw Yo
q = 0 0 P 0 o} }
T T
I:I:IV.'L 2 TWl ko 1 wl ko
k. dT — koR dTp JaTy — 4T
a 0 T, \Po /T Ho
Yo Y0 Yo 0 p

where R is the right side of the first of equations (6la) or (61b).

This then is the solubion of a free-convection flow wherein large

temperature variations across the channel are admitted.

The effect of

longitudinal wall temperature variations would presumebly be allowed for
by considering that these were local profiles, by a sort of strip theory.
Results of the kind in reference 4 would apply to case III, discussed
later on, whereln smell temperature variations are assumed throughout.

Case II - Tg Variable, Forced Convection

This is a flow in which the body force is considered to be negligi-

ble.

Tn such a case equation (53) no longer aepplies, but one assumes

that f = O and that ¢ 1s given. Without loss, take g,.(x) = 1.
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Equation (55) is replaced by

3

(63)

I
RlE]

Then equations (61l) and (62) with theilr accompanying conditions hold, bub
with the right sides of the first of equations (6la) and (61b) replaced
by unity. The solution is that given in equations (62) but with R = 1.

The analysis thus far given applies to the case where large temper-
ature differences are allowed.(TO # 1). If only small differences are

permitted, a somewhat different formulation results.

Case III - Tg = 1, Free Convection

If Ty =1, then pg= Mg = 1. Also, equation (53) still applies,
and hence the driving term in equation (49) is (compare with eq. (54))

Ee gy (x) + of(1 + 8py) = pf® [—Tl + 3+ l—Jr—gi(-x—)-:I (Gasﬂ

A )
(64)
A 1+ gy (x) r
= pfBpT T + ——— (Liquid)
5RT
w
Then, for a free-convection flow, it 1is required that
g, (x) = -1 + O(8pT) (65)

Under such a condition the driving and viscous forces are of the same
order provided (compare with eq. (55))

PEoPT = pu/d? (68)

If these last equations and equations (51) and (52) are used, equations
(48), (49), and (50) become

U,x * Vi,y = “P1,x%0 (67)

1+ g, (x) —2
P16 R S . v -
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T = — = I ,—_— BTuyT - = Upk (X):' - (692)

1,yy ofIpT E Yotl,x STy TupTy,x - § YoBx o Yo,y

where the terms involving 6/8 do not appear 1f the fluid is a liguid.

In distinction to the result for the case of large tempersture varl-
ations, in equation (68),

- 66,00082 (For water)

Bl

or
= 6,4008% (For air)

for the circumstances of equation (59). In the case for air, if & =
thir is a very small number and should, indeed, be negligible. The con-
vection term in equation (69) is of order & larger, as is the friction-
al heating term, and should be retained.

Then equations (68) and (69) are

1+ g (x)
= £ X
Uo,yy + O = -TL+gelx) ¢ SBT (70)
___.2 c ——
_ 12 v PB _
Tl;yy - SKT { uO,’.Y + [fL"B' (l + 'ch) Tl,x gx] UO} (71)

where again the terms involving e/S in equation (70) and gx 1in equa-
tion (71) sppear only for a gas. . :

Now to determine what form the temperature variations can take. It
was assumed at the outset that uy 1is independent of x. PFor this case

it is readily shown that the most general forms ellowable for the temper-
ature and pressure gradient are

T = 81X + ap + To(y) (72)
gx(x) = -1 + 8pT [(6/5 + 8y)x + aZ] (73)
Then equations (68) and (69) become

uO,y.y. = -Tz - (708-)

To¥
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TV Sv_, BB
TZ:Y.Y SKT uO;y + 'llo L+ "1 :fI.E (l ¥ ECV) (713)
where the temrm EEZ/SET {uo[i]} disappears for a liguid. These equabtions

require small tempersture varistions but admit substantial mass-flow
rates.

Then, in terms of uy and T,(y), equations (70a) and (7la) are a
pair of ordinary differentisl equations and are nonlinear only if the
frictional heating is important. Solutions in the linear case are qulte
simple (ref. 4) and in the nonlinear case can be found by the iterative
method given earlier following equation (37). Ostrach discusses this
system extensively in reference 4, where among other things, some machine
solutlons are given.

Case IV - Tg = 1, Forced Convection

For case IV equation (63) still applies, and equations (70) and (71)
are replaced by

uo,yy = &x(%) (74)
_put ) o BpTe, BB
Ly S & {'uo,y YR (T Eey) WL T B (75)

The temperature varietion must have the form
Ty = (a] + agy)x + To(y)

while gx(x) ie a constant. These equations are easily solved because

the dependent variables are separated. The result is, of course, the
familiar Poiseuille flow.

Other Gas Flows

The flows discussed thus far have included only those cases wherein
the velocity 1s essentially independent of distance along the channel.
If this restriction is l1ifted, the problem becomes vastly more complicated.
Therefore, only one class of solutions is examined here. These solutions
are ones in which the independent varigbles are separable. Such & flow
is out of the question for liquids unless it can be assumed that the tem-
perature is & function of ¥y only. This is because of the form of the
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state equation (eq. (5b)). It can be shown that this limitation to T
independent of x leaves only the fully developed cases discussed

previously.

First recall that, to have a fully developed flow in any sense, the
channel must be very long and the dependence on x must be much wesker
then that on y. Then equations (1) to (5) can be approximated as

(pu)g + (pv)y =0 (76)

pluuy + vug) + By = -pf + (uuy), (77)

Py =0 (78)

pey(uly + vIy) + Pluy + vy) = (Ty)y + uu% (79)
P = pRT (Gas) (s0a)
p=sp-Br-T]  (raqua) (80D)

These equations can be derived formally in the same manner as they are
derived for external boundary layers. The only difference is that the
Reynolds mumber of boundary-layer anaslysis is replaced by a ratio (L/d)2,
where L 1s a characteristic flow length and d is the channel width.

If the fluid is a gas (eq. (80a)) and the body force is negligible,
and the viscosity and thermal conductivity each very with the temperature

as

b= art (81)
k = pTé
then the permissible separated forms are
W () = &/L)° or  &/E )
v/ (Y) = (x/Ly%T or &/
ofo (1) = (x/)0(L-1041 o (2L-1)&/L 4 (s2)
/7, (¥) = (/1)28 or  e2%/L
p/p, = (x/p) 02+, J(2t+1) ex/r ]

where 6 is an arbitrary constant.

TS9%
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It is interesting, though perhaps irrelevant, that exactly the same
variations of free-stream velocity are allowed for similar solutions of
the external-boundary-layer equations (ref. 7).

The exponentiel form in equations (82) is valid for the complete
Navier-Stokes equations, while the other form depends critically on the
assumpbion of a very long channel.

Several other somewhat unrelated comments gbout this result are per-
haps in order. First, for a liquid the requirement previously stated,
that OT/X = O, leads to the condition that nothing varies with X.

This case has already been examined. Second, for a gas, if the viscosity
and conductivity do not have the same variations with temperature (egs.
(81)), only the trivial X-independent separation results. The
X-independent solution corresponds in equations (82) to the exponential
veriation with 6 = 0 and was discussed starting with equations (7).
Finaelly, if the body force is important (-pf in eq. (77)), the forms
given in equations (82) apply, but only with 6 = O (exponentisl and un-
interesting) or 6 = 1/2 (power of X).

The forms given in equations_(BZ) have two other properties of in-
terest. The through-flow Mach number, which is proportional to u/wfﬁ,
is independent of X. Also, unless there is flow through the channel
walls, all the solutions except 6 = O (exponential) and € = -1/2¢
(power of X) must be flows with zero net mass flow. This is because
the mass flow is

d
./P pu &Y

a
/ (x/1) 2LE+L /O' oy (¥)u (Y)ax
or (83)
a
- B/ _é. py (T)uq (¥)ax

which must not vary with X unless there is flow through the walls.
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If equations (82) are put into equations (76) to (80a) the result

is ) ST T -
1 -
2te + A
( T )plul + (pyvy)y =0
g 2 o(at + 1) + A

Py (E Yy + Vlul,Y) * [ L P = (“1‘11,3{)1( - o1 f
&

26 2] 2

P, = pRTy )

where A = 0 1f the exponential variation is used and A =1 if the
variation is as a power of x. Also, the term P1f can appear only if,

as already mentioned, 6 = O (exponential) or 6 = 1/2 (power of x). ky
and W, have the obvious definitions. S T=

Now a new space variable, 7, is introduced from equation (10). Then -
equations (84) become S

BP; (2t6 + A)

mint(-1) |t " o), = 0 e
S
Py 6 2r3(-1)\ 4.
(ﬁl") uf + (_lB_) iy g("1"1)‘11,1] +
2L, ‘
{'I:e(zg +Ll) . )\] Pl} T = %T'lBé = Ti_gul,nn B g (86)

2 2 -
{6 - )2 2] nfom St
wr8(-1) 3¢
S

a 2 )

(TL,mn + 5 W,n (87)

P; = pjRT; (88)
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Observe that equations (85), (86), and (87) form a set of three ordinary
differentisl equations for three varisbles (uy, Ty, and pjvi). One
curious feature of the system is that it 1s of fifth order and there are,
in general, six boundary conditions to be applied (one esch to uy, Vi,
and T; &t each well). Hence some restriction must be placed on the

combinations of boundary conditions for given values of the parameters,
particularly P; and 6. Actually this is no different from what hap-

pens in analysis of the external laminar boundary layer. In that case,
however, the boundary condition on v (or vl) at the outside of the
boundary layer is not satisfied, nor is there any particular reason for
it to be. For channel flows such an omission is probably not allowable.
In general, this means simply that there must be a flow through at least
one wall, and this flow cannot be prescribed if similarity is to be
maintained.

If, on the other hand, one examines the case where 26+ A =0
(eq. (85)), it is permissible to set vy = O. Then the system is of

fourth order with four boundary conditions. The condition 2(6 + A =0
corresponds exactly to the two cases mentioned in comnection with equa~
tion (83). These are the only ones in which v can vanish at the

walls. OFf the two cases defined by 26 + A = O, namely, A =0, 6 =0
(exponentiasl x-variation) and A =1, £6 = -1/2 (x6-variation), the first
has been solved earlier. In the second case, for linear viscosity-
temperature variation, equations (86) and (87) become (-260 = ¢ = A = 1)

2 _ [8eRL .2

up + RT, = - (;IEE Tl(-l)j)u.l,Tm (89)
PB% 2ep sR 2
wp DL - )| mET) = BT + 5 vy (20)

where the boundary conditions are

uiﬂil) o]

I

Ty (-1) = Constent - (o1)

T, (+1) = Another constent

The solution of this system is more difficult to obtaln than is the solu-
tion of equations (35) to (37), although & similer procedure can be
followed.
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If the flow is falrly slow, with the Mach number limited to, say,
a few tenths, the profiles are, to good accuracy

m =% [Tl(+l) + Tl(-l)] + 3 [Tl(+l) - Tl(—l)]

P, 4% o2 (T() - T (A1) per g2y
U1 T \E(T (L) * T1(-1)) 2 T\TED F LD 1z

where use has been made of equation (10) to determine B. It may be ob-
served that the distance L can be defined by

L=-<P>
P
K /yg,

which follows directly from the last of equations (82). If the wall tem-
peratures are equal, the velocity profile is exactly the familiar Pois-
ieulle one.

A final remark: It can be seen that the system described by equa-
tions (90) and (91) will probebly admit pairs of solutions Just as the
free-convection flow of equations (35) to (37) does.

CONCLUDING REMARKS

When fully developed channel flows are considered, the cases that
can be solved exactly are very limited. For a gas a constant pressure
is required, or at least one which does not vary in a streamwise direc-
tion. This case is analogous to Couette flow in that no approximations
need be made in arriving at a relatively simple mathematical problem.

In the case of a liquid, one can solve the exact case of constant pres-
sure gradient in the streamwise direction. - For both the gas and the
liquid, the wall temperatures must be constant. In the gas case nothing
astonishing happens. However, in the liquid case a surprising result
arises. There gppear to be (except for certain singular cases) either
two or no solutions for the flow. This result, which has been discussed
extensively by Ostrach, has one solution for which frictional hesting is
negligibly small. The second i1s one in which the frictional heating is
large, and thus the temperature 1s raised and the buoyancy effect is in-
creased. In the present report an spproximate analytic solution of this
problem is glven. The results agree very well with Ostrach's machine
calculations. Although an analysis is. given for the case of variable
viscoslty, 1t turns out that for the cases of interest, wherein the fluid
velocity is kept within reason, the temperature variations are small and
there is no reason to consider variable viscosity or conductivity.

TS9¥
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These so-called exact solutions, particularly in the case of a gas,
do not cover all the flows of interest. Hence, consideration is given
to cases in which there are streamwise tempersture and pressure gredients
but in which the flow velocity is virtually independent of distance along
the channel. For a gas the mere presence of a pressure gradlent requires
a temperature gradient, while for a liquid the presence or absence of a
streamwise temperature variation is governed by the wall temperature
conditions.

In these cases one of two situstions occurs. If the tempersasture
variation across the chennel is of the order of the temperature level,
then in order that "channel flow" be maintained, the convection terms in
the energy equation must be negligible. This implies that the mean flow
Mach number is small and also that the frictional heating is negligible.
For such circumstances the equations are separated and csn readily be in-
tegrated for any case of interest. Only one solution exists.

On the other hand, if the temperature variations are small, more
complicated effects occur. This situation of very small temperature
changes admits very large flow velocities (see the discussion followling
egs. (46)). Then both the frictional hesting and the thermal convection
effects can be significant. In such cases (when the frictionsl heating
matters) two solutions cam occur. These flows qualify as guasi-
incompressible in that the only place where compressibility effects mat-
ter is in the buoyancy term in the streamwise momentum egquation.

The forced flow perhaps deserves an added remark. When the temper-
ature varies only slightly across the channel, the velocity profile must
be the usual parabollc one. When the variation in temperature is large,
the profiles can still be found in closed form but are more complicated.

If streamwise varistions of velocity are allowed, the flow is more
complex. A description is given of the circumstances under which the in-
dependent variables are separable. These forms can yield new results
only for gas flows and show that the streamwise variation must be either
as a power of X (streamwise coordinate) or exponentially with x. With
two exceptions, only one of which admits x-variations, these flows re-
quire that the body force be negligible. The exponential cases apply to
the full Navier-Stokes equations, while the other ones reguire an expan-
sion of the equations of motion in terms of the width-to-length ratioc of
the channel. For &ll these cases, the streamwise Mach number is inde-
pendent of x. A1l but one of these possible flows lead to difficulties
with boundary conditions and require a flow through the walls. The lone
exception has streamwise velocity proportiocnal to l/wff. For small flow
Mach numbers the solution is similar to that for Poisieulle flow but al-
lows for temperature varistions across the chanunel.

Lewls Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, June 5, 1958
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APFENDIX A

SYMBOLS
parameters defined in egs. (41) and (C5)
parameters defined in egs. (9)
parameter defined in egs. (10)
paremeter defined in eq. (C9)

specific heeats

- wall spacing

body forces 1n X- and Y-directlons, respectively, considered
positive in the minus X- and Y-directions

pressure perturbetion, eq. (47)

temperature functions, eqs. (16) or (22) and (C1)
paremeter defined in eq. (34)

thermal conductivity

characteristic length, eq. (47)

parsmeter defined in eq. (37)

pressure

gas constant, eq. (5a)

parameters defined in eq. (21)

temperature

reference temperature defined in eq. (19)
dimensionless velocities in egs. (33) and (Cl), respectively
velocity components in X- and Y-directions

Carteslan coordinates, X being in the main flow directlon
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X,y X/L eand Y/d, respectively

Q) ;00,0 parameters defined in egs. (26)

B volumetric expansion coefficient (see eq. (5b))

5,e small perameters introduced in egs. (47)

7 dimensionless distance across channel in eq. (10)

t,6,A parameters defined in egs. (8l) and (82) and after eq. (84)
B viscosity

o] density

T dimensionless temperature difference in eqg. (33)
Subseripts:

m mesn value corresponding to average of wall temperatures
Lo well conditions at Y =0

Wy wall conditions at Y =4

X,Y,x,y,m partial derivative with respect to that variable

0,1 zero-order and first-order solution in eq. (47)
Superscripts:

(0),(2) first two approximstions

bars reference values in egs. (5b) or (47)
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APPENDIX B

A GENERALIZATION OF EQUATIONS (7)

If a transverse body force f; and a distribution of heat sources

PQ, where Q is a constant, i1s included, equations (7) become

v=20 T
(l—luy)Y = pf
-
Py = -pfy
(kTy)Y = 'Hug - PQ J

These equations can be solved in exactly the same manner as equations (7)

(B1)

The results are, for linear variation of viscosity and conductivity with

temperature, f 74 0, and Q= 0,

1

P= Poe-cn

u = iP-Q-R;- [('q -1)e? - (n+ l)e-cy + Ze_cn]
Za.fl

T=_l___2+n<_£____ ]

2 2
PR % 2 2 :
a n- (ed - e-O') _ 4 (eO' N e-O’)e-O'T] + e-EO'TI +
1

é (eZU - e-ZG) _ (eZG + e-ZG) +1 4+

[620 - 2 2 (0 e_c)z]}

=

- (B2)

TGAw
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where o = Bfl/ZRTW is defined by

aT,R aR (fPOR

g =

dfy  bdfy | pae2

) Be - e-c)2(1/3 - 4/02) +-%é (e?0 _ e-20) 4 é]

and, for f; =0 and Q£ 0,

P = Constant
aBsz(Z 1)
LJLWo

oot Ty (Twl- Two) o (as?er\ (nf - 1) . pqs? 2
T=—g—*" Z -E(‘LRHZ,O)Q'I'Z )+_8bRﬂ_‘§o (l-n)J
1 (31, \° (pflfds ) za|, (B med BTm .
20 \ T, | Ny /| "\ Ty g

If Q 1is positive, there is only one real root of this equation, that
root being such that

u=

-~ (B3)

where

B
O0< s <1

dTwo
If @ is sufficiently negatlve, there can be three real positive roots.

Other solutions can readily be obtailned for the case where neither
fl nor Q +vanishes or where other distribubtions of heat sources occur.
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APPENDIX C

EXACT SOLUTION FOR LIQUID

NACA TN 4319

The problem at hand is to solve equations (27) and {(17b), subject

to equations (8). Define

-
k12 + 2am(T) [T + 1, \
= W2 + 2eH(T%) \T* + T
8 a8
-
w = u 28 - Um/ Zs7k
K2 4 gsE”  TF 4T, J

In terms of these varisbles the problem is

BZpBfs-/25/k 5 1

u = - -
1,nm 4('1’* + Ta) _/Hl
2
Bl,qq = - ¥,
ul(,:hl) =0

" 2
Hy(21) = [(TWO + T.)/(T" + Ta)]

(c1)

(c2)

(c3)

(c4)

where, to keep the problem from getting ocut of hand, equal wall temper-

atures are assumed. For convenience, define
. ) 5
A = [(TWO + T ) /(T + Ta)]

a = B2opPs+/2s/k
4(T* + T,)

(cs5)

It should be remembered that the parameter B, and hence A,, is as yet

undetermined (recall eq. (10)).

The solution is found in exactly the same manner as the solution of

equations (35), (36), end (37). Thus assume

ul®) = A(1 - 72)

TS9%
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Then equations (C3) and (C4) yield
Hy = Ay + A2(1 - 1%)/3 (cs)
1= &1 Y

If this is put into equation (CZ), that expression becomes

(1) _ Ay |1 - ~/3/A (c7)

If this is integrated and the appropriate boundary conditions are satis-
fied, the result is

(1) 1 1 1
ol 2
i‘ = 1’2“ + </3/A {1 4 . —4n__ . S
4
2 A T S A ci. ot At 4
(c8)
where
ct = 1 + 34, /AP (co)

If equations (C8) and (C6) are put back into equation (C3) and the result
is integrated across the channel, the result is

S % ) S___Tl_lﬂl £ / —4__\ ay (c10)
3A2 ‘v 'q4 A (0] o4 . né

Before using this equation to determine A, something has to be done about
B, which is as yet undetermined. If equations (21), (Cl), and (C6) are
used, the second of equations (10) yields

dA(T + Ta) (c11)

[ 7=
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If this is put into the first of equations (05), eliminating B, end
the result is put into equation (Cl0), the defining equation for A
.is, finally,

2

1 1
A2_3A_\/3/ .gl_-_ﬁLdﬂq.g ’[n__d;nl_ dn -
1 4
288sk / ———@—3
=0 (c12)

[B'Edzf(T* + Ta)] 2

This can be solved to vefy good accuracy by

2

1 1
&
2./72s% / S 1) B—
A= 33 (1 - n®)an o Vet - ot (c13)
a Z Z — 2rm¥
5 '\/c - PBEA(T” + Tp)

The second root of equation (C12) is never a significant ome. This equa-
tion can readily be solved for A in terms of C (which is itself a
function of A; see eq. (C9)) snd the parameter

[prdz(T* + 'I'a)] -

= " ARG - D)

where K d1is defined in equation (34). As in the case of constant prop-
erties, two possible values for A are again found.

2

The various integrals sppearing in equations (C8) and (Cl3) can be
evalusted as follows (ref. 8):

TS9¥
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1 dn 1 1 2 2 W
= Flsin-l A/ 24—, 1/~/2]| =F(x/2,1/~/2) -
[ T e [ Y M) R
F(cos"ln/C,l/-\/_Z')
* d 1 1
_neaen = - 2y _ -1, 2 2]
/ e [sin (1/¢?) - sin™(n2/c?) L (o14)
1
1
ﬁ—:c-\ﬁ E(sin™t -—2——1/-\/'2 -
MeE - o* 1+ c%
()
2
%Fsin'1112/1+cz,1/-\/§ - Lc%i—i
o

where F(9,1/+/2) and E(9,1/~/2) are the respective elliptic integrals
of the first and second kind of smplitude ¢ and modulus l/ -\/E Two
of these integrals can be approximated as follows

1
—30 - 2 (q + n5/10C%)
E- gt C

which is correct to 1 percent if C > 1.3, and

1
(L-m)an __2 | 3 1
. t—at—§
2.t 70ct  8sc
0

which is correct to 1 percent if C > 1.0.
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TABIE I. - VISCOSITY AND CONDUCTIVITY
OF LIQUID SODIUM
Temper- Conductivity, Viscosity,
ature, k, M,
E’ watts/(cm) (°C) centipoises
C
Experi- 1117 Experi- Eq. (21)
ment 1170+ T ment a)
(ref. 9) (rer. 9)
200 0.815 0.815 0.450 0.450
300 . 759 . 760 . 345 . 350
400 .712 . 712 .284 .286
500 .668 .668 .243 .242
600 627 .B636 .210 .210
700 .590 .598 .186 .185
800 .547 .967 .165 .166
900 | ememe | emmaa .150 .150

B, = 150° C; s = 158(centipoises) (°C) .

TABLE II.

- VISCOSITY OF WATER

UNDER ATMOSPHERTC CONDITIONS

Temper- Viscosity,
ature,
T, centipoises
°Cc
Experi- Eq. (21)
ment (a)
(refr. 9)
0] 1.79 1.79
20 1.01 .90
40 .66 .60
60 .48 .45
80 .36 .36
100 .28 .30
&, = 200 C;

0
1

36 (centipoises) (°C).
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Variable Constant .
- properties | properties | Y
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Figure 1. - Effect of propergz variatlon on velocity profiles.
2

Ty 100° C; Ty, 900° C;

0° C; liquid sodium.



4651

M

CHNICAL LIBRARY

ABBOTTAEROSPACE.COM

NACA TN 4319 45
50 ] | S I
Equetion (43)
Exact results
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m 0
> Two solutions
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-100 /////////4
Ao solution
-150 /f
-20% 20 40 60 3 100 120
K

Figure 2. - Regions of existence of solutions of equations (35) to (37).
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2.4 |
/-Eq. (39)
\\
1.8 /?— T ket s T~
7 N
“ A\
/3
.8 :
/ rEq. (39) \
\Ref. 1
o —
-1 0 1

n

Figure 5. - Velocity and temperature profiles. m, 2; k, 10;
Ty = T 1/10° C; water.

NACA - Langley Field, Va.



