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By Herman S. Fletcher
SUMMARY

An investigation was made in the Langley stebility tummel to deter-
mine the effects of leading-edge radius and profile thickness on the
oscillatory lateral stability derivatives for a series of delta wings
with 60° of leading-edge sweep. The wings were oscillated in yaw about
thelr vertical saxes.

The results of this investigation indicated that there were notice-
able decreases in all the derivatives due to lncrease in leading-edge
radius at angles of attack above approximately 12°. Profile-thickness
effects were found to be small for the yawing-moment derivatives; however,
the data showed that an increase in proflle thickness caused appreclable
increases in the combination osclllaetory derivatives of rolling moment
with respect to yawing velocity and rolling moment with respect to side-
slip acceleratlion as well as large decreases in the effective-dihedral
parameter st angles of attack sabove 8°. The static derivatives of
rolling and yawing moment with respect to sideslip CIB and CnB showed

essentially the same effects of leading-edge radius and profile thickness
as the oscillatory derivatives.

INTRODUCTION

Recent oscillation-in-yaw tests of two delts wings with 60° of
leading-edge sweep but of different alrfoil sections (flat plate and NACA
65A003) have shown significant differences in the magnitudes of the
dynamic lateral stabllity derivatives at angles of attack above spproxi-
mately 12° for the rolling-mcment derivatives and above approximately 20°
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for the yawlng-moment derivatives (ref. 1). It appears that the differ-
ences in magnitude can be gttributed partly to the type and degree of
flow separation present on the wing (refs. 2 and 3) as affected by,
among other variables, the wing leading-edge radius (refs. 4, 5, 6, and
7) and profile thickness. The purpose of this paper, therefore, is to
present the results of a systematic investigation of the effects of wing
leading-edge radius and profile thickness on the dynamic lateral stability
derivatives for a 60° delta wing of aspect ratio 2.31 with modified
double-wedge airfoil sections. The model wing was oscillated about a
fixed vertical axis relative to the model and, hence, the model motion
was a combination of yawing and sideslipping. The stabllity derivatives
megsured by this technique are the combinetion derivatives Cnr o Cné o
2 2

c - Cy. c + k%C,, ,and C + k2C,,  where the symbols
lr,e 5,0’ DB, Nyrw? L L e
are defined in the following section.

SYMBOLS

The data are presented in the form of standard coefficlents of
forces and moments referred to the stability system of axes with the
origin at the projection on the plane of symmetry of the quarter-chord
point of the mean aserodynsmic chord. The positive direction of forces,
moments, and angular displacements are shown in figure 1.

A aspect ratio, b2/S

b span, ft

c local wing chord, ft

¢ mean aerodynamic chord, £t

Cp' drag coefficient (approximate), Fp'/gs
Cy, 1ift coefficient, TFy/as

Cy rolling-moment coefficient, Mk/qsb

C pitching-moment coefficient, My/qsC

Cp yewing-moment coefficient, My /qsb

Fp' drag force, 1b (approximate)
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Fr, lift force, 1b
Py side force, 1b
k reduced-frequency parsmeter, mb/2V
My rolling moment, £t-1b
My pitching moment, ft-1b
Mz yawing moment, ft-lb
q dynemic pressure, oV2/2, 1b/sq £t
r yawing angular velocity
L -
2 or
S wing area, sq ft
t wing thickness, percent c
v free-stream velocity, ft/sec
X,z longitudinal and vertical staebility axes, respectively
o angle of attack, deg
B angle of sideslip, radians or deg
B = dp/or
A angle of sweep of guarter chord, deg
o mess density of air, slugs/cu ft
T time, sec
¥ angle of yaw, radians or deg
b-r-

*o smplitude of yaw, radlans or deg
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w circular frequency of oscillation, radians/sec

Derivatives;:

oC
Ly, = 5"
&y
“p =%
¢
Cqe = 2
v
Cy
Cy_ = - 1—”33)
(&
aC
Cq. = —
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A1l the above derilvatives are nondimensionalized in this paper per

radian (l/radian) Leading-edge radius is given in percent loecal chord,

The symbol o following the subscript of a derivative denotes the
osclllatory derivative.
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APPARATUS AND MODELS

Oscillation and Recording Apparatus

The models were oscillated by the apparatus shown schematically in
figure 2, which consisted of & motor-driven flywheel, connecting rod,
crank arm, and model-support strut.

Recording of data was accamplished by means of the equipment
described in the appendix of reference 8. Briefly, the rolling and
yawing moments acting on the model during oscillation were measured by
mesns of resistance-type strain gages mounted on the oscillating strut
to which the model was attached. The strain-gege signals were modified
by a sine-cosine resolver driven by the oscillating mechanism so that
the output signals were proportional to the in-phase end out-of -phase
moments. These signals were read visually on a highly damped direct-
current meter, and the aerodynamic coefficients were obtained by multi-
plying the meter readings by the appropriate constants.

MODELS

The models tested were the six lightweight 60° delta wings shown
in figures 3 and 4. PFour of the wings were 3 percent thick and had
leading-edge radii of 0, 0.115, 0.791, and 1.582 percent wing chord.

The two additional wings had leading-edge radii of 0.791 percent wing
chord and were 5 and 8 percent thick. All trailing-edge radil were zero.
The leading and trailing one-third of each wing was beveled as shown in
figure 3. The wing construction was a combination of balsa wood core
covered with laminsted fiber glass to a depth of 0.016 inch and rein-
forced with hardwood strips at the mounting point. A balsa canopy
served to streamline the protrusion of the strain-gage balance above the
upper surface of the 3-percent-thick models.

TESTS AND CORRECTIONS

Tests

The static and osecillatory tests were conducted in the 6- by 6-foot
test section of the Langley stebility tumnel at a dynsmic pressure of
2k.9 pounds per square foot, which corresponds to a Mach number of 0.13
and a Reynolds number based on the wing mean aerodynamic chord of approxi-

mately 1.6 x 106.
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The static tests made to determine the static longitudinal stability
characteristics of the six model wings utilized the six-component electro- v
mechanlcal balance system. The approximate angle-of-attack range for the
static tests was fram -4°to 32° in 4° increments. Additionsl static
tests utlilizing the strain-gage balance used in the oscillation tests
vere made to determine the static rolling and yawing moments for angles
of sideslip of 20, 40, 60, 8°, and 10°. '

frequency parameter k of 0.033, 0.066, 0.132, and 0.218. The complete
frequency range was covered for an amplitude ¥, of 16°. Amplitudes

of £2° and t10° were used at frequencies of 1.0 and 3.3 cycles per second.
Measurement of the in-phase and out-of-phase rolling and yawing moments
was made in increments of L4° for an angle-of-attack range of 0° to 32°.
Inertia effects were eliminated from the data by subtracting wind-off
messurements from wind-on measurements. The in-phase and out-of-phase
measurements were converted to the derivetives Cnr o " Cné s

) >
Cy -Ce » Cy + k2C,, , and C,y + kQCZ, « The relatively

r,w B,w B,w B0 B,w r,o

complicated forms result from the comblnation S and  motion used for
these tests.

Correctlons

The static tests made utillizing the electromechenical balances were
corrected for the effects of tunnel jet boundary and tumnel blockage by
the methods of references 9 and 10, respectively. No Jjet boundary or
blockage corrections were applied to the static or oscillatory data
meggured by the strain gage. Turbulence or strut-interference effects
were not taken into account; and although the latter msy have been of a
sizable magnitude at the higher angles of attack, it is believed that o
the incrementsl differences at the higher angles would not be affected by
turbulence or strut interference.

RESULTS AND DISCUSSION

Presentation of Results

The results of the lnvestigation are given 1n flgures 5 to 29. .
Table I gives information as to the content of each figure. The aero- }
dynemic coefficients in figures 5, 6, and 7 are based on static data } _
obtained from the electromechanicel baslance system. The remainder of
the data were obtained from strain-gage tests. _ o
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In this paper only the effects of leading-edge radius and profile
thickness are treated. Frequency and amplitude effects have been dis-
cussed in references 1, 3, 8, 11, and 12.

Effects of Leading-Edge Radius

The basic data (figs. 9 to 16) show that the effects of leading-edge
radius on the ccmbination lateral stability derivatives C;

and Cnr:m Cné:w
12° for the rolling-moment derivative and below approximstely 16° for the
yawing-moment derivetive. At the larger angles of attack, however, an
increase in leading-edge radius generally caused decreases in the magni-
tudes of the derivatives. These differences were not as large as the
decreases noted in reference 1. It appears, therefore, that the differ-
ences in airfoil sections (65A003 and flat plate) of reference 1, as well
as leading-edge radius, have a significant effect on the magnitudes of
the oscillatory derivatives.

- C .
Tr,n 7'153,03
were small at angles of attack below approximstely

The decresses in the absolute values of —(Cnr o Cnﬁ w) and
2 2

Czr o Clé with incresse in leading-edge radius were lergest at the
P) 20

lowest frequencies and highest angles of attack, where frequency-
dependent derivatives of large megnitude are ususlly obtained. There
was generally s larger decrease in the damping-in-yaw derivative when
the sharp leading edge was given a small radius (compare leading-edge
radil of zero and 0.115) than when the leading-edge radius was increased
by larger increments from other than zero radius. (See fig. 18.) This
trend was erratic for an angle of attack of 320 at k = 0.033 and 0.066,
and these data are therefore not included in figure 18. The effect of
leading-edge radius on the derivatives Cnﬁ + kQCni and

i) i

CIB + k?CIi veried in proportion to angle of aettack, the largest
»@ 2@

effects occurring at the moderate and higher angles of attack. The
effect of the increasse in leading-edge radius was to decrease these
derivatives. The decrease was most pronounced at the higher frequencies
throughout the ahgle-of-attack range. The static derivatives CnB and

CZE (fig. 17) exhibited the same trends with increase in leading-edge

radius as was shown by the oscillatory derivatives. It should also be
noted that the oscillation date approached the static data as the fre-
quency wes reduced. (See fig. 28.) Theoretical values calculated by the
procedures of references 13 and 14 are shown to be in reasonable agree-
ment with experimental values in the low angle-of-attack range.
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Effects of Profile Thickness

The effects of profile thickness on the lateral stability derivatives
were appreciably larger for the rolling-moment derivatives than for the
Yawing-moment derivatives and were confined primarily to the higher angles
of attack except for the derivative CnB + kecnf , where the effects

@ w
were more or less proportional to angle of attack (figs. 19 to 26).

The derivative Cnr - Cné o showed essentislly no change with

variation in profile thickness except at the lowest frequencies (k = 0.033
and 0.066) and the highest angles of attack, where maximum damping was
obtained for the 5-percent-thick wing. The derivative Czr ® CzB o

X 2

increased quite appreciably with increase in profile thickness at the
higher angles of attack. The increase was greatest at the low frequen-
cles where the derivative had the largest values.

The directional stability derivative CnB ot kecnf o showed &
2 3

definite trend to decrease with increase in profile thickness and the
effective dihedral parameter CIB + RECZ showed large and consisi-

ent thickness effects for angles of attack above 8°. An increase in
thickness generally decreased the dihedral effect. The static derivatives

ClB and CnB (fig. 27) exhibited the same trends with increase in

thickness as was shown by the corresponding oscillatory derivatives.
Theoretical values are also shown.

Fregquency Effects

Figures 28 and 29 show typical frequency effects for delta wings
with leading-edge radii of O and 1.582 percent chord. The high-frequency
values approach the derivatives estimated from the procedures of refer- i
ences 13 and 14 which are based on linear-theory concepts, and the low-
frequency values approach the measured statlic values. The two circum-
stances have been noted by other investigators (for example, ref. 1) and
indicate that for the high-frequency range the changes in flow that are
normaelly expected do not have sufficient time to develop, but that there
is sufficient time for flow breskdown to occur at the lower frequencies,
and the steady-state condition is spproached.
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Reynolds Number Effects

In an evaluation of the data presented herein, the fact that the
results were obtained at a relatively low Reynolds number should be
considered. Other investigations have shown that, at least for static
derivatives, increasing Reynolds number extends the linear range of the
serodynsmic parameters plotted against angle of attack. (See ref. 15,
for example.) These effects have been found to be more promounced for
airfoils with large leading-edge radii than for airfoils with small
leading-edge radii. Therefore, the same trends would appear likely to
apply to the present investigation, and the results for the larger
leading-edge radii would probably be most affected.

CONCLUSIONS

The results of tests to determine the effects of varistion in
leading-edge radius and profile thickness on the lateral stability
derivatives of a 60° delta wing indicate the following conclusions:

1. Noticeable decreases occurred 1n all the derivatives as a
result of increases in leading-edge radlus at angles of attack above
approximstely 12°.

2. An increase in profile thickness caused apprecliable increases
in C, - Cys and large decreases in effective dihedral,
T,n B,m»

/ 2 (o]
(C1p,0* & le,m)’ at angles of attack above 8°.

3. Profile-thickness effects were small for the yawing-moment
derivatives.

L. The static derivatives Czﬁ and Cnﬁ, showed essentially the

same effects of leading-edge radius and profile thickness as the oscil-
latory derivatives.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., March 1k, 1958.
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Yaw reference

| o 7
X - 974

Relafive wind

———— - : ' \\\\\\\

Y
z

Section A-A

Figure 1.- System of stabllity axes. Arrows indicate positive sense of
forces, moments, and argular displacements.
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Filgure 2.- S8ketch of oscillation-in-yew eguipment.
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Figure 5.- Sketch of models used in tests. All dimensions are in inchea.
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(a) Front view. : - L-57-955

Figure L.- Photogrephs of models.
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(b) Plan view.

Figure k.- Concluded.
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(b) Yewing-moment coefficients.

Figure 8.- Concluded.
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Figure 9.- Effect of leading-edge radius on the oscillatory stability derivatives for a
3-percent-thick 60° delte wing. Vo = +2°; k = 0.066.
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Figure 10.- Effect of leading-edge radius on the oscﬁ.‘l.'l.a.tory stebility derivatives for a
3-percent-thick 60° delta wing. V¥o = 12°; k = 0.218.
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Figure 11,- Effect of leading-edge radius on the oscillatory stablility derivatives for a
3-percent-thick 60° delta wing. W, = 6% k = 0.033.
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Figure 12.- Effect of leading-edge radius on the osclllatory stability derivatives for a
3-percent-thick 60° delta wing. VY5 = 36°; k = 0.066.
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Figure 13.- Effect of leading-edge radius on the oscillatory stability derivatives for a
3-percent-thick 60° delta wing. ¥, = #°; k = 0.132.
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Figure 15.-~ Effect of leading-edge radius on the osclllatory stability derivatives for a
3-percent-thick 60° delta wing. ¥, = #10% k = 0.066.
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Figure 21.- Effect of profile thickness on the osclllatory stability
derivatives for a 60° delta wing with a leading-edge radius of
0.791 percent c. W, = 6% k = 0.033. '
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Figure 26.- Effect of profile thickness on the oscillstory ptability derivatives for a 60° delta
wing with a leeding-edge radius of 0.791 percent c¢. V¥, = *10°; k = 0.218.
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Figure 27.- Effect of profile thickness on the static stability derivatives for a 60° delta wing
with a leading-edge radius of 0.791 percent c.
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Figure 28.- Typical oscillatory stabilit~ derivatives for the 60° delta
wing.-

values and estimated steady-state values are also shown.

L. E. radius = 0; t = 3 percent c; Vo = +6°.
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