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PREFACE

The problem of a precise method of analysis for air-
plane jury-strut systems was selected by Mr. A. Murray
Schwartz as the subject of his Engineer'!'s thesis at
Stanford University. Mr. Schwartz's study resulted in the
derivaetion of suitable theoretical eguations and the de-
velopment of a system of using them in practical desisgn.
He did not have time, however,,6 to carry out any experi-
mental work to prove the validity of his formulas. In %the
wilnter of 1933-34 another graduate student at Stanford,
Mr. Reid Bogert, made the experimental investigation of
Mr. Schwartz's formulas the subject of his Engineer's the-
sis, and obtained data to prove their wvalidity.

Owing to the length of these theses, the N.4.C.A.

did not consider it sdvisable to publish them in full, but

accepted the offer of the writer, undér whose direction
the two theses were prepared, to combine them into a sin-~
gle report of length suitable for publication. The work
of the writer has been primarily editorial, the theoret-
lcal derivations of the first part of the report being

that of Schwartz, and the experimental work of the second
part that of Bogert. While the theses on which the pres-
ent report 1s based were written under the direction of
the writer, his supervision was not very close and by far
the greater part of the credit belongs to the two students.

The title of Schwartz's thesis was "Structural Analy-
sis of Alrplane Jury Strut Systems". Study of the prob-
lem showed that its essential feature was the analysis of
a strut with a single elastlec support at any specified
point between its ends. This is a general problem of
which the airplane Jjury-strut system is only a special
case. Bogert'!'s thesis was acecordingly entitled "Tests on
Struts with a Lateral Elastic Support in the Span". The
title of the present paper was chosen to indicate both the
essentizal problem attacked and its most important appli-
cation in aeronautical design.

Alfred S. NMiles.
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ANATLYSIS OF A STRUT WITH A SIWGLE SLASTIC SUPPORT IN
THE SFAN, WITH APPLICATIONS TO THE DESIGN
OF AIRPLAME JURY~-STRUTFT SYSTEMS

By A, Yurray Schwartz and Reid Bogert

PART I
DERIVATION OF FORMULAS

By A. M, Schwartz
I, INTRODUSTION

The need of a precise analysis of airplane jury-strut
systems was susggested by ¥r. Richard ¢, Gazley in an arti-
cle entitled "Late Developments in Airplane Stress Analy-
sis lethods and Their Bffect on Airplane Structures.* In
the paragraphs on the jury strut, ke says, “"among design-
ers of strut-braced monoplanes, there is an increasing
tendency to reduce the weight of the extermnal wing bracing
by providing the main struts with lateral support at about
one third the distance in from the outer ends, This sup- -
port is furnished by a gsmall guxiliary strut, commonuly
calleé a jury strut, which is attached to the wing spar at
its uprer end. This type of design is quite effective
for the purrose intended, but it has introduced soéme 61f~
ficult analysis prodblems.

"The case in which the auxiliery strut and the upper
end of the main strut are both pinned at their interseec-
tion is fairly simple, and has been successfully analrzed
by a number of designers. Tiue more common case, however,
where the main 1lift strut is continuouns, is greatly com-
plicated bty a number of factors affecting the force dis-
tribution. & precise solution of this problem probadly
would resgult in wnwieldy formulas but would enable the im-
portance of the various factors to bs determined.®

*5.A4.3. Journal, September 1932,
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The problem assumes a difficult aspect because of
the simultansous deflection of both strut and spar, onse
@epending upon the other, and because of the secondary
stresses and deflections present due to axial loads in
the members., This can easily be illustrated by reference
to figure 1, in which the broken line represents the un-
stressed structure, and the solid lines an exaggerated
view of the members when under load. The elastic curve
of the spar is, of course, quite dependent upon the side
or air load upon it and the amount of overhang. Since ax-
ial compreossion is the critical load on the 1lift strut,
the airplane is assumed to be in inverted flight. This
condition imposes a "down" side load upon the spar, and
consequently the spsar and strut are under axial tension,
and compression, respectively. . If a Jury strut 1s con-
nected to the spar at point ¥B- where the spar 1s deflect~
ed due to the external air loads, the strut will also be
deflected. Then, due to axial load in the strut, second-
ary stresses will be produced which will tend to increase
the deflection of B, This increased deflectlon will
causé increased secondary stresses which will multiply un-
t1l a gstate of equilibrium is reached; that is, the sup-
porting forces developed in the spar will equilibrate the
buckling of the strut. If 1t were possible that a polint
of zero deflection such as point ‘A" could be used as the
upper Jjury-strut connection, there would be ne bending of
the strut - and, as a consequence, no secondary stresses to
cause a further deflection of point A. Thils situation
can only be present for one actual loading, however, be~
cause a change of the axisal load or the side loading on
the spar moves the point of zero deflection. Moreover,
even if 1t were possible that such a state of affairs
could exist, it would be necessary to investigate the
structure go that the elastic stadility of the strut
could be checked. It will be shown later that baoth of
the above cases are almost alike, and that the presence
of initial deflection due to the air loads on the spar
does not alter or complicate the determination of the
critical load an the strut or that of the size of the
load on the Jury strut to a very great extent. When the
size of the load in the Jjury strut has been calculated,
it is quite easy to determine the maximum unit gtress in
the 1ift strut by means of the Newell extended equation
for a beam with supports deflected. (Precise three-moment
equation found in "Alrplane Structures' by Niles and
Newell, p. 192.)
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It was believed at the beginning of the work on the
precise solution of jury strut systems that rather com-

plicated formulas would be obtained, but it was found

that the solutior was little more unwieldy than the cal~
culation for the moments on a continuous beam by means of
the extended three-moment equation.

A review of the obstacles encountered in the precise
solution of jury strut systems, shows that the problem
may be resolved into four distinct phases. These are:

1. Determination of the "spring constant" of a point
in-the span of an axially loaded beam, and the relations

between this spring constant and the stability of the mem-
ber., :

2. Determiration of the stability of a strut support-
ed at some point along its span by means of a Jjury or aux—
iliary strut connected to ancther strut or beam, the sup-
porting beam being under either axial compression or ten-~
sion, a) when the supporting member has no initial de-
flection caused by external side load, and b) when exter-
nal side load causing deflectlon is present.

3. Determination of the load IiIn the jury strut and
the deflection present for a glven side load on the sup—

- porting member. C

4, An investigation of the critical conditions
through which the system passes as the axial load 1s in-
creased from zero to the final critical load, and the
formulation of a method of determining the maximum criti-
cal- load in a supported strut. :

In order to give a complete explanation of the formu-
las and methods derived, several numeriecal examples are
presented, three consisting of very simple structures,
and the fourth being a representative jury-strut system.-

- e reae
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II. REFERENCES

Mlate Developments'in_Airplane Stress Analysis Methods
~and Their Effect on Airplane Structures", by Richard

C. Gazley, S,A.BE. Journal, September 1932,

This article outlined the problem and presented
the difficulties to be encountered as follows: "The

.deslgn of the main 1ift strut then resolves itself in-

to the prodblem of finding the critical load for a pin-
ended, long column - -initially straight dbut deflected
laterally a constant .amount at some point along its
longth.,. To be more accurats, the deflection could be
taken as a linear function of the axial load in the
column. The solution of this problem would be a val—-
uable addition to our knowledge of strength of materi~
als., Pending such & solution, we must rely on empir-

- ical formulas and meager Best data for our allowadble

loads and therefore need to provide ample margins of

. safety.! -

"Airplane Structures!, bleiles and Newell, Wiley,
New Yori. :

This volume supplied a basic theory and eguations
for the formulas derived in this paper.

"On 'the Buckling Strength. of Beams Under Axial Com-

‘pression, Bridging Elastic Intermediate Supporis®, dy

W. B, Klermperer and H. .B. Gibbons, contributed Dby the
Applied Mechanlecs Division of the A.5.M.E. for presen-
tatlon at -the Natlional Applled Mechanics Meeting, Ncw
Haven, June 1932.

, Althouvgh this paper did not consider the case of
struts having unsymmetrical bays with supports having
deflections due to external loads, and was of no di-
rect use, 1t 4id supply valuabdle information as to
methods of attack for which the writer is very grate-
ful. This paper was also used-as a check for the spe~
cial case which it covers in common with this paper.
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III. DEFINITIONS

For convenience of reference, definitions are given
here for a group of terms that will be used frequently in
the subsequent text.

Beam

Supporting forcs

Supporting load

Jury strut

Side load

Spring constant

the supporting member of a pair (the
wing spar in the airplane 3ury~stru£
system).

the supported member of a pair (the'
1ift strut in the airplane jury-strut
system).

(P), axial tension (+) or compression

"(~) in the beam or the strut as indi-

cated by subscripts or the context.

(Pp), the algebraic sum of the loads
in the beam and strut when they are”
parallel.

(-W), the lateral force reguired to
hoId the strut in equilibrium.

(W), the lateral force imposed on the
beam in supporting the sirut. Support—
ing load and supportlng force are nec-
essarily equal in magnitude but oppo-
site in sign. They are alsoc the ex-
ternal forces acting on the jury strut.

menber joiniug the beam and the strut
which causes tnese two members 9 in-
teract.

(8), any lateral force other than the
suppotting load which acts on the beam.
(k), the rate of change in the lateral
load required to maintain equilibrium
at a point along the span of the beam
(or strut) with respdct to the lateral
deflection of that point.
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IV. THE SPRING CONSTANT FOR AN AXIALLY LOADED BEAM

The firsgt step in the study -of the stability of an
elastically supported strut is to explain the derivation
and significance of what will be termed the "spring con-
stant® of a point on the sparn of an axially loaded beam.
Mathematically this spring constant may be defined as the
partial derivative of the transverse load at the point
with respect to the deflection of that point. This can
also be expressed in simpler though less concige language.,
If the beam is assumed to remain in equilibdrium, although
the deflection of some point on the gpan is changed, there
must be some corresponding change in the external loading.
If 1t be assumed that the only change in the external load-
ing is the addition of a transverse force at the point in
question and suitable reactions at the supports, there will
be some definite relationship between the changes in the
deflection of and the external force at the point. Inspec-
tion of the formulas for the deflection of an axially loaded
beam will show that there is a linear relation between the
magnltude of the transverse load on an axially loaded beam
and the deflection of its point of application, This is
shown by the fact that they can all be written in the form

- ¥
5 = g+ ¢ | (1)

where 8§ is the deflection of the point in question
W 1is the lateral load at the same point

k and ¢ ars constants depending on the location of
the point, the dimensions and material of the beam, the )
magnitude and character of the axial load, end moments,
transverse loads at other points, eftc., but iandependent of
the transverse load W.

From equation (1) 1t is apparent that if the load W
is the only one to vary as the deflection of its point of
application changes, it must change by Xk pounds for each
inch of change in that d8flection. The quantity ¥k 1is
therefore the spring constant as defined mathematically
above, It may also be defined as the transverse load re-
quired to cause a unit (one inch) deflection of its point
of application.

The formula to be used for the computation of the
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spring constant in any gliven case will depend on the char-
acter of the axial load ard whether or not the cross sec-
tion of the beam is constant. ' In this report only two
groups of cases will be considered.

1., Beams of constant ssction with the axial load the
same on both gides of the roint for which the spring con-
stant is 'to be computed.

2. Beamsg in which the cross section and axial load
are constants on each side of the point for which the
spring constant is to be computed, but in which one or
both of those quantities change at that point. Thisg class
of cases is of interest as the axial load in, and cross
section of, the 1ift strut may change at the p01nt of con-
nection of the Jjury strut.

- In the main body of the report attention will be di-
rected, in general, t0 those cases of the first group in
which the axial load is compression. It is to be under-
stood, however, that the conclusions arrived at in respsct
to the significance of the spring constant, the criteria
for stability, and the general eguations for.the deflec-
tion of the supported strut system in terms of the spring
constants involved, apply equally to all cases (even those
in which the axigl load and the cross section vary contin-
uously along the span) unless otherwise noted. Formulas
will also be derived for the computation of the spring
constant in cases of group 2 in which the axial load is
compression, Yo attempt will be made to derive more gen-
eral formulas for the spring constant, but the derivations
given should be a sufficient guide to permit the engineer
to handle any other case in which he is able to computse
the deflection due to & unit transverse load.

. Before attempting to discuss the relationshlips hetween
the spring constant and the stability of & strut, it is de-
sirable to develop the formulas for the spring comnstant in
& representative caso. Por simplicity, the case studied
will be that of a strut of constant section and constant
axial load. ' Three conditions must be considered, depend- - -

ing on whethe; the axial load is compression, tension, or
ZeTO0 o ' ' -

The formula for the deflection of a point on the span
of a constant section beam subgected to ax1al compression
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and.a single concentrated transverse load is*

§ = % (Ml +-Eg_%~gi x - E%E — 01'sin § ~ Ca cos-?} | (2)
where
R et S R R
Cz = M, | :

If the axial load P, and the end moments My and la.

be assumed not-to vary, equation (2) is obviously a special
case of equation (l). From the discussion on page 1989 of
reference 2 it .can be seen that the only effect of add-
ing other transverse loads to the system of forces acting
on the beam would be to maske necessary the addition of
some more constants to eguation (2), which would modify
the value of the constant . ¢ of egquation (1). The con=-
stant k of equation (1) would not be affected.

Combining equations (1) and (2) we have as the formu-
la for the spring constant of-a beam subjected to axial
compression.

1 __ L fab, jsinz(a/i) . .

o2 a
¥, - " F \NT T "(ten (z/3) = 9 &%y c°® 3) (3)

In this formula the subscript c¢ is used to indicate that
the axlal load is compression,

keo:» spring coastant for the point and axial compres—
sion 1n question

*Pagce 205 of roference 2. This formula applies only to
the section of the beam between the—left end and the point
of spplication of the side load W. By substituting a
for . x it gives the deflection of the point of applica-
tion of W. The same result could be obtained by placing
a for x in the exzpression also given on page 205 of
reference 2, for the deflection between the load and thae
right-hand end of the span.
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a, distance from left emnd of span to the point in
guestion
L, 1length of span
b=1L - a

3 = J/EI/P ' T T T

Similarly we can obtain as the formula for the spring
constant of a beam subjected to axial tension*

1 _ 1 /ad . i sink® (a/3) _ 2 a

The spring constant for the case of gzero axial load
can be obtained by setting P = 0 1in equation (3) or (4),

but the resulting indeterminate form 0/0, is awkward to
evaluate., A simpler method of obtaining this spring coxn-
stant kg5, 1s to differentiaste the formula for the de-

flection of a simple beam subjected to a single concen-
trated side load as given on page 264 of reference 2.
This gives -

6 EI L 3B I L
k0= — = 5 = -

I
a b (L - 2% - b®) 8% 1B

The spring constants as given by equations (z), (4),
and (5) apply to all cases of beams, struts, or Ti&s of
constant section and constant axisl load regardless of.
the presence or absence of end moments and other side loads
on the member., In practical computations they may be used
to determine either the spring constant of the member that

requires support or that of the member which furnishes
support. _— - - .

V. VARTATION OF SPRING CONSTAWT WITH AXIAL LOAD

It would be interesting to make a general study of
the effect of varying the axial load upon the sign and
magnitude of the spring constant, but the trigonometric
expressions involved are too complex for this to be dons LT
conveniently. Before going into the relation between the

PR

*For derivation, see Section III of the Appendix,
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sign of the spring constant and the stability of a member,
1t is desirable, however, to see how the spring counstant
varies with axial load in a typical case. The example
chosen is that of & strut 180 inches long with PRI =
9,000,000, The values of the spring constant for the

third point of this member, as obtained from equations (3),
(4), and (5) are plotted as ordinates in figure 2, TFor
convenience, the abscissas in figure 2 are the values of
the ratio I/J 1instead of the correspondling values of thse
axial load P..

The curve of figure 2 is representative of the curves
of spring constant for all cases. Whenever the axial load
is tension, the spring constant will be positive and will
increase with the magnitude of the axial load., When the
cross section 1s constant and the axial load is compres-
sion and constant . along the entire span, as the axial load
increases the gprirg constant will be a decreasing posi-
tive gquantity until 1/j = m, when the spring constant
becomes zero. 4s 5L/J continues to increass, the spring
constant is a negative quantity of increasing magnitude
until a critical load is reached at which kX, = negative

infinity. At this critical load 1 < % z2n. If 1L/j for

the .critical load is less than 21, the spring constant
veries from positive infinity at the critical load to zero
L/3 = 2m. When 1/J exceeds 2m the spring constant is
negative and lncreases with L/j. at least until L/J =
10.0 in the case under consideration. The values of
spring constant for higher values of L/j have not been
investigated in this study but there is probadly a criti-
cal load at which the spring constant passes thromgh in-
finity for every increase of 2m in L/J. )

The values of the spring constant for L/J valucs
in excess of that for the critical load between L/j = m
and L/J = 2m apply to elastic curves of the beam which
are unstable unless the member is provided with more than
one transverse supporting force. TFor this reason. they are
not of direct interest in this study which is limited to
cases in which there is but one supporting force in the
span.,

The curves of spring constant vs. axial load for
beams of nonuniform section and axial load would be similar
to that shown in figure 2. In such cases, however, P/EI
is not constant along the span and the expressions for the
loading at which the spring coanstant becomes zero and infi-
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nite become much more complex than in the case represent-
ed in figure 2. The only case of that character that will
be considered in this report will be that in which the
cross section and the axial load are constant on each side
of the point for which the spring constant is determined,
but in which there is a sudden change in these quantities”
at the point in guestion. This case will be treated later.

VI. RELATION BETWEEN SPRING CONSTANT AND STABILITY

The simplest method of determining the relations be-
tween the spring constant of a beam or sitrut and its sta-
bility is to make a parallel study of the sign and magni-
tude of the spring constant and the mechanical actlon of a
strut as the axial load varies.

The Unsupported Strut

The simplest case to discuss is that of an ideal pin-
ended strut -having no lateral support.' When such a strut
is loaded in ten51on or with a compression below the crit-

ical Euler 1oad, (i% < T2, P < 1t® El ) it will be found

that for equlllbrlum a lateral deflectlon mast be accompa—
nied by a force in the same direction as the displacement
of the strut. This merely means that the strut resists a
side force. TFormulas (3), (4), and (5) give positive val-
ues -for the spring constant in this range of LI/Jj, which
is a mathematical way of expressing the same fact. The
strut is then elastically stable, and if it .is deflected
from its normal straight position by an external force,

it will immediately snap back into place when the force is
removed.,

Now suppose the strut is loaded with the critical
Euler load (; =1, P= %l>. The spring constant as de-
J

termined from formula (3) is zero. This means that changes
in the lateral deflection do mnot have to be accompanied by
changes in the side load in order to maintain equilibrium.
From this it can be dsduced that the strut will be in equi-
librium in any deflected position, and has no tendency to
spring back into rlace due to its own stiffmess. The

strut is therefore elastically indifferent, - ' o
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If now we load the strut over the critical Buler load

<% >1m7, P >m3 %;), the spring constant is found to be

negative, that is, for equilibrium a lateral deflection
must be accompanied by a force in the opposite directilon.
Thus the strut within itself is elastically uwunstable, for
the slightest lateral deflection will cause buckling if
no external supporting force is availlable,

The practical strut differs from the idedl strut pri-~
marily in that it may be subjected to end moments and for
gide loads as well as axial loads. 4As noted above, the
abgsence or-presence of such forces has no influence on the
magnitude of the spring constant. They do, however, make
a little difference in the physical action of the member
under load. In case the axial load is temsion, or a com-
pression such that L/j < m (the range of positive spring
constants), they cause the strut to deflect until a posi-
tion of equilibrium is reached, The impogition of an ad~
ditional side load will cause additional deflection. On
its removal, the strut, instead of becoming straight, as
an ideal strut would, returns to the equllibrium position
it had assumed uUnder the remaining loads when they acted
alone., If L/J .is equal to or greater than 1w, the side
loads and end momeunts on the practical strut cause i1t to
deflect, and the axial load produces secondary bending mo-
ments causing increased deflection as fast as, or faster
than, the deflection itself. The gtrut therefors never
reaches a condition of eguilibrium unless a sufficient
supporting force acting in the direction opposite to the
deflection is added to the system.

One method of obtaining such a supporting force is
to connect the strut, which is unstable by itself, through
a more or less rigid link (or Jjury strut) to a member of
sutfficient stiffness that the resistanco to deflection of
the latter will provide the forece required. One of the
chief ohjects of this report is to determine the stiffness
required in the supporting member so that the combination
will be in stable equilibrium. For simplicity the member
which reguires support will be called "the strut" and the
one—which provides such support "the beam", Inm the nor-
mal airplane jury-etrut system, the 1ift strut is "the
strut”’ and the wing spar is "the beam!". Furthermore, the
force acting on the strut regulired to maintain stabillty
will be called the "gupporting force". The equal and op~
posite force acting on the beam will be termed the "sup-
porting load',
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The above discugsion indicdteées that, if the strut is
to be adequately supported, the beam mhst be loaded below
the critical Euler load, so that it is’ elastically stable
in itself (spring constant is positive)., Or, te state the
requirement less formally, the supporting beam must have
"excess stiffness" 't maké Gp-for thé tendency of the sup-
ported strut to buckle.: Theé above discussion also- indie
cates that a strut loadéd ' to Oor dbove the critical Euler
load (i.e., spring constant is negative) must be support-
ed if it is to be stadble. Kccordingly, we must next turn
our attention to thé élastic stability of a strut which is
loaded above the Buler load but supportéd elasticallye.

The Supported Strut

The mechanics of the elastic stability of the sup~
ported strut is very similar to that of the unsuppoFted
strut. There are three conditions to be studied: the elas-
tically stable, indifferent, and unstable. In this discus-
sion 1t will first be assumed that there is mno initial de-
flection of the beam due to transverse forces other than
the supporting load. This will be followed by a consider-
ation of the effect of the presence of such an initial de-
flection of the supporting beam. S e T B

We have-an elastically. stable.supported strut when . -
the spring constant of the beam 1s greater in magnitude
than the negative. spring constapt of the-strut: 1In this
case we see that to produce any: deflection of the support
point on-the Deam, a greater force is needed than that re-~
guired to prevent the strut from buckling, and if any de-
filection is produced by a momentary force, the strut is
forced back to its original position as BVon~"as the momen-
tary force is removed. This_coniition'COr;espoﬁds to the
case in which the unsupported strut was loaded below the ~
critical Euler load., = : o T o

" Now surpose that the spring constants of the strut.
and beam are of equal magnitude but of opposite sign. If
the support should be deflected a distance &, and the
force causing the deflection should be removed, the beam
would be capable of exerting a supporting force eqgqual to
Ik 8§, where k 1is the spring constant of the beam), i.e.,
.the load required to produce unit deflection of the sup--
port point. This supporting force, howeve®, is of just
the right magnitude to provide the necessary supp6Tt for
the strut and there would be no tendency either to spring
back to the original positions or to deflect further. A
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state of equilibrium is thus found for any deflection of
the membersg; the system is elagtically indifferent a&s in
the case of the unsupported strut loaded with the critical
Euler load,

The last case follows when the spring constant of the
supporting beam is smaller in magnitude than that of the
strut. At the smallest lateral deflection the force re-
quired to hold the strut im equilibrium will be larger
than the availabdle supporting force, and the system will
buckle. This is an elastically unstable condition, cor-
responding to the failure of the unsupported strut which
is loaded above the critical Bulsr load.

Effect of Initial Deflection

The action of the strut and beam combination when
there ig initial deflection of the beam can be studied
mogt convenilently with the aid of figure 3, in which are
plotted the curves of variation of supporting force (or
load) with deflection. As the partial derivatives of W
with respect to &8 ars constants, these curves are
stralight lines with glopes numerically equal to the re-,
spective spring constants, kg for the strut and kj for
the beam. In the figure 0D represents the variation
with deflection of the supporting force required by the
strut. The actual values plotted, however, are those of
the egqual and opposite supporting loads that would be im-
posed on the beam. 4s it 1s assumed that there 1s no in-
itial deflection of the strut, the equation of OD is

g = ~kg § . (6)

Ag the strut would need no support when kg 1is pos-
itive, 1t 1is assumed that kg is negative and theorofore
~kg 18 positlve. The variation in the available support-

ing force 1s shown by the line AC, the equation of which
is

Wy = ky (8 - 8g) (7}
where 8§, is the deflection of the beam due to a2ll forces
other than the supporting load. It will be called the "in-
itial deflection of the bean.

In the case shown in figure 3, the beam and strut
would &deflect to the equilibrium position indlcated by 3B,
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the intersection of OD and AC. At this deflection, &g,
both the reguired supporting forece for the strut and the
available supporting force are equal to Wg. When the
deflection is less than §g, the supporting force is in-
sufficient to prevent further deflection, but if the de-
flection 1s greater than §8g5. the supporting force 1is

the greater and the beam would force the strut back ant il
the deflection was reduced to §g.

It should be clear from this figure that as long as
ky is numerically greater than kg the two curves will

intersect at a positive value of § and there will thus
be an equilibrium position. If ky is equal to or small-~
er than kg, however, there will be no such intersection
and the combination will be unstable. The magnitude of
the initial deflection 8,5, has no bearing on the ques-
tion of whether or not there will be an equilibdbrium posi~
tion indicated by the intersection of the two curves. It
will, however, have considerable influence on the loca-
tion of that intersection in any given case. The larger
the value of §,, the greater will be the deflection be-

fore the equilibrium position is reached, in practice
this may be important, as the resulit of a large initial
deflection may be that plastic failure of the strut may
take place before the equilibrium position .is redched,
whereas this might not have been the case 1if the inltial
deflection had been small.

If it should happen that the strut as well as the
beam had an initial deflection, figure 3 and equation (6)
could easily be nodified to take the situation into ac-
count, but it should be obvious that this would affect on-
ly the magnlitudes of the deflection and supporting force
when the equilibriuvm position was reached but not the.
question of whether there was such a position, i.e,,
whether the strut is stable or unstabvle. -

VII. DETERMINATION OF EQUILIBRIUM POSITION

AND SUFPORTING FORCE

The magnitude of the deflection a% the equilibrium

position and the corresponding surporting force can easily

be found by solving eguations (&) and (7) simultaneously.
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By this means we obtain

. x5 - ‘ )
Se o kp kg (8)
o ky kg 8 . |

e = - ky + Ig '_ o (9)

If there is initial deflection of the struit equation
(9) can be used to determine the supporting load if §,

be taken as the initial deflection of the beam minus that
of the strut whén the initial deflections are in the same
direction, or as the sum of the 'initial deflections when
they are in opposite directions. In such cases (8) will
give the additional deflection of the strut which should
be added to or subtracted from the initial deflection to
obtain the total net ‘deflection. 'In any specific case

it should be obvious whether the deflections should be
added or subtracted.

In the deriVaﬁion of equations (8) and (9) it was tac-
itly assumed that.there was no change in length of the
Jury strut connecting the strut and bean. This assumption
is reasonable in nearly.all practical cases., If it is not
made, the necessary modifications in equations (8) and (9)
can be developed without special difficulty.

From figure 3.1t can be seen that the curves of Wy
and Wg will alwayé intersect except in the special case
where - ky = - k o 'Theé intersection represents a condition

of stable equllibrium of the system, however, only when
the algebraic sum of ky and kg 1s positive.

In brief, then, the criteria for the stability of the
system of a strut and beam with a single tle are:

1. If the algebraic sum of the spring constants of
the two members is positive the system is
stable.

2+ If the algebraic sum of_the spring constants of
the two members is negative the system is un-
stable. _ .

3. If the algebralc sum of the spring constants of
the two members is zero the system is elastic~
ally indifferent.
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It should be rémembered, however, that these criteria ap-

vly only when the load in the strut is less than the crit-
ical load, i.s., the load at which the spring constant is

infinite. -

In this discussion it skould be noted that it has
been assumed that the two members are parallel. If they
are not parallel, as in the case of an airplane jury- strut
system, proper corrections must be made to formulas (8)
and (9) to allow for the angle between the two members.
How this should be done will be 1llustrated later in the
nunerical example of an airplane Jjury-strut system.

VIII. SPRING CONSTANT OF A STRUT WITE A CEANGE OF SECTION

In many cases of practical importance, the cross sec—
tion of the member and/or the axial load changes at the
intermediate elastic support. Thus in the usual airplane
Jury-strut system, one component of the load in the Jjury
strut causes the compression in the lower portion of the
1ift strut to be larger than that in the upper séection
though the difference is usually so small as to be negli-
glble. A more important practical situation Ts that it
may be found desirable to reduce the section of the 1if%
strut between the jury strut and the wing spar. The spring
constant for such members can be derived from the extended
three~moment egquation. Thus a strut having two bays of
span a and b and moments of imertia I, and Iz, etc.,

with the center support deflecting & inches, m&y be con-

sidered as a continuous beam and is subject to calcula~ '
tion by the three-moment equation. 'The derivation of the
special three-moment equation for a beam with deflection

of supports may be found in ‘the Appendix,

The general three-moment-equation for a2 beam having
deflection of the supports, but no side lead, may be writ-
ten as followsg:™* ' '

My & Gy + 2Mg (a LR b ﬁz) + s b a2 _
I]_ Iz Iz

%E— (82 - 84) + %’xﬂ—‘ (85 - 83 B {10)

*For derivation, see Section II of the Appendix, Note that
a and b are used here in place of the more usual Ly
and Ls,.
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The strut to be considered here will be assumed to
have pin ends. ZLet B, and I; be the ax}al load and

moment of inertia of bay 1-2, and P, and I be the ax~-
ial load and moment of inertia of_hay_ 2~3. Also let

81, = I, j, = ~EI,/P; Ja = JVEI2/P2 YR = P

82 = 83 =-0. Since the member is pin-ended, M; = Mz = 0.
Equation (10) then reduces to

M .
= - L _2ab, —
b2 = - F g5, § (&Pt P /)

Since 1/ = P /EI

Y

P 82 =~ 3 5 22 (a B + b B2/8) (11)
RPN
(v - 1)
M, - M bW P & (y -1

but S ML L P T
i 2, - - - (12)

For equilidbrium about the center suppoft
1'52=M1-P182"aR1.

where M, is the applied end moment, assumed zero in thils
case.

P, 8 is the moment due to the eccentricity of the
arxial load P, about the center support, i.e., the center

support is deflected from the line of the two end supports
an amount &z - 6;. In this case §,; = 0.

a Ry is the moment due to the end reactlon, assumed

posltive when the reaction acts dowro, times the moment arm
a. Substituting from equation (12)

Mz = - (Py 82 + éL—b W+ Py 8 (v-1) 2 (13)
If we let .
] a b
T e + b 4
e P Jlg (a B, Bo/8) (14)
eguation (11) becomes P, 8§, = - ¥ o' o __“S1§)m“

*See figure 4.
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From equations (13) and (15)

B 8 =6' (R &, +ahd % + P, 8 (y = 1) % (16)
W}‘lence
_ 1 -9 J1 4+ (y~-1) 2
X .= oW _ PRI _ [ { T L}] (17)

38, a b gt

Equation (l?)nthﬁs gives the spring counstant for the case
under considerztion, . ST

IX., CEECK OF SPRING-~CONSTANT FORMULAS

Formulas (17) and (3) for the spring constant of a
beam or strut subjected to axial compression should become
identical when the axial load and cross section are as- '

sumed constants. In this case we would have Q =« = 1
since P, =P, and I, = I. BEguation (17) then reduces
to .
PL (1 ~-8)
= 8
=2l 0= (18)

where O is the value of B' given by equation (14)
when @ = 1, The calculations needed to check eguations
(18) and (3) are somewhat complicated and are omitted %o
consgerve. space, but 1f they are followed through the two
equations are found to be identical,.*

As tables of B are given in "Airplane Structures'
(reforence 2), it will usually bde found that equation (18)
is more convenient for practical use than equation (3).

A further check of equations (3) and (18) for the
spring constant can be obtained by assuming a = 0.5L and
comparing with the results of Klemperer and Gibbons in
reference 3., In this case again the resulting equations
are identical.* These checks of equation (18) do not prove
. the validity of the more general eguation (17), but the
writer has been unable to devise any alternative method of
proving the general case.

*Schwartz!s detailed proof of this statement is omitted
from this report to comserve space. Ed.
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X. INVESTIGATION OF CRITICAL LOAD CONDITIONS

The theory of the elastically supported strut is not
gquite complete without the development of a method for de~-
termining the magnitude of the critical load. The criti-
cal load for a strut may be defined as the smallest value
of axial compression which, according to the theory of
elastic members, could produce infinite bending moments in
the strut. For the unsupported strut the critical load is

the Euler load (P = 1® %% % = 7). The critical load of
the continvous or stpported strut, however, remalns to be
determined. This will be the maximum load under which the
strut can be stable, regardless of the stiffness of the
supports As the previously developed criteria of stabil-
ity apply only when the sxial load 1s less than the crit-
ical load the importance of being abdble to determine the
latter is obvious.,

For purposesg of determining the critical load the
supported strut can be considered as a continuous beam with
deflection of the supports. As no attempt is made in thise
report to study struts with more than one supporting force
within the span, the supported strut may be considered
more specifically as a continuous beam of two spans with
deflection of the Intermediate support.

In Art., 11:7 of reference 2, Niles and Newell discuss
the determination of the criticel lcad of a two-span con-
tinuous beam with a uniformly dlstributed side load and no
deflection of the supports. Their concluslons are asg fol-
lows:

1. If 1/J for both spans is less than 1, the
critical load has not bsen reached.

2. If 1/j for both spans is greater than m, the
critical load has been exceeded,

3. If L/ for ome span is less than m and L/J
for the other span is greater than 1, the question of-
whether or not the critical load has been reached depends
on the sign of the quantity

L L
—1 —2
I, B, + Is Bz
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+

where the subscripts i and =2 refer to the two spans and
B is the coefficient for the extended three-moment equa-
tion as defined on page 191 of reference 2. If this quan-
tlty is negative, the critical load has not been reached,
but if it is positive, the critical load has been exceeded,

Thesé criteria apply equally to the supported strut.*
From these criteria 1t is seen that the critical lcad is
that at which

Ly By, , La Bs - B
I * I =0 or a T

T+ b 2=0 - (19)
1 B .
L . 1
When equation {19) is satisfied, © of equation (14)
will also be egual to zero since Iz = 511. Under these

conditiong eguation (17) will evidently indicate that the
spring constant k, is iInfinite. Thus the critical load
is gmallest axial load at which the spring constaant be-
comes infinite.

XI. FORMULAS FOR USE IN ANALYSIS

In order to use equations (8) and (9) to determine the
equilibrium position and the corresponding load in the Jjury
strut, it is necessary to be adble to compute the spring con-
stants k, and the initial deflections &,, of the two

members. The formulas for thege quantities are the .sams
regardless of whether the member to which they are applied
is the strut or the beam. TFor gonvenience, all the formu-
las likely to be mneeded in practice are sither listed in
this section or references are given to places whare they
can be found. The nomenclature and sign conventions aré
those of reference 2. The most important items are as
follows:,

*In his original thesis Schwartz proved this statement in
detail for the case of a supported strut with e single con-
centrated load on each side of the deflected intermediate
support. In his proof he followed the line of argument
used in Art. 11:7 of reference 2, making the changes re-
quired by the difference in the type of side load and the
presence of deflection of the intermediate support. In a
recent article in Michigan Technic these criteria have '
been proved to apply regardless of the type of side load,
For this reason, and %o conserve sgpaée, Schwartz's de-
tailed proof has been omitted from this report. Ed.
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Upward forces and deflectlons are’ positive

L,
a,

b =

An alternative formula somewhat simplsr for practical

4 .

length of member'

distance from lef{ énd of membér to Jury strut

L -~ a

axial load (tensién.or céﬁpreséioﬁ as iﬁﬁicatedj
modulus of.elasticity |

moment of inertia

NESTE

functionh of L/j <found in tables of reference.2.

(page 212) -

spring counstant

deflection o0f point of connection of jury strut
due to all loads other than the supporting force
or load

'
%

Formulas for Spring Constant

Member of" constant axial tension 1oad and cross

section,'V“
1 (a b -;j siﬁha (é/j)
P VL “tanh (L/3)

_ . . os
- inh — h — 4
. j sin 3 cos J> (4)

Member of constant section with no axial load,

3EI L ) '
X, o= P (5
° a® b° )

Member of constant axial compression load and

cross section,

1 s,a®d j sin® (a/3)
P \L tan (L/3)

3 sin ? cos %) (3)

*For derivation, see Section III of the Appendii;

v'“
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1use is

6y )

_ P L (1 -
ke g b 6 (18)
where . . eh ;_ S%L§T (é B, +.b 82) . (142)

P and Pz eare the values of B for a3 ~and v/,
respectively.

Case 4.~ Member with. axial compressive load changing at

the connéction of the Jary strut and of con-
stant cross section on each side of the Jjury-
strut connection,

P, oadl-8" [1+ (v -1) %ﬂ'}
a b { e.r . _ .(17)_

k_’.c =

B
where - 8' = —3—2—~ a By + D *g> (14)

3L 3, @
'Y;:Pz/PJ. ®=I2/Il J = VEI:L/P:L

Formulas for 80 ‘

Group l.- Beams of constant section subjected to axial
tension.

Unless great precision is desired the effect of the
axigl tension can be neglected and & conservative figure
obtained from the formulas for the deflection of a beam
without axial load. Formulas for such cases are given in
Art. 15:1 of reference 2. TFor more precision the method
of computing deflections derived in Section IV of the Ap-
pendix of this report may be used.

Group 2.~ Beams of constant section without axial load.
Formulas for these cases are given in many texts and
handbooks. To avoid difficulities with sign conventions,

those in reference 2 are recommended,

Group 3.~ Beams of constant section subjected to axial com-
pression,.

Formulas for these cases are given in Art. 11:5 of
reference 2,
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¥II. NUMERICAL EXAMPLES

In order to render a clearer explanation of the use
of the supported strut formulas, four numerical examples
are worked out below. The first three examples illustrate
very simple structures, but give the more important steps
that should be taken in designing the members. The last
example is a specific airplane jury strut system.

Example I.- Two pin-ended struts (fig. 5) are connected by"
a crosstle 0 and loaded, as shown. Member A has a
large enough cross section that 1t is locaded below the
Euler critical load. How large must the right-hand
member be in order that the system will still be stat-
ically stable?

Given: Item Member A Member B
Name Beam . 8trut
P 20 pounds 80 pounds
L 15 inches 15 inches
31 1125 ?

As the size of the beam is given, its spring factor
may first be calculated according to equation (3) or (18).
The required size for the strut is then found from the
knowledge that its spring factor must be numerically equal
to or less than that of the beam, otherwise the denomina-
tor of equation (8) will not be positive as is reguired
for stability.

From (3) the spring constant of the beam can be found

fronm
sin 2 .
gi =2b, ( d - cos i) josin & : (3a)
J
, = /BL_ /1185 _ ,.
dJ P - oY) 7.5

5 inches
10 inches

Il
!
l
]
O
o
o
~2

1
i
1

= 2.000

et ot o' D
']
O
1
-
A
ol
o«

-
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Substituting for fi in (3a)

e
=— = 41,63
ko ‘ _
ke =+ 29 =12.3 ; £
e = S = .3, spring constant of
1.6 : the beam

Trial values of EI for member 3B are next substi-
tuted in (3) or (18) until a spring constant is found that
is equal to or less than 12.3. This may be accomplished
most advantageously by plotting several values of k., vs.

Js = ®1/P) and taking from the resulfing curve"5"<m
value of L/ which will give a spring constant in the
range of the above limitations. In the above example,
equation (18) was ussd to obtain the points of figure 6
for Xk, vs. j. Table I in 8ection V of the Appendix shows

the calculations that were made. In actual practice it is
probable that only a few points would have to be calculat—
ed to obtain a suitadble strut size.

Figure 6 shows that for a spring constant algebraic-
ally greater than ~-12.3, J must be 3.90 or more. Taking
J = 3.90 as representing the smallest possible value of

EI:
J = V/EI/P = 3.90
P = 80 L = 15
L . 15
L= 22 = 3,85
J 3.90
EI = Pj® = 1220
L/5 is well above T, the critical load for an unsup-

ported strut.

It is interesting to note thaﬂaff;ciency of the above
strut system is very high. The value of ZEI required to
support 100 pounds by a single strut is: ' I

L/3

L = 15 P = 100

m (critical load for an unsupported strut)

J = 15/m = 4.77
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BI = Pj® -~ 2280 required for a single support

i

But the sum of EI of memberg A and B 1is:
EI (total) = 1220 + 1125 = 2345
Efficiency = 2280/2345 = 97 percent

Of course, for .equal values of moments of 1lnertia, a
single strut would be lighter than two struts. It must be
remembered that in the above example, stability has been
congidered 4in one plane only. Member B must have elther
a support or a large enough section in a perpendicular
plane to be truly stable in all directions. In streamline
struts this would probably be the case.

Bxample II (see fig. 5).- Using the same struciure as in
prablem I, but with a concentrated side lcad of 10
pounds on member A, at the connection of member C, find
the smaliest possible value of EI for member B. The
maximum allowable side load applled at point a on
member A is assumed to be 15 pounds. (In an actual
structure, the maximum side load on member A would de-
pead upon the yield point of the materiasl or its modu-
lus of rupture.) Also determine the lateral deflection
of point & or b when the system 1s in statlc equi-
librium.

Since the-axial extension or compression of member C
is very small as compared to the lateral deflection of the
struts, it will be neglected. Having an allowable force of
15 pounds at point a ard an external side lcad of 10
pounds, we sce that the maximum supporting load W, 1in

equation {(9) is b pounds. The spring constant of a membder
A has already been calculated in example I k¥_= 12.3.
Only two unknowns remain: the required spring Tactor of
the strut and the "initial deflection' of momber 4 due to
external loads. The initial deflection 85, may be found
from the given data and the formulas for the deflection of
axially loaded beams.

Ag the only external load in this case heppens to be
the one applied at the supporting point a, &, can be
computed from the spring constant found in example T
k, = 12.3, 1i.,e., it requires 12.3 pounds of load at a
to deflect 1.00 inch. The deflection of point a due to

10 pounds will therefore be §y = 72~z = 0.814 inch., Sub-
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stituting the spring constant and initial deflection of 4
and the maximun allowabdle suppor*ing farce W in._egunation

(9):

12.3 X 0.814 X kg'

5.00 = = 3T L SR

whence . kg

This indicates that the beam A can supply the lat-
eral support needed to prevent the strut B Ifrom buckling
provided the latter is of such size that its spring con-

stant is algebraically greater than - 4.10. (If the value

of kg for the strut taken from curve I is positive, it
indicates that tke strut requires no supporting force, but
if it is negative and larger in magnitude than - 4,10, it
will require a larger supporfing force than the beam A
can provide without failure of its material.)

Pigure 6 shows that the value of J for member B is

4.50 when kg = - 4,10.
2I = Pj® = 80 x 4.50° = 1620

The deflection of points a and b nay be found

from the known values of k for nmenber B and the support-

ing force W. (Sece ecquation (6) and fig. 3.)
Thus W = 5 pounds

kS = - 4,10
&

= % . _5._ - 4 1.22 inches '

e = kg T %.10

This deflection night also be found by applying the
proper deflection formula to nenber 4, as all the loads
on it are lnown (both external and supporting load). In
the above example, both external and supporting loads are
applied at the same point and egquation (1) may be used.

Total side load = 10 pounds + 5 pounds = 15 poundé

kc = 12-3


http://www.abbottaerospace.com/technical-library

28 ¥.0,0.4, Technical Note No. 529

§ = 757 + 0 = 1.22“i#ches

which checks with the above calculation for §.

It should be noticed that the supporting load will al-
ways be in the same direction as the external side locad on
the beam. This should be falrly obvious if 1t is remem—-
bered that the system deflects in the direction of the ex~
ternal side load with a consequent tendency for the strut
to buckle in the game direction. Due to this fact the
supporting load W, and the initial deflection &4, are
elways the same sign.

Example III.,~ The 100-pound weight .of problem I is moved
to the right of member B (fig. 7). HMember A has the
same moment of inertia as before. Find the smallest
size (value of EI) of member B which will allow the

system to be elastically stable.*

Given: Itenm Aember A Momber &
P 20-pound tenmsion 120-pound compression
L 15 inches 15 inches
BI 1125 ?

This exanple is, of course, the same type as number I
except that the supporting momber is in tension. The stiff-
negs of nember A will accordinglybe found from equation
(4. The wvalue of J for the strut whick will give an
ogual roquircd stiffness will thern be found from figure 6,
Thus, from (4):

ja_ b j sinbk® (a/3)
[\

1 . 78 a

kg

L
P

*It should be remembered that a strut having a required
stiffness just equal to the available support stiffness 1s
really not elagtically stable but elastically indifferent.
Such a condition is ezactly the same as the case of an un-
gupported strut loaded with the critical Euler load. Imn
actual design, struts are usually designed for the criti-
cal Buler load when a suitable load factor or safety factor
hag been used to obtmin the design loading.
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a =25, b= 10, J = /EBI/P =, 1125/20 = 7.5 1/j = 2.00
a/j = 0.687 bfj = 1.333 sinh{a/P = 0.7172 cosh(a/J)
1.,2306 +tanh(L/j) = 0.9640

whence ki = 27.9, the spring constant for point a of
member A when that member is subjected to 20 pounds tension,

From figure 6, the value of J for member B 1s 3.04
when k, = - 27.9. -

I = 3 P = 3.04 X 120 = 1110

It 1s interesting to note that the strut system of probiem
Il reguires a smaller value of EI for member B than
in example I, esven though the exial compression on B is

50 percent greater. This is due, of course, toc the great-
er suppori given by A when it is in tension.

An Airplane Jury Strut System
Example IV.- The structure consisting of the spar, 1lift

strut, and jury strut is shown in figure 8 1oaded for
the inverted £flighs condition.

Given data:

Item _ _ Spar ) : - Lift strut
iy ' 62,200 (due to oveihang) o

Ug 0 (pin joint) 0

w ' -12.92 _ 0

L 168 inches’ 177 inches
a . 56 inches 59 incﬁes )
= (L-a) 112 inches 118 inches

I 152 . St "_::f“
P +7830 pounds ~8250 pounds
E 1.3 X 10° (spruce) 30 x 10° (gﬁegil;

Jd = EI/P 159 7


http://www.abbottaerospace.com/technical-library

30 ¥.4,C.A, Technical Note No. 529

Given data (continmned):

Item B ~ Bnar- . TiLift strut
L/ 1.057 S ? ”
a/3 S izs2) _ )

sinh a/j _ .;5é3

cosh a/ 1.0626 : .

sinh L/} = . 1.B653

cosh L/ T 1.81286

tank L/j © 7., 7845

My 1is the end moment due to the cantilever overhang.

The axial loads are computed in the ordinary wanner, i.e.,
ugsing the given data for sids loading, :

A gtrut esize must be selected which, first, will al-
low the system to remain elastically stabdle, and second,
which will not cause a supporting load on the wing spar
that 1s large enough to stress it berond the modulus of
ruptire.

The procedure s much the same as in the previous ex-
amples,- tut a slight approximation and a correction are
necessary because of the angulaerity between the Jury strut
and the Lift strut.

It is guite obvious that as the force in the Jury
strut of figure 8 is not normal to the 1ift strut, there is
an axial cowponent imposed on the lower bay cf the sgtrut,
As the gurporting forece will be gulte gmall in proportion
to the totel axial load in the 1ift strut, the above axial
component may be noglected with no very great error.

As noted above, a correction must also be made to com-—
peunsate for tine anguvlarity of deflection and supporting
force of the wing spar to the 1lift strut; this correction
will Ve made on the spring constant of the strut. An ex~
aggerated view of the system when deflected is given in
figure 9. 1In thig figures ab and a'd' represent the
Jury strut in the undeflected and deflected positions, ro-
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spectively. Points & and b are assumed to deflect in
8@irections normal to the members when they are in the un~
deflected positions. If aa' is assumed to equal Dbbd!'?,
the deflection of the 1lift strut (Dbb!') equals the deflec~
tion of .the spar divided by cos o (aa!/cos a). The above
assumption 1§ made on the basis that a'!'Dd! equals a'd'?,
whtch is obviously untrue. However, the error involved is
very small for the small deflections allowable in ordinary
structures. Thus, if (ab) = 18 inches, bdbb' = 2 inches,
and sin a = 1/3, b!'®'' = 2 sin @ = 0.67 inches. Thus,
a'd' - a'p!! = 0.67/(2Xx18) = 0.0125 inch which, in com-
parison with 2 inches, may be neglected. As the deflsc-
tion ©b' would be much less than 2 ianches in practice,
the assunption that a!d! = aldb'! 1isg justified.

It is also apparent {fig. 9) that the supporting force
normal to the 1ift strut (W) opposes a force equal to the

load on the jury strut (W) times cos &, that is, W

s
(strut) = -~ Wy (spar) X cos a. Thus, from the above,
8y
v (spar) = 85 (strut) (20)
nd Wy ( ) = L (strut) (21)
a iy (spar) = Sos o ‘stru
and dividing (21) by (20)
(§), (oper) = =(5), (avrae)
ar ra
5 P (cos cx) s
or ky (spar) = kg (strut)/cosa o - (22)

Baving the necessary corrections for the special
case in which the strut and supporting beam are not paral-
lel, we may now proceed with the calculations in the con-
‘'ventional manner, using equation (9).

The initial deflection of the spar &y, can be com—
puted by the method outlined in Section IV of the Appendix.

§ = ~ f (o - M) (23)

Since we have uniformly distributed side load, when =x = a
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. a w a L w 82
L‘lo. = M]_ +- ( Mz - M: ) i‘ - 3 + B)
M, - (M, + 2 h (L/3) + wji®
y = Vs (M, + w32) cosh (L/J) 3 am ®
sinh (L/J) - J

+ (M, + wj®) cosh % - wj®

Substituting the given data in thé ébove expressions, we
obtain:

- 1199

i

M

Mo = = 949

Mo - M = +250°
~250 ~250 3
= = MW em ° i
8 P 5830 0.0320 inch

The spring constant of the spar is obtained from eguatlon

(4)
1 1 /a2 b, j sink® (a/3)

a a
X .1 h 2 cosh _>
k; - F T fanh (T/3) J einh 3 cosh 3

Substituting the given data gives ky = +2800

In order to facilitate the selection of the best sizo
of 1lift strut for this structure, a curve (fig. 10) of
kg ve. J was drawn as in example I. The calculations
for figure 10 are shown in table II of $ection V of the
Appendix. This curve shows that the spring constant of
the strut changes very rapidly from the critical point to
values of Jj 1in the neighborhood of 33. This indicates
that the best strut size 1s one having a value of J near
the sharp break in the curve (about J equels 33). It 1is
guite apparent that reductions of strut size below this
region J = 33) are accompanied by a very high rate of
change of kg which, of course, causes the supporting
force W of egquation (9) to increase very rapidly. On
the other hand, if a larger size strut is chosen (with a
larger value of j), very little is gained in reduction of
supporting force W TDbecause of the small rate of change
of spring constant above J = 33.

7
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Accordingly, the wvalue of k in figure 10 at

S

33 is found to be -380. Applylng the correction derived

above in equation (2): Since _
- 56 _.
cos O = 59 =-0.95

- 38
corrected kg = _=380 = = 421

(0.95)

Calculation of W, from equation (9)

33

J' =

We = - 0.0320 x 5299.X 241
where - 0.0320 = §4
2800 = kyp
~421 = 1k,
whence
W = - 15.9 pounds supporting load on spar (down).

Since the value of J for the strut is 33

s - _ :2 B
Jj = EL/P I =3 7
2
1 = (830 X 8280 _ 5 2995
30 X 10°
For comparison, a strut having a valus of j = 32

tried. From figure 10, kg = -~ 520 at J = 32.
ed . )

-52
k, = —220_ = - 576
(0.95)
2800 X 576
W = - 0.0320 x 2390 X 576 _ _ 53 .2 pounds
280C - 576 posa
1 = j%p/p = (82)° x 8250

30 X 10 .

Y
3

will be
Correct-
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Thus we see that a 6-percent reduction of I causes
a 34-percent increase in W. - Lo

It is interesting to make .a ccﬁpapison of the size of
tube needed when the strut is supported and unsupported.
The size of an unsupported tube is:

L/J = ™ for unsupported strut
and L = 177 inches
or J = 177/m = 56.3
2 .
I ='56.3 X _8250 = 0.872

30 X 10°

The nearest commercial size of the above supported tube
having a value of I = 0.282 ‘would ‘be 2-1/4 by 0.083
inches and for a length of 177 inches would weigh 28.3
pounds. 'The size of the unsupported tube having am I of
0.872 would be 3-1/4 by 0,120 inéhes and would weigh 59
pounds, or twice as much as the other. It is gquite evi-
dent that the reduction in weight due to the Jury-strut
system is qguite worth while. O0f course, the weight of the
Jury strut should be added, in the case of the supported
strut, but as the above calculations show, this member
carries such a small load that it will be a relatively
samall tube. '

In ordor to select. the best point to connect the Jury
strut, some idea must be had of the deflection curve of
the spar due to external loads, for it is obvious that if
the jury strut happens to be connected to the point of
zero deflection, the supporting force is zero. It has
been mentioned before, however, that this could only be
true for one particular loading .as the point of zero de-
flectlion moves as a function of the axial load in the
spar. Nevertheless, this movement i1s relatively small and
a coanection in the vicinity of the zero-deflectlon point
is the most logical place to make a joint. Accordingly, a
deflection curve of the spar due to the external loads in
example IV has been prepared (fig. 11). This curve sghows
that the jury strut in the above example was placed close
to the point of zero deflection. Due to ' the lack of knowl-
edge at the pregent time of the actuwal wing loading which
occurs, 1t is possible that the exzternal deflection at the
Jury-strut counection is much greater than the aseumed
loading predicts. Some calculation gshould accordingly be
made to determine just how serious and how large the sup-
porting force might be under some extreme condition. TFor-
mula (9) shows, however, that no extremely rapid change
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may take place as W changes only in direct proportion
to the initial deflection §y. For an actual numerical
calculation, suppose the deflection at the jury-strut con-
nection due to.some very unusual loading should egual the
maximum deflection shown by the curve. This appears to be
as unusual a condition as might be encountered because,

under ordinary loads, the deflection of the above polint ig’

very small,

From the curve, we see that the maximum external de-
flection is about 0.15 inch. Taking the same values used
above in the calculation of W for a strut having a value
of § = 32:

W= - 0.15 x 2800 X 576
2800 - 576

= = 109 pounds

Thus, for an extreme case, the supporting load is only 109
pounds, which does not appear to be excéssive. A check
should be made, of course, of the bending moments occu¥-

ring due to the 109 pounds concentrated load added to the
external loading.

The avove calculations deal with support in one plane
only. 1In most dosigns of today, the 1lift strut has a
streamline section so that no support is necessary in the
wind direction. However, if a round tudbe is to be used,
some means of side support must be made in another plane
besides that one calculated in example IV. This is prob-
ably most easily accomplished as shown in figure 12. As
2 and b would both have approximately the same deflec-
tion under a given loading condition, point ¢ will have
very -1ittle horizontal deflection. The above ‘agsumptions
indicate that (ca) will carry very little load. If the
designer feels that a more precise calculation should be
made, the method used in example IV may be used if some
corrections are added to take care of the angularifty’ of
the members of figure 12.
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- PART II
EXFERIMENTAL INVESTIGATION OF FORMULAS

By Reild 3ogert
I. APPARATUS AND TESTS

The tests conducted to check the validity of the for-
mulas derived in the first part of this paper were carried
out on an Olsen 20,000-pound, hand-operated, {esting ma-
chine located in the Materials Laboratory at Stanford Uni-
verslty. The apparatus regquired for the tests is shown in
the photographs of figures 13, 14, and 15, and in the de-
tailed drawings of figures 16a to 16e and, except where
otherwise noted, wag constructed from cold-rolled steel-
bar stock. The principal parts of this apparatms are (I)
an upper loading bar, (II) a lower loading bar, (III) a
tie rod between the midspan points of the beam and girut,
(IV) a pulley system for applying side load, and (V) a
screw wicrometer for measuring deflections.

The upper loading bar had five 1l20-degree notches
milled in the top surface to take a 90-degree hardened
steel knife-edge mounted on the head of the testing ma~-
chine, On the bottom surface of the upper loading bar and
the top surface of the lower loading bar there were corre-
sponding pairs of 90 ~degree notcheg, five incheg apart, {o
take test members inm compression. At corresponding ends
of the upper and lower ‘loadingzg tars a. slot was milled to
take fittings for the tension tes?t menbers (figs. 1l6a,b,e)

The tie rod is shown in detall in figure 16c. This
rod was required to prevent relative lateral movement of
the midspan points of the beam and strut and not to inter-
fere with the bending 4in the beam and strut. It was con-
structed of two side ploces separated by four blocks, lon-
gitudinally adjustable to take different sized test mem-
bers, and held in position by four machine bolts passling
through slots in the side piecesgs, The whole assemdly,
supported by rollers resting on a gtandard fitted into
the lower loading bar, wags free to move laterally.

Horlzontal side load was applied to the midspan
point of the test beam through a length of piano wire, at-
tached to the tie rod and passing over a ball-bearing
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rulley, to which was fastened a weight pan-loaded with shot
bags. The pulley was supported on an arm extending from
the lower loading bar. ' o

The screw micrometer was a 1/4-inch steel screw
threaded through a micarta bdlock. It was mounted on a bar
pivoted at the lower loading bvar and slotted at the upper
so that vertical movement of the upper loading bar was un-
imneded (fig. 164). The scale of the micrometer was cali-
brated to 0.025 inch and a dial to 0.001 inch. Gontact of
the micrometer screw with a bolthead mounted on the tie rod
closed an electrical circuit containing a small flashlight
buld and battery. -

Test members were made up from solid, cold-rolled
steel-bar stock.

Compression members were 1/2 inch in width and 1/4,
3/8, or 1/2 inech in thickness. All were 20 inches long
and were ground to 60-degree knlfe-edge ends.,

The tension member was 1 inch in width and 1/4 inch
jn thickness. Special end fittings were required (fig.
16e) and the length between supports was 22 inches.

Values of BI in 1b. in.® were determined for all
test members from bending tests. The members were simply
supported on knife-edges and deflection measurements made
for side load applied at midspan. The experimentally de~
termined values of EI were as follows.*

Tost Members

¥o. Size Type EI 1b.in.?
1 1/2 by 1/4 inch compression 19,000
2 1/2 by 1/4 inch " 19,000
3 1/2 by 3/8 inch L 67,000
4 .. 1/2 by 3/8 inch u 87,000
5 1/2 by 1/2 inch oo 156.000
6 - 1 by 1/4 inch tension 39, 500

*The bending test data and calculations for EI were given
in Bogert's thesis, but are omitted from this report to
conserve space, Ed.
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The sget-up for tests with tho beam in compression is
shovn in the photograph of-figure 15. The test members
were placed at A and B (figs. 15a, 16b) and the external
load at variousg positionsg between A and 3B,

The set~up for tests with the beam in tension is shown
in the photograph of figure 14 The strut was placed at B
and the beam at ¢ (figs. l6a, 16b) The external load wasg
placed at various positions outside of 3B

Deflection measurenents were made at the midspan
points on each of two sizes of compression members tested
as struts when supported at the midspan point by each of
three sizes of compression members and the tension member

as beams, For . sach combination of test members, the posinm
tlon of the external load on the loading bar was varied,
thereby varying the proportions of loads in the beam and
gstrub, and for .éach combdination of members and position of
external load, the value of the side load was variled,

The test program was as follows: (Positions of mem-
bers and load as shown . .in fig. 1l6a.)

Schedule of Tests .
Tegt - . Meémber at Total load Side loads
' S acting at in pounds
, A B ¢
A~ 1 #5 #3 4 0 - 15 - B30
- 2 5 3 3 0 - 15 - 30
-3 5 3 2 0 - 15 - 30 '
B ~ 1 b 1 4 0 - 10 -~ 30
- 2 5 1 3 0 - 10 -~ 30
- 3 5 1 2 0 - 10 - 30
c -~ 1 4 3 4 ¢ - 10 -~ 20
- 2 4 3 3 0 - 10 - 20
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Schedule of Tests (Cont,.)

Test Mewmber at Total load . Side loads
acting at in pounds
A B c
D - 1 5 . 1 4 0 - B - 15
- 2 3 1 3 0 - 5~ 15
- 3 3 1 2 0 - 5 - 15
E -1 2 1 4 0 - 5 - 10
- 2 2 1 3 6 - 5 - 10
F - 1 4 6 5 0 - 15 - 30
- 2 4 6 3 0 - 15 - 30
- 3 4 6 1 0 - 15 - 30
G -1 1 6 5 0 - 10 - 15
-2 1 8 3 0 - 10 - 15
- 3 1 6 1 0 - 10 - 15

In making the tests, the test members were first set
up in the apparatus, in a vertical position, and Just suf-
ficient total load applied to hold them in place. The itie-
rod blocks were adjusted so that the loading edges were in
contact with the test members, and the clamping nuts tight-
ened. Total load was then increased and the deflection of
the strut with no side load measured. Such deflections
were due to initial eccentricity in the test members and,
as it was desirabls %o eliminate the effect of this eccen~
tricity as much as possible, readjustments of the tie-rod
blocks were made until the deflections obtained with no side
load were the minimum possible with the test apparatus. '
Data for deflection and total load were then recorded for
the condition of no side load and incremem.ts of the total
load from the minimum to e maximum just under the failure
load. Similar runs were made for the beam subjected to
constant side loads. In every case initial and final de-

flection readings were taken for the minimum total load
with and without the side load. “
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II. DISCUSSION

Scope of Tests

The formulas of Part I were developed for the eanaly-
sis of a structure consisting of a pin-ended strut sup-
ported at any point, through a tle rod perpendicular to
the axis of the strut, by a parallel beam axially losaded
and subdbjected to side loads. Application of the formulas
to an airplane jury-strut system, in which the strut and
beam are not parallel, reguired the usge of correction fac~
tors for the relative angularity of the members. In these
tests, however, a set-up was used similar to the condi-
tions for which the basic formulas were derived. Due to
limitetions in time, it was possible to investigate dut
one position for the tie rod and one type of side load on
the beam. The position chosen for the tests was the mid-
span point on the strut and beam, for at this polnt it is
obvious that the deflections obtained would be greatest,
and the relative effect on the deflections of inaccuracies
in the set-up would be—least., The spring constants of the
beam and strut, however, depend upon their geometrical di-
menslons and the type and value of the axial loads. The
spring constant, then, for a given strut, varies with a
change in position of the tie rod when the axial load is
held constant, and varies with the axial load when the po-
sition of the tie rod is held constmmt. In the tests, the
effect of a change in the value of the spring constant was
investigated by varying the axial load. The agrocement be-
tween the theoretical and experimental results, however,
indicated that the change in spring constent due to axial
load was correctly accounted for by the formulas. It is
reasonable to conciude, therefore, that the formulas would
also be correct for a variation in spring constant due to
change in the position of the tie rod.

The lateral loading applied to the beam in the tests
consisted of concentrated loads applied a2t the midspen,
or gupporting point, on the beam., The formulas, however,
show that stability of the strut and beam system 1s unaf-
fected by the side load, although the position of equilib-
rium of the system 1s dspendent upon the deflection of the
beam at the supporting point due to the side loads. In
each of the test runs the side load was kept cometant:
Since the deflection of the beam far a constant side load
i1s a function of the axial load, the variation in the ini-
tial deflectlon of the beam covered a wide range. If the
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stability of the system were dependent upon some function
of the initial deflection, the effect would then be appar-
ent in a comparison of the theoretical and experimental re~
sults. As no such general effect is evident from the
curves of figures 17 %to 26, it can be concTuded that the
stability of the system is independent of the initial de-
flection and therefore of the type of side load. It seems,
therefore, that the present tests are sufficient proof of
the validity of the formulas for any conditions.

Apparatus

4s the apparatus required for the making of these
tests was, of necessity, somewhat complicated, some comment
on the difficulties involved in its development and opera-~
tion seems advisable.

4xial load was applied simultaneously to the two test
members through an upper and lower loading bar in which pin-
end conditions for the test members were G6btained by using
knife-edge loading points. The apparatus and test members
were constructed from cold-rolled steel and no attempt was
made to harden the knife-edges. Only on test member 4,
which was subjected to the greatest loads, howeveT, was any
mutilation of the knife-edges evident. In preliminary’
tests with beams in temsion, the tension member was loaded
through circular pins. The deflections obtained, however,
Were considerably smaller than the results of theoretical
calculations indicated. It was thought that this might be
due to friction in the loading pins, so the pins were
ground down to provide a simple knife-edge support (fig.
16e). Although this did not completely eliminate the
Presence of friction, the agreemént between the theoreti-
cal and experimental deflections was greatly improved.
The effect of the alteration is shown in figure 25, -

Some difficulty was encountered in satisfactorily ad-
Justing the tie rod to reduce the effect of initial bow
and knife-edge eccentricities, especially in the Targer
test members. This difficulty was due primarily to the
design of the tie rod, the adjustment of the loading
blocks of which was made by sliding clamping bolts in
slots, A4 suggested improvement, but one which limitations
of time made impossible to take advantage of for these~
tests, would be an arrangement for adjusbting thEe blocks'
longitudinally by means of screws. ' -
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In & preliminary study of the apparatus requlired for
the tests, it was thought that the deflections could be
measured on a calibrated dial gcale, the poeinter of which
was fastened to a small pin rotated by the movement of a
wire attzched to the tie rod, wrapped once around the.pin,
and loaded with the side load weights, TFor the desirsed
magnification of the deflections, however, it was neces-
sary to use a pin of such small radius that wire wes not
sufficiently flexible to wrap around it, A strong cord
wasg used, but due to friction in the pln bearings and
elasticity of the cord, the method was entirely unsatis-
factory. The apparatus was then altered and side load ap-
plied directly through a wire, passing over a large-diame-
ter pulley carried on ball Dbearings, as shown in figures
14 and 15. Deflection was measured by means of the screw
micrometer, used in the final tests, but mounted on a bar
fastened only to tihe lower loadling bar. It was found, how-
ever, that due to uneven action of the loading screws in
the testing machine used, one side of the head of the ma~-
chine was pulled down before the other, thereby giving it
a 8light lateral movement. As this motion was transmitted
to the upper ends of the test members the deflectlion read-
ings were affected. Several other testing machlnes were
tried but the same motion of the hepd was present in =
greater or less degree. in all. The deleterious effect of
this movement on the deflection readings was finally elim-
inated by mounting the micrometer on a bar fastened by sin-
‘gle bolts to both loading bars. In order that the sup~-
portling bar should take no vertical load from the upper
loading bar, the slot, shown in figure 164 was provided
in the upper end of the supporting bar. This method pro-
vided a parallelogram motion and maintained a constant
distance between the micrometer support and the noermal un-
loaded position of-the strut.

Precigion of Dimensional Quantities. and Measurements

The dimensional guantities and measurements for the
apparatus and tests were made as accurate as was practi-
cable with the set-up.

Dimensions of the test apparatus and test members
were made to an allowable variation of £0.025 inch. The
maximum possible error in the value of the &axial load in
the beam or strut would then be abdut 2 percent and a max~
imum error in the initial deflection of the beam due to
the length of the strut would be about 1/3 of 1 percent.

4 valid gquantitative estimate of the probable error due to
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inconsistencies of the material, initial bend, or slight
eccentricity of the knife-edge ends of the test members
is impossibdble.

The value of ®I in 1b.in.® used for each of the
test members in the theoretical calculations, is the aver-
age of a number of experimentally determined values as
found from bending tests. The maximum variation of EI
determined from these tests was about 3 percent. This
would indicate a possible error in the 'initial defleetion
of the beam of about 5 percent.

Side load in the tests was applied by welghts, in the
form of canvas bags filled with shot, placed in a light

sling. The sling weighed approximately one quarter pound T

but this weight was neglected in the computations under
the assumption that it would be balanced by frietion in
the pulley assembly and in the rollers supporting the tie
rod, An error im this assumption would affect the deflec~
tions directly im proportion to the ratio of the error to'

the side load. The canvas bags were 5, 10, and 25 pounds

in weight and their values were checked on a balance scale
to within an ouncs. . : -

Values of the total load were read from the balance
arm of the testing machine to the nearer five pounds, and
corrected for a tare weight of 80 pounds. Small errors in
this quantity would have a negligible effect when plotted
to the scales used for the curves. Readings of deflection
were made to 0,001 inch and estimated to 0.0001 inch., It
was assumed that movement of the head of the testing ma-
chine was small enough to neglect the effect of rotation
of the axis of the screw micrometer and that play in the
pins holding the micrometer support was negligible.

tal results in figures 17 to 26.-are the djfferences between
the deflection readings for the corresponding ftotal load
and side load, and the deflection reading for. the minimun
total load and no side load. The validity of these de-
flection measurements therefore depends upon the assump-
tion of & negligible deflection of the system for the con-
dition of the minimum total load and no side load. An ex—
amination of the curves of deflection for no side load in
figures 17 to 26 will show that the rate of increase of’
deflection is small for low values of the total 1oad. The
assumption is therefore justified.
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Experimental Curves

The experimental and theoretical data are shown in
figures 17 to 26 in the form of curves of deflection as a
function of total load. The agreement, in general, be-
tween the curves is sufficiently within the possible ex-—
perimental error to Jjustify ‘the validity of the formulas.

In the theorstical formulas it is assumed that ideal
conditions of loading and material of the strut and beam -
are obtained. 1In the actual case this is impossible of
realization, as there is always some slight heterogeneity
of the material or small eccentricity in loading which
will affect the action of the strut or beam. In the pres-
ent tests it was found impossible to eliminate the deflec-
tlons of the strut under the condition of no side load.
These deflections, howsver, were reduced as much as possi-
Ple and were in the direction in which the side loads were
applied for all the tests. From a consideration of the
curves 1t can be seen that, in general, initial differences
in the experimental and theoretical curves are increased as
the load increases until a value of the load near the max-
imom 1s reached. At loads approaching the maximum the
curves tend to more nearly agree. The major excepbtlon to
this is in test G, in which the beam is in tension. Fric-
tion in the loading pin is undoubtedly the cause of the
high maximum loads, 4in comparison to the ideal condition,
obtained,

Attention is called to the fact that the scales of
deflection for all the tests are similar although the load
scales vary for different combinations of test members.

Practical Application of Results

A study of the experimental curves of figures 17 to
26 inclusive shows that, in general, the effect of initial
eccentricities becomes less important as the L/p ratio of
the strut and the initial deflection due to side load on
the beam increase. Bending moments on the strut due to
small eccentricities, however, are relatively unimportant
when compared with the moments induced by the deflectilon
of the system., For minimum bend ing moments the deflec~-
tion of the supported point due to side loads on the beam
should be as small as possible. The jury strut, in an air-
pPlane jury-strut system, therefore, should be connected t0&
the wing spar at or near the point of gero deflection for
‘the design load. This point will usually be near the
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point of inflection. The point of zero deflection, how-
ever, will move as the load on the spar is reduced and the
initial deflection at the supporting point will then be
increased, This increase in initial deflection, in spite
of a reduction of the external loads may cause the criti-
cal bending moments on the strut to be those for a loading
legs than the design load. The designer should take this
possiblility into account unless further study of the gen-~
eral problem should prove this to be unnecessary.

A curve has been included in figure 25 to show the
effect of friction in pin bearings on the deflection char-
acteristics of a jury-strut system. Friction is evidently
desirable from a consideration of structure rigidity,
since it materially reduces the deflections by inducing
restraining end moments in the strut and spar. Such re-
straining moments in pin bearings, however, are small, and
should be neglected in practical design.

In test B3, in which were tested the smaller strut
and the largest beam, bending occurred in the unsupported
semispans of the strut before the midspan point of the
strut had reached a maximum deflection. The strut assumed
an S shape rather than the usual simple bow. This bend-
ing in the individual spans was first noticeadle at an ax-
ial load in the strut of about 1,750 pounds, which gives,
for the whole strut, a value of IL/j = 6.0 and, for the
semispans a value of L/j = 3.0. 1In no other test was
there any apparent S T©vending of this type in the unsup-
ported spans. The maximum load, however, on the smaller
strut (No. 1) was obtained in test Gl for a total load
of 910 pounds. In this test the load in the strut was
1,910 pounds ard L/j of the semispan was 3.17., The nmax-
imum load on the larger strut (No. 4) was 3,820 pounds in
test Fl corresponding to a value of L/J of 2.45 for
the semisgpan. It will bPe noticed that, while bending in
the unsupported spans occurred in test B3 at a value of
L/j = 3.0, there was no noticeable bending in the unsup-~
ported spans in test Gl for a value of L/j = 3.17, or
slightly more than 1. The curves show, however, that, in
test Gl, the maximum load was obtained at a deflection
approximately five times that of test B3. Although the
results of these tests are not, in any way, éonclusive evi-
dence on this point, they would indicate that the restraint
coefficient ¢, for the unsupported spans, increases as
the deflection at the point of support of the strut in-
creases. It may be remarked also that the midspan point of
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support, used in these tests, would be expected to be

least effective in increasing the restraint cosfficients
for the individual spans. If the strut were supported at
the midspan point by a rigid support, the individual spans
of the strut could act as simple pin-ended struts, the
whole strut beading in an § shape. If the point of sup-—
port were shifted to either side of the midspan point, how-
ever, the shorter unsupported span would provide an end re-
straint to-the longer span., As the airplane Jury strut is
usually located between the third and mid points of t{he
strut, an investigation of the effective restraint coeffi-
cients when an elastic support is used at locations other
than midspan would be highly desirabdle,

An interesting observation, from the results of these
tests, is that for the type of set-up used, and if the
beam and strut ars the same length, the maximum load car-
ried by the combination is approximately the same regard-
less of the proportion of load in the beam snd strut., The
maximum total load is reduced only slightly as the propor-
tion of load in the strut is increased.

III, RESULTS

The results of the tests described in this paper are
shown graphically in the curves of figures 17 to 26, in-
clusive.,* Theoretical curves, calculated from the formu-
las for the corresponding test conditions, are included
as a basls for comparison. The values of total load for
the experimental curves have been corrected for a tars '
welght of 80 pounds, and the deflections given are equal
Yo the difference between the defléction reading for the
corresponding total load and side load and the deflection
reading for the minimum total load and no side lcad.

*These figures cover only about half of the tests madse,
but they incinde those in which the divergences between
the experimental and theoretical curves are a maXimum as
well as those in which they are a minimum. As these ten
sets of curves are a fair sample, including both the best
and the poorest experimental resilts, the other nine sets
have been omitted to conserve space. Ed.
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SEQTION I
Momenclature

Tfhe derivations of formulas in the following sections
are carried out parallel to the derivations of the Newell
equations in Chapter XI of reference 2. TFormula numbers
preceded by the letter ¥ denote references to the egua-
tioms in Lhat Dbook. The nomenclature used is also, sa far
as possible, the same as that employed Dby Newell. The mors
common symbols and their meanings are ags follows:

W, intensity of distributed iTateral load in 1b. per
in.,, positive when acting upward.

s

wde of concentrated lateral load in 1b..,
ve when acting upward.

He cb

4

rt
(Y

, bending moment in in. 1b., positive when it tends
to cause compression in the upper fibers of the
team. - - =

[=n

slope of elastic curve of the beam in radians,
positive when the tangent rises from left %o
right. : ST

N

8§, deflection in in., positive when the deflected po-
sition of a point is above the original position.

P, axial load, 1D.

T, wmodulus of elasticity of the material, 1lb. per
SQe 1ne

I, moment of inertia of the section in ind

I, length of span between supports 1in inches.

=, distance to & section from the lefd end of the
span in which 1t is located, in inches.

istance from the 1eft end of the span to the
oint of application of a concentrated side load.
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CTION I1I
Derivation of the Extended Three-Moment Equation

with Deflection of Supports

The first step is the derivation of formulas for a
single span beam having a eniformly distributed side load,
axial compression, and deflected supports. It must be
noted that the axial load P is not in line with the sup-
port points but is always parallel to the base line from

which & is measured., (See fig. 27.)

Taking moments about support (2), we have for Ry

. wl,? B, - M P (8, - 82)
2, = 1° g o D 291 T %=/ (4.1)
and the moment at any point 1is
WxR wl Mo~M P(8.-82)
M=w, 4o TRy MpoMy | P(S, ) x = P (ye8y) (4.2

This expression is the same as that obtained in reference
2 (p. 188), equation (¥ 11:1) except for the addition of
the deflection terms. ‘

On differentiating twice with respect to x, the de-~
Tlection terms vanish and the differential equation ob-~
tained is the same as that given on page 188 of referencs
2 for the case without deflection of supports. As the
boundary conditions are the same for the two cases, the
°*pressions for M, equation (N 11:2), including even the
constantsg of integration, are alsoc identical for the two
cases. The same would be true for any other condition of
side load, so we find the interesting fact that the ex—
pression for moment in a span of continuous beam in termg
of the end moments and side loads on the span 1s independ-
ent of any deflection of the supports. This does not mean
that the moment in the span is unaffected by such deflec~
tions, since the end moments are definitely influenced by
1t as will be seen below, but only that the formula for
intermediate moments in terms of end moments is unchanged,

The effect of support deflection reappears when we
-obtain an expression for deflection at any point in the
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span by substituting the value of K from eguation (N 11:2)
in equation (4.2) and solving for y. This gives an ex-—
pression identical to (¥ 11:8) except for the addition of
the deflection terms

+ P 8 - P (8 - &)

N

[

e of the tangent to the elastlic curve at any

The slop 7
point is obtained by differentiating the deflection equa-
tion. This gives an esquation identical to (¥ 11:7) except
for the addition of the deflection term )

1P (8, - 850N
) ( I /

Three-Moment Zguation

The three-moment eguation is obtained in exactly the
¢ way as described in article 11:3 of reference 2 on
e 190. The final equation is exactly the same as egua-
n (7 11:11) except for the addition of the deflection

ms. R

sam
pag
tio
ter
6 (8, - 8,) E 6 (85 - 83) E

I, Tz

It should be noted that after Uy has been obtained
=

for a specific case by means of the three-moment equation,

a deflection term must be added in the calculation of the
reactions of the beam as indicated in equation (&4.1). Thus,
the deflection term P (§, - 85)/L; must be included in

the expression for =R, and -P (§; - 8z) Li in the &x-
pression for Sz« 7

SECTION III
Derivation of Spring Constant for a 3ean

Subjected to Axial Tension

In order to determine the spring constant for a point
on 2 beam subjected toc axial tension, it is necessary to
develop the formulas for the deflection of a beam of this
type due to a single concentrated side locad W. Such a

L4
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beam and the forces acting onm it are shown in figure 28,
! 0 - .
The bending moment at any poilat in the span will be

(A.3)

where Vo is the bending moment due %to the sffect of *he
end moments, ¥, and ¥,, and the transverse load W, act-
ing alone, while P Y is the secondary moment due to the
axial load and the deflection. In this case, with the on-
ly side load a concentrated one, the variable x does not
appear in M, +to any power but the first, On differen-
tiating twice with respect to X, therefore, the ternm ¥q
disappears and the expression for moment becomes

SR A

T T

The solutions of thisg differential enquation are

<

€, sinh £ 4+ ¢, cosn when x = g

Caz sinh % + 04 cosh ? when = = g (A.5)

Although the general form of the equation for moment
is the same for the two seéctions into which the beam ig . di-
vided by the supporting load, the presence of that loaad
makes it necessary to use two equations with geparats con-
stants of integration for the two sections of the beam.

Three of the constants of invtegration can be cvaluat-
ed from the boundary conditions that

when x o= My

X o= Ma is the same, regardless
of which egquation is usged.

For the fourth constant of integration, the gimplest
method of evaluation is to differcntiste equations (A.4)
and (A,5) with respect to =x, thus obtaining expressions
for the shear on sections normal %to the elastic curve of
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the beam. When =x = a, these shear expresslons should
_give values which differ by the amount of the concentrated
load W, -

Proceeding along these lines, We obtain

Cy = ———/ ~ - - ¥ j cosh —
J

sinh % sanh =

¥, M, - W J sinh % a

Cg - Ell

My - (4, — ¥ J sinh % cosh %

Gez

sinh %
J

Cp = ¥, - ¥ J sinh ?

For purposes of computing deflections, squation (A.3) may
be written )

l..l

g = = (ﬁo - ) (23)

)

?ubs?ituting the values of M from equatioms (4.4) and
A.D

=\

I 1 . x ’ . . .
, ¥y = - 3 (Mo—-cl sinh 3 - C; cosh 3; when X= a (A.8)
I N s E N -,
v = = = (Mo-Cz sinh T = Cg cosh T ! when x=2a (A7)
r J d 7
Since, in the case in which we are interested, the
beam is assumed pin-ended, My = Mz =
Mg = -% D x/L when x=a and Mo = -% a(l-x)/L when x=a
Then =x = a at the supporting point, the deflection
y =8 can Dbe obtained Dy substituting these gualities in
either equation (4.6) or (4. 7), whence

P a a s a S
S = -2 4 j sinh = (————% = h = 4.8
T j si 3 ( . cos J> ( )
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or

1 ,ad § sink¥® (a/3) . . a 2\
= <E:,+ Tanh (D737 = § simh 7 cosh =) (4)

/

SECTION IV

Deflection of a Beam Subjected to Axial Tensgion

The deflections of a beanm subjected to axial tension
and any side losd may be abtained from formula (23) above
if proper changes be made in MO and M to allow for the
difference in the type of side loading.

Then the side load is uniformly distributed over the
span the deflection can be obtained from the formula given
in reference 2 for this case. (Secs Pe 208.)

Thus
}Jf,\ - I\; -~
v o= 4 B T o, . WLE . owxP)
o =+ (M I 2 2
Do -~ D; cosh L . )
K = - “‘sinh_f+l}lcosh~—~wj"
sinh = J
J
Where D = M, 4+ w j®
Dy = My + w 3°

The formulas for this and other types of side loading
can also be obtained from formulas for the same type of
side load and axial compression by the following procedure.

ls Substitute for each trigaoméiric function the corre-
sponding hyperbolic function,

2. Reverse the sign of w 3 (bat not that of W 3)
where it appears,

s Substitute —P for 4P to indicate the effect of
changing the character of the axial load in the formula
for deflection, Applying these rules to the case of a sids
load varying uniformily from w 1b./in, at the left support
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to (w + kw) 1b./in. at the right support, we have*

e . e . X kx -2
¥ o= h =+ ¢ Lo (1 + =2
¢, sin 3 C. cosh 3 ( =) w3
Where
M, + (1 + %) w 32 - (¥, + v §7) cosh L
G = I, &
ginh =
dJ
Cz = (¥, + 7 3°)
and
—_ -_j; 1r ' . X wlx _ kwlx
6_"P[ﬂlT(£‘2—Ml> L"‘ 2 5
, 2 1 . . kx .2
+ TEZ 4 %%st 0, sinh f_—— Gz cosh 3§+ (1 + 22w )]

*Yote that % in these formulas is not a spring constant
Put the ratio between the side loads st the ends of the

spalls
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SECTION V

Computation of Spriang Constants for Tumerical Exam Wes
5o T

TABLE I: Calculations for k., of Figure 6%
—j ‘[2 b B4 0 Bz a1 Bt B 6 ke
L 1|

4.54511.10 2.20&1.0912 1.6124F 21.580 115901 ~3.293

4,.348:1,15 Z.SOE L1009 | 1.,7325] 22.829 ! 1.,3407| ~-6,100

4,167 1.25 2 40:1 1114 | 1.88564| 24.402 1.5607 | -8,625

4.00011‘25 2550E1 1225 | 2.0864 26,476 1,8385|~10.,950

5-846 1430 2.60%1.1345 2,35818) 29,290 2.:2000 |{~13.,090C

B3.571L1 1«40 | 2, 80; 11,1610 3.3963F 39.768 3.4853 |~17,070
. Be3331 LeB0 3.00{1.1915 7eB4B86] 79443 7.9443 |=20,980
. 2.94111,7%0 3.4021.2673{—5.0787 —-24.451 ~3,1404 |~31. 0540

® 7

k, is compubted from equation (18) .,
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TABLE II: Calculations for Xk, of Figure 10%®
J 3*“ ;9 By B ‘ial B, Fh, Fs © ke
31 1,093 13,808 {+1.3723{~-0,7970}{ -13,080 -0,17841-1386
32 1.84413,688] 1,3382|-1,1242 ~53.702 ~-+6870} =516
34 1.735(3.470 1;3853 -2 .3537 |=~202,082 [=~2.290 - 301
36 1.64013.278 1.2425%|~6.39431~681,231L |~8.550 -235
40 1.476%2.950 1.1839| 5.5875( 729.175 5,970 ~175
45 1.512§2.622 1,1401| 2.4387| 354,797 2.295 -119
50 1.180%2.360 1.10%72] 1.81951 280.0286 1.469 - 867
56.34 1.048%2.094 1.0819| 1.5106} 242.083 1,000 0
E
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SECTION VI

Samples of Experimental Data and Deflection Computations

Although it has seemed advisable %o omit most of the
detalled experimental data and deflection curves, it ap-
pears advisable to include samples of this part of the
work in order to show a little more clearly how the curves
of figures 17 to 26 were obtained, Tor this purpcse the
experimental data for test E~1 reductions of ‘the general
formulas for the special cases studied, and values conputed
from these formulas for the theoretical curves for tests
E~1 and 6-1 are given in this seciion of the Appendix,

Experimental Data -~ Tesgst E-1

Hoe 2 8% A Hoe 1 at B Load at 4
Pn 8 Pr 8 Pp 8
N.S.L, 20/ 0 NeS.L, 2010 X.S.L. 2010
Z40+0.0003 5 1b, 2010.0252 10 1b. 20{0.0460
550% .0001 195 ,0293 135] 0539
725 L0044 295] ,0332 300| ,0660
855 ,009%7 415] ,0402 420 ,0809
20! ~-,00082 540 .0521 535 ,0998
7051 L0781 660! 1465
805 .1205 735 ,1718
870! .1849 20| .0476
20| L0261 WeS.Te 20{~.0002
NeS.L. 201 .0013

For locations of loads and svecimens, sce figurs 16,

Pp, total load indicated by testing machine corrected for
tare weight of 80 pounds.

(]

deflection of mid-point of specimens measured from po-
sition with minimum total load and no side load.

N.5.5L. indicates the condition of minimum total load and
no inside load, '
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Reduction of General Formulas of Part I for the
Special Cases Investigated Experimentally
Reduction of equation (3) for the spring constant of
a strut in compression for the case where a = C.5 L

= D,

Equation (3) is

-| - « 2 A \
Lo 1 (a by d_sizm _<?Lil ~ j sin & cos 3)
ko P UL tan (L/3) J J
substituting a for Db, ’ 2a for In and A for
a/d
P a . /sin2 A . N
- 2= &g A A A
i 5+ tom i sin cos )
a sin® 4 cos 24 . N
= = + ' - A cos A
2 < sin 24 sin s /
= 2 - C =) .
=24 /sin® A (?os A sin® A) _ cin A cos Aj)
2 \ 2 sin 4 cos A
a 2 A in® A - 2 2 A
= & 4 5 (cos -~ sin cos® AN
J 2 cot A y
= & — 4
5 5 tan A
1 Jj_ sa . a2\
A oo o d 2l ogan 2) 4.6
ke 2 P Qj veR 3 ( )
Reduction of equation (4) for the spring constant of a
strut in tension for the case where a = b = OB Lo
Equation (4) is
1 1/ab, 3 sint (a/j) .. a a\
—— = = + - e sinh = cosh =+
P\ T tann (L/3) J 3 3/
Substituting a for b, 2a for L, and A forx a/j,
P _a . /sink® A cos¥ & P A\
= = = + - nh A cosh A
ko 2 J( sinh & sr ¢ /
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E _a . 3 <§1nh A (cosh 2A - 2 cogh® A)\
o) 2 2 sinh A cosh 4
= & 435 (cosh® 4 +W51nh2 A o 2 cosh? A>
2 \ 2 coth A
=2 - J _1___
bt 2 coth A
L5 a a
R <) AT
iy 55 G anh 3/ { )

C. Derivation of formula for deflection of support point
when the only external load on the beam is a concen-
trated force at the support point.,

In the case repregented by the tests, the initial de-

flectlon of the beam §,. can be obtained from the spring
constant of that member. Thus
8o = s/ky

whers S5 1is the side load in pounds
Zy, spring constant of the beam in pounds por inch.
b B 1Y P

relation in eguation (8) to deter-~

Substituting this
mine the deflection § of the comPination of beam and
strut, we have
2y Oo S

(A.8)

Numerical Values of Spring Constants

Tz

¢ values of the spring constants for specimens 1
and 2 in compression, and specimen 6 in tension, are given
bolow. The constants for svecimens 1 and 2 were conmputed
from equation (4.6), and those for gspeclmen 6 from egua-
tion (4A.7). :
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N Spring Constants for Specimens 1 and 2

Size 1/2 by 1/4 inch £I = 13,000 1lb.in.? a = 10 inches

Axial load compression

P ke P kg P Xq P X,

0 | +114.0 | 280 44.9 600 -32.3 | 1200 | -186.0

60 99.1 | 300 41,5 625 ~38.7 | 1225 | -193.2
100 90.3 | 350 29,4 660 ~-4%7.3 | 1250 | -199.5
120 85.4 | 375 22,8 700 ~-58.1 | 1260 | -202.2
140 80,3 | 400 17.1 750 ~70.3 | 1400 | =240.0
150 77.9 | 420 12.2 770 -75.0 | 1470 | -258.8
180 7042 | 440 7.1 840 ~92.6 | 1500 | =2BB.5
200 65.8 | 450 4.3 875 | -101.1 | 1680 | =-317.5
210 63.7 | 490 ~5.7 880 | ~102.9 | 1750 | -837.5
220 60.5 | 500 -7.7 500 | ~108.8 | 1875 | ~377.5
240 56.6 | 525 | ~13.6 | 1000 | =133.5 | 2100 | =445.0
250 53.4 | 560 | -22.1 | 1080 | ~147.C

Spring Constants for Specimen 6

Size 1 by 1/4 inch %1 = 39,500 1b.in,® & = 11 inches

Axial load tension

P kg ; kg P, ky P ke

i

HJ

20
40
60
70
80
100
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»

Theoretical Deflections for Tegst E~1

Bean Yo. 2 Py 0.3 Py
Strut No. 1 Py = 0.7 P
P P P k pe i Kotk Se
Sl b e =b s ; Dt A8 s = B = 10
] G O +114,0 +114.,0 +228,0 | 0.0219 | 0,0438
200 6C 140 g¢,1 803 179.4 .0278 05566
400 120 280 80 .4 A4,Q 1303 L0383 0766
500 150 350 77 « 9 29 .4 1073 « 046D . 0930
600 180 420 702 12.2 82 4 L0607 1214
700 210 £90 637 -5.7 58 .0 0863 L1726
800 240 560 58,0 —-22 « L 3445 « LA50 <2300
Theoretical Deflections for Test G-l
Beam HO. 6 P'b:'—l;lo PT(‘GenS.>
Strut No. 1 P,=2.10 Pylcomp.)
i . 3
ol Py | Ps | X x eyt Oc
=7 [s] < o] <] E£pTag g = 10 = 15
0 , 17 L i

200 A ! )3 0628
400 ;
600
700
800
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Figure 2.-Typical variation of spring constant.
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100 1b. ) ) 100 1b,
‘<___,, 8“————>§ on §<M JF:]" i< 10m >]‘ on ‘<__ ;
T T e F ’H,—K —/IT— 7 T/ - 2
t (\.\i{/ ' ;
5” - 5”
- C l Y
10 1b, — L >p— e X c 2
External
side
load for
example
2 only. "
104 > 104
—Mfﬂi}”— 77 =Ly 77Xy
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Figure B. Figure 7.
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Figure 6. k against j for strut of examples I, III.
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Figure 10. k against j for strut of example IV.
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11.-Deflection of spar in example IV. (Due to external loads only).
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Figs. 13,14,15
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