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TECHNICAL NOTE NO. 704

SOME NOTES ON THE NUMERICAL SOLUTION
OF SHEAR-LAG AND MATHEMATICALLY RELATED PROBLEMS

By Paul Kuhn
SUMMARY

The analysis of box beams with shear deformation of
the flanges can be reduced to the solutlon of a differ-
ential equation. The same equation is met in other prob~
lems of stress analysis. No analytical solutions of this
equation can be given for practical cases, and numerical
methods of evaluation must be used., Available methods
are briefly discussed. Two numerical examples show the
application of the step~by-step method of integratlon to
shear-lag problems. s

INTRODUCTION

When & box beam 1s gsudbjected to bending moments, the
stress distribution differs somwehat from that given by
the ordinary theory of bending. The reason for these dif-
ferences, denoted by the term "sghear-lag action," lies in
the fact that the cover sheet suffers appreciable shear
deformations, particularly after it buckles into diagonal-
tension fields., Under certaln simplifying assumptions
discussed in reference 1, the analysis of this problem
leads to a differential eguation of the type

dav

Sy -xPy +E =0 (1)
dx

In this eguation, =x 4is the distancse along the span,

and ¥y may denote, for instance, the bending stress in

the flange, or the shear stress in the cover. The mean-
ing of KX, and X, depends on the meaning assigned to

y. e

When 2 box beam is subjected to torsion, there will

1
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be in general a tendency of the cross sections to warp out

of their plane. At the support, this warping is more or

less completely prevented and bending stresses arise (ref-

erence 2). Under certain simplifying assumptions, the

?n?lysis of this problem also leads to an eguation of type
1 L]

The same equation is obtained in a number of other
cases. A guite well-~known case is the beam under combilned
lateral loading and axiel tension (reference 3)}.

Analytical solutlons of eguation (1) can be given
when K, and Kg; are constants or simple functions of
x (reference 3). 1In many practical problems, however,
E, and Kz vary along the span in a manner that is dif-
ficult to define by simple mathematical functions, a dif=
ficulty occurring particularly in box-beam problems. It
is therefore necessary to umge numerical methods for the
solution of given problems.

NUMERICAL METHODS OF SOLUTION

All methods to be discussed in this paper depend on
the assumption that it is permissible to divide the beam ..
into a limited number of bays (5 to 10) and that the co-
efficients K, and X, may be assumed to be constant
within each bay., This assumption, and the methods used *
for the solution of the differentiasl equation, make the
solutions inherently approximate. The state of affairs
is comparabdle with the engineering usage of applying the

; :

formula o= %E to tapered beams.

Trial-and-error method.- In reference 4, a somewhat .
unorthodox trial-and-error method was described for ob-
taining solutions of shear-lag problems. The method was
found to be very rapid; under favorable circumstances, two
cycles of the computation were sufficient to obtain an
accuracy consistent with the conditions of the problem.
The speed with which the analysis can be made, howsever,
depends critically on the skill end the experience of the
analyst. It therefore appears desirable to provide other
methods of analysis thaet are less dependent on or entire- -
ly independent of the skill of the analyst. Another dis-
advantage of the trial-and-error method 1s that it Deocomes
very cumbersome when applied to cases in which the bound- A
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ary conditions differ from those discussed in reference 4.

Fixed~point method.- A graphical method that requires
no arbitrary trial essumptions whatever has been described
by L. Kirste., 1In reference 5, the method was gplied to the
problem of bending stresses due to torsion' in reference. 6,
lt was applied to the beam~column problem.’ Reference 6 be-
ing easily available, the details of the method need not be
given here. -

The outline of the procedure is as follows. From one
end of the beam, the boundary condition given &t this snd
being utilized, a sequence of "fixed polnts" to the other
end. of the beam is constructed. When the other end has
been reached, the boundary condition given there 1s uti-
lized t0 find the first point of the desired curve, which
is then established by working back to the original start-
ing point with the aid of the curve of fixed poilnts. P

For purposes of comparison with arithmetical methods,
the drawing of the curve of fixed points may be counted
"as equivalent to one cycle of computation; the drawing of
the desired curve, as squivalent to a secord cycle, Fur-
thermore, converting the given date into a graphical fig-
ure and scaling the final curve to obtain the numerical
answers should be counted as eguivalent to ohe cycls of
computaetion, It may be said, therefore, that the graphi-
cal method is eguivalent %o a three—cycle arithmetical
metho d.

The neatness and the straightforwardness of the
fixed-point method are impressive. . It is doudbtful, how-
ever, whether 1% will be possible in some cases to achieve
the necessary accuracy by graphical means. There'arealso
practical objections to graphical methods on the grounds
of ease of checking, filing, and transmitting computations.
For such reasons, graphical computations ‘are usually em-
Ployed only when they save considerable time as compared
with arithmetical methods. It is very guestionable whether
the fixed-polint method has a very marked advantage over
the step—by-step integration method to bé next deseribed.

Step-by-step integration method.~ An orthodox step-
by~-step integration method may bde used either in semi-

" graphical or in numerical form, Only the numerical form
- will be described here because it is believed to be pref—
erable for all-sdround use.
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It is Impossible to start the final integraticn at
either end of the beam because only one boundary condition
is given at either end. It is therefore necessary to make
an arbitrary trial assumption for the unknown boundary con-
dition at one end before starting a first integration.

When thls first integration is completed, the boundary con-
dition at the far end will not have been met (except by
accident)., A second integration is therefore made, start-
ing with a different initial assumption for the unkown
boundary condition and resulting in a different error of
closure, If the errors of closure are plotted against the
initial assumptions, 1t is possible to find what initial
assumption must be made tov reduce the error of closure to
Z6T0.

The graphical form of this method was described in
reference 7 as applied to the beam-column problem. One
guite important point, however, was apparently not noted
or at least was not specifically mentioned in this paper.
The curve of error of clogure against initial assumptions
ils & straight 1line. Consequently, two trials are suffi-
cient, in principle at least, to determine the desired in-
1tial assumption and it will not bve mecessary to make more
than three cycles of computation, The third cycle will
be the final one, a fact that may be used as a chedk
against 8rrors of computations.

In the appendix, detailed examples are given which
show the application of the numerical procedure to. shear-
lag problems. The basic theory and the nomenclature is
taken from reference 1,

Rémarks on the accuracy of numerical ‘solutions.~ The
errors of numerical solutions may be divided into three
classes:

l. BErrors arising from using a small number of sig-
nificant figures.

2. Errors arising from using bays of finite length.

3. Errors érising from the agssumption that the coef-
ficients .are conastant in a bay.

Errors of the first class are important only when the cal-
culation involves small differences between large figures.
In most cases, this difficulty can be overcome by using a
calculating machine; ordinarily a slide rule is sufficient-
ly accurate.
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A different method of overcoming the difficulty is
to rearrange the computaticn so that no small differences
are involved. In the case of shear-lag problems, this
rearrangement can be accomplished by writing the egua-
tionas not for the actual stresses but for the correctilons
that must be applied ‘to the stresses given by the ordi-
nary bending theory. (See appendix.) This procedure is
probably more ratlional than the first one in several re-
SpeCtSo' P

The magnitude of the errors of the second class can
ve estimated by making comparisons with known analytical
solutions. TFor simple cases, it was found that five or
six bays often give sufficient accuracy (about 1 percent).
One rather extreme case investigated was a beam column
with & compressive load near the buckling load (L/j = 3).
In this case, the half-beam had to be divided into 10
bays. (Only the half-beam was used on account of sym-
metry.)

BErrors of the third class. cen also be appraised by
meking comparlsons with analytical solutions; they ap-
pear to be of the same order of magnitude as the errors
of the first two classges.

The conclusgsion may be drawn, then, thaet thse necessity
for making "approximate" numerical solutions of the dif-
ferential eguation (1) is not, in general, the factor
limiting the practical accuracy of the results. The fac-
tors limiting this accurascy are the simplifyling assump-
tions, physical and mathematical, that must be made to
reduce the problem to the solution of a simple differen-
tial equation.

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeromnautics,
Langley ¥ield, Va., March 31, 1939,
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APPENDIX

APPLICATION OF THE METHOD 0? STEF-BY-STEP INTEGRATION
T0O SHEEAR-LAG PROBLEMS
The differential eguations of the shear~lag theory.-

Two static equations and one elastic egquation form the
basic equations of the shear-lag theory for box beams with

flat covers (reference 1)}.

(1)

On! Ap = — —~ Tt
F by N
Opt Ap = Tt (2)
1 Ge
T! = « == (07 - 0p) (3)

Ed

The symbols used are those of reference 1. The.ﬁrime de—
Xo The x origln

notes differentlation with respect to
will be taken at the tip of the beam for all cases.

The basic egquations can be used to form the follow-

ing differential equations.

T hA

o " - K2 op + gz ¥ 0 (5)

op" - kK% o + K® ¥ (4)

- g% ¢+ g% L2

where

(7)
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For convenlence, the boundary conditions are summarized
in table I. : :

It will be noted that the equations for oy and oy
are ldentical, so that Cp and 0 can be obtained by

solving the same differential equation for éifferent
boundary conditions at the root. It will be found, how-
ever, that the stresses obtained in this menner satisfy
the equation of static equilibrium with the external mo-
ment only at the root and at such stations along the span
where the ratio AF/AL is the same as at the root. It

this ratio wvaries radically along the span, the solution
will be reliable only near the root. '

The numerical evaluatién of the eguations reguires
the computation of the second derivative. From equation
(4), for example, S

op" = x® (GF - —~—) .. (8)
hAT : '

This expression may be very small over a large part of
the span, making it necessary to carry a large number of
significant figures. It is therefore better to write the
differential squation for the expression In parentheses,
which is the correction that must bte added to the stress
calculated by the ordinary bending theory to account for
shear lag, because g = M/hAT 1is the stress calculated

by the ordinary theory.

If this correction is denoted by

u = O'F - il-‘l:.——' (9)
T

the differential equation becomes
ut - K2 u =0 (10)

where K Thas the same meaning as before. This eguation
can be solved by ster-by-step integration, but the solu-
tion 1s somewhat easier than the solution of ore of the
egquations (4) (5), or (86).
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In analogy with equation.(g), the correction for the
stress oy may be defined by

M .
V= e - O"L (ga)
hin

giving the differential equation
v - X% vy = 0 (10a)

The solutions of (10) and (10a) for any given problem
again fall to satisfy the equation of static equilibrium
with the external moment except at the root and at those
stations where the ratio AF/AL is the same as at the

root. The discrepancy was always found to be smaller than
when solving equations (4) and (5)., For general use,
equation (10) therefore appears to be the best choice.

The strasses T and Oj can be found from statics after

u, and therfore Ops have been found.

The equations discussed thus far apply to box beams
with flat covers., TFor box beams with camber (fig. 2),
equations corresponding to (4), (5}, and (6) could be
written. As in the case of .beams without camber, it ap-
pears to be more convenient to use eguation (10). The
constant K in equation (7) is then changed to

c
1+ —
G .t h 1
K2=e( W+~_) (7a)
Eb! Ap Aj,
Example 1

Find the stress Op in the axially loaded panel shown
in figure 3. The following data are given:

P
e = 1.00 AF = A_ = l A L = 2.00
Aq LT
G_ ¢t
g8 = _& L+-_:.L_.

= 1.00
E b -A-F 'A'L . }
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(These numerical values were chosen to emphasize method
rather than arithmetic. They do not imply impractical
sizes; they imply merely unconventional unlits for stress
and length, which need not be specified here.)

The panel will be divided into five bays. Stresses
and other functions at any station will be designated by
a subscript denoting the values of x/I. 4in tenths; for
instance, o0, dessignates the value of Op at the station
x/L = 0.4, ' -
Two trial valwves must be assumed for .a,'. If the
shear stiffness were infinite, the stress would be con-
stant, and the corresponding value ¢! = 0 will be used
as the first trial value. If the shear stiffness is
large, but finite, the value ¢f o at the root will be
nearly ’

10

while at the tip

0. = ——.= 2,00

Assuming that the stress decreases 1ihear1y between the
tip and the root gives ' - R

Ao 1.00
o = — = — ——— = -0, 50
. Ax 2.00 .

This value will Pe used for the second trisl.,

Table II shows the arrangement of the computation.
The start of the first cycle of computation is as follows.
At x/L = Q, the known boundery wvalue o= 2.000 is writ-
ten down. The first trial value for o' 1s zero; there-,
fore, :

l:-l- ‘2-' - C e e e STZTio—— L2

Ao,., = c'Ax =0 X 0.400 = 0

and consequently
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Og = 03,+ 40 = 2.000 + 0 = 2.000
Now, using equatidn (4) in the form
2 2 (P
On" = En” Opn = Ky .(I“)
Tn

glives
2,000 - 1,000 = 1,000

il

O-a.ll

(The subscript n denotes the station number %nd is added
here to indicate -that, in the generkl case, K and P/Ag
vary along the span.)

Therefore

Ao-l._st = 0-3" Ax = 10000 X 00400 = 00400

Adding thils increment to the value at the preceding sta-—
tion gives
Ox! = 0,0 + A0,_,' = 0 + 0.400 = 0.400

From here on, the computation repeats itself in principle.
From the slope o! Just found, the increment Ao 1s cal-
culated. Adding thig increment to the stress at the pre-
ceding station glves the stress at the new station. Using
the differentlal equation glves o', etc., In the genseral
case, K and P/AT will be different for each station;
the table would therefors include a row for K20 and a row

a
for K° M/hAg.

Since an axially loaded panel can be considered as
the cover of a beam in pure bending, the boundary condi-
tion that must be satisfied at the root is, according fto
table I, ot pewar

. -

Oi10' = g%g = 0
In the first two trials, the values of o,, obtained are
2.905 and 1.047, respectively. (Note that these values
are obtained by adding 1/2 Axo" to 0p'.) Theso valuos
of o' are obtained by @ssuming .o,0 = 0 and 0o = -0.500,
respcctivoly; by proportion, it is found that o' should
be tukon as =0.782 to satisfy the condition 04" = 0. This

initial value of o' was used in the third cycle of thoe com-~
putation; the computation shows that 0,0 = 0 as required
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(wvith a very small error). Comparison of the stresseos
with those found by Fformula (roference 1 or 2) shows that
the error in the root stress is 0.3 percent.

Example 2
As a second example, the analysls of a tapered beam
with cambered cover will be given. The beam chosen is =
N.A.C.A. beam 4; the dimensions of this beam, as well as
the results of strain-gage tests, are given in reference
l. The methods used in obtaining the basic data given
in table III, rows 2 to 6, will be briefly outlined.

The compression flanges, the tension flanges, and
the longitudinals are assumed to be concentrated at their
respective centroids. The cover sheet is assumed to be
fully effective in a2iding the longitudinals, and the ad-
Jacent strips of sheet are added to the longitudinals or
flanges. The web is also assumed to be fully effective
in bending and is replaced by concentrated flanges of
cross—sectional area ‘1/6 Ag. ‘The area of the "substitute
longitudinal® is calculated by ' '

sinh X;b

————

E,b

Ars = 4

which is formula (4) of reference l; the "substitute cam-
ber" is taken as cg = 1/2 ¢. The thickness of the cover
sheet is 0.0114 inch, and the ratio G/E is taken as
0.40.2 With the values given in rows 2 to 6, the valuses
of Xk can be computed by formula (7a).

If an arbitrary value of u!' = 1.00 is assumed for
the first bay, a step~-by-step integration of equation (10)
can then be made, as shown in rows 8 %o 12.

Accarding to tadle I, the boundary condltion that
must be fulfilled at the root is

Now &% the root

M
Sy = P - — tan @ = 0.473 P
'k
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giving

T 0s/473 P X 0.463

nt =
5.70 X 0.177 X 0.640

For an applied load P of 250 pounds, this equation be~
comes o : '

ut! = 85.0

The value obtained in the trial solution 1s u! = 247.1,

so that the final values for u are obtained by multi-

plying the wu values of the trial solution by

EELS_ = 0.344. These final u values are given in row

247.1 Mc

13. In row 14 are given the values of 0= —, that 18,
I

the flange stresses obtalned by the ordinary bending the-

ory, using the geometric properties of the beam given in

reference 1. Adding the u wvalues to the o wvealues

gives the final solution as shown in row 15. Figure 4

gives a comparison between calculated and experimental

stresses.
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TABLE I

BOUNDARY CONDITIONS

Tip _ Root (x = L)
{x = 0) Longitudinal |{Longitudinal |[Elastically yielding
built in not built in support (fiz., 1)
M . . S . S %
hA bl y hA g bhp  Ag
= 0 T — - - .;t_. N G
= 67, =0 oy = O oy, = AL e
G. M G, M
e ©
oo =0 t . 8 =Y e
Ebhig| T Zomag T e
A Sy .4 M A Sy A |
R [T R N PR T R
S S
nhp hh bAg  Ap



http://www.abbottaerospace.com/technical-library

N.A.C.A. Technical Note No, 704 15

TABLE II
SHEAR-LAG ARALYSIS OF AXIALLY LOADED PANELS
x/u| © 0.2 0.4 0.6 0.8 1.0
First trial solution B
o' 0 0.400 o.ssd 1.466 2.302{2.905
Ao 0 .160 .346 586 .921
o |2.000 2.000 2.160 2.506 3,092 4,013
o 1.000 1.160 1.506 2.092 3.013
Ac! ‘ . 400 .464 . 602 .837 1.205

Second trial solution

: 5 .
o! ~0.500 -0.180 0.111 0.420 0.796]1.047

i
AC ~+200 -.072 044 .168 .318
o [2.000 1.800 1.728 1.772 1,940 2.258
o" . 800 .728 772 940 1.258
tro! .320 ' «291 309 376 +503

Final solution

o' -0.782 ~0,507 -0.313 10,169 0,053} 0.001
Ao -.213 ~.203 ~.125 ~.068 -4021

o [.000 1.687 1.484 1.359 1.291 1,570
o . 687 .484 .359 291 270
Ag! 275 .194 <144 .116 .108

Anolytical solution

o B.000 l.684 1l.482 1.3565 1.287 1.266
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TABLE III

SPEAR-I4G ANALYSIS OF TAPERED BEAN WITH CAMBERED COVER

[}

[

1x (in.) 0 19 57 76 95

2/ hy (in.) 2.70 3.30 5.10 5.7
3|Ay (sq.in.) | .143 150 170 177
4 Ars(eqein.) | .224 272 415 «463
5/bt (im.) 6.10 7432 10.98 12.20

6l ¢ (in.) «56 .67 1,01 1,13

7 KS .00967 .00729 00575 00394 00334
8l 13,23 131.1) [247.1]
9| Au 351.5 2,490

0l u(1bysq.in.}|0 18.0 339.4 1,169 3, 659

1 ut .1385 4,60 12.23
12| Au! 2.63 87.4 222.0
13| u(1bysg.in.) v 402 1,260
14 o(1b/eq.1n.)|0 1,795 2,920 3,040 3,015
15 opt Loy sq.in) |0 1,802 3,087 3,442 4,275

POL "ON O30 TBOTUUOE] "Y' 'O°"¥V°N

9T
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Figure 4.- Comparison between calculated and experimental sitresses
in N.A.C.A., beam 4, Data from reference 1.
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