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DAMPING FORMULAS AND EXPERIMENTAL VALUES
- . . OF DAMPING IN FLUTTER MODELS

By Robert P. Colsesman
SUMMARY

The problem of determining values of structural damp-—
ing for use in flutter caleulations-ig discussed. The.
concept of equivalent viscous dampling is reviewed and its
relation to the structural damping coefficlent & intro-
duced in ¥.A.C.A. Technlcal Report No. 685 is shown. The
theory of normal modes is reviewed and a number of methods
are described for separating the motlons assoclated wlith-
different modes. Equations are develoved for use in eval-
uating the damping parameters from experimental data.

Experimental results of measurements of damping in
several flutter models are presented. . :

INTRODUGCTION

.

One important step in the study of the flutter prop-
erties of an alrplane gtructure is the determination of
the struetural damping. - In an investigation of flutter
.carried out in the N.A.G.A. 8-foot high—~speed tunnel, it
was- desirable to determine the damping in the models test-
ed. The present report is a description of the methods
used, together with a review and a critical discussion of
the principles and:the derivations psrtaining to the meas—
urement of damping Darametersu

The presence of damping in a structure can be in-
ferred from and its amount can be measured by a number of.
different effects..- The principsal effects that depend upon
damping are: : ' : o

(1) The rate of decay of free vibrationé.

(2) The amplitudes produced by given applied forces
at a resonant frequency.
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(3) The heat produced by vibration.
(4) The elastic hysteresis loop.

A complete physical theory would have to account for:
all the observed results in all the preceding effects, TFor
the purpose of flutter calculations, however, a complete
rhysical btheory is unnecessary. For example, the exact
shape of the hysteresis loop may be unaccdunted for. It is
sufficlent to express the damping in terms of certain ef-
fective parameters that can be conveniently incorporated
into the flutter analysis. The present report reviews
some of the results ofowther investigators on the physical
laws of damping bdut makes no attempt to find the true law
of damping in the flutter models.

The results of damping experiments are often expressed
in terms of the loss of energy per cycle diaring ¥ibration.
This energy can be considered as consisting of two parts:
the part that is independent of fregquency and the part
that depends on frequency. The independent part has been
termed "statical hysteresis"; the dependent part, "hered-
itary hysteresis." The results of numerous investigations
indicate that, for most solids, the statical hysteresis
accounts for practically all of the internal damping. TFor
example, Kimball and Lovell (reference 1) found that, in

various metals, rubber, glass, celluloid, and maple wood,
the loss of energy per cycle was independent of fregquency
and could be represented with sufficient accuracy for most
purposeg by a constant times the square of the stress am-
plitude, Keulegan (reference 2) found that the loss of
energy per cycle in Armco iron was the game whether deterw
mined from a static-hysteresis test.or from the rate of
decay of vibrations. Other investigators (references 3, 4,
and 5) have likewise found the loss per cycle to . be indo-
pendent of the frequency.

Although the damplng of materisls is conveniently ez~
pressed in terms of the loss. of energy petr cycle, it is
difficult to write an analytical equation of motion that
will represent the observed damping properties. Nearly
all of the published- -analytical treatments express the
damping as a force proportional to the veélccity. The con—
stant of proportionality ig thus a measursd of the equiva-
lent viscous damping. This constant may then be regrad-
ed as a function of amplitude and frequency. The use of
the analysis of viscous damping for cases of other types
of damping is based upon the approximation of assuming
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that the hysteresis loop can be replaced by an ellipse
having the same amplitude and the. same area as the actual
loop. The damping coefficient determining this eguiva-
lent ellipse is then used +to express the results of exper-
iments. Von Schliope (reference 6) has applicd this meth-
cd to the ananlysis of internal dampin%.

Another analytical method of descrlbing internal danp-
- ing has been used in reference 7. If the displacement is
repregented by a complex variable, a damping force propor-
tional to amplitude but independent of freguency can be.
represented by a complex stiffness cons¥ant. If this com-
plex stiffness is written in the form k(1 + ig), then g
is & nondimensional damping coefficient. In the following
analysis, the relation of the coefficient & to the vis-—
cous damping coefficient 1s shown and the principal formu-—
las for use in evaluating these coefficients from actual
data are derived.

The basis of the analysis of vidbrations in continuous
structures is the theory of normal modes. A normal mode
means a type of vibration in which each particle of a struc-
ture vibrates in simple harmonic motion with the same
freguency and passes through its equilibrium position at
the same time. The important property of normal modes that
makes them useful in vibratlion is .the fact that, when they
exist, any possidle tvpe of vidration of a system can be
represented by the superposition of vidbrations in each of
the normal modes and each normal mode can be treated inde-
pendently as a system of one degree of freedom. It has
been shown by various writers (see, for example, reference
8, pp. 1D7-108) that normal modes will: certainly exist if
there is no damping and if the potential and the kinetic
energies are quadratic funections of the coordinates and
the velocities of the system., In the theory of vibrations
the amplitudes are usually assumed to be small enousgh that,
in the expressions for the energies, all but the quadratic
terms may be neglected. BEBren wlth damping, normal modes
will st11l exist under certain conditions. It can also be
shown that, when the damping is small, the theory of normal
modes always gives a good approximation to the actual vi-
brations.

When an external periodic force is applied to a struc-
ture, all the normal modes are excited to a greater or a
lesser extent. But when the amount of damping is small and
the frequency of the applied force is near to one of the
resonant frequencies of the structure, one of the normal
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modes becomes predominant in comparison with all of the—
others. Under thig comdition, the analysis for one degres
of freodom will provide a g£ood apvroximation for the re-
sponseé curve in that particular range of frequencisess. The
deviations of the actual response from the values appropri-
ate to one degree of fresdom may be called the normal-méde
interference effect. Whenever the shapes of the deflec-
‘tion curve for the wvarious modes are known, this interfer—
ence effect can be evaluatod. 4 number of methods are dé-
scribed for experimentally evaluating this effect. Simple
theoretical expressions for the exact response curves have
also been found for the cages of a uniform cantllever beam
1in bending and in torsion. : :

It is to be noted that messurements of the type con~
slderecd in this report yield thoe total damping, including

internal demping, ailr damping, losses in the supports,
and whatever types of damping are present,

SYMBOLS

m, Mass.
f(x}; recstoring force.
k, spring constant of a vibrating system.
g(x), deviation of restoring force from Hooke's.law.
F, ¥y, applied force;. instantaneous and maximum value.
t, -time. ' -

X, digplacement in system ofibﬁe degree ovf freedom,
or position coordinatg_in;a'goqfihuoﬁs structure.

AW, loss of encrgy or work done Pper cycle.
49:34.04,Dy, constants.:
c, tamping foree per unit velocity.
W, angular frequency.

We s - natural angular frequency with no damping,,/kﬁm.
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w,, natural angular frequency with ‘damping, w;{ - A .

W,» angular freguency 6f maximum response.

A, c/2m, .o o .
T, period of free vibrations, 2miu, .
&, Sn, nondimensional damping parameter, c/mub.
Cop: value of ¢ for critical damping, 2nw,.

x o .
a4 j; log g?: may 1s the logarithmic decrement.
mn n .

M, constant.

g, damping coefficient used in reference 7.
K, spring constant of a wvidbrator.

R, radius of crank arm.

x ’,’ amplitude corrected for effect of coupling with
vibrator. .

u(x), displacement function for a continuous structure.
Qn» Seneralized coordinate.
X,(x), mnormal function. __
T, 'kinetic.energy.
Vv, potential energy.
F, .disslpation function.
an,bp,Cn, coefficients of mass, damping; and stiffness.
Qn; generalized force.
Ax;y, interval of distaﬁce along a beam.
n» denominator of . mth term in equation (36).

P, mass densgity.
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I volar moment of inertia of section.
J, torsion modulus of section,
G, gshegr modulus of material.
8(x), angular displacement.
E, Younsg's modulus.
I, moment of inertia of section.

A, area of section.

Q, (2n - 1) N w/wn for large valuss of n,

ANALYSIS

Equivalent Viscous Damping

The analysis of viscous damping is often applied to
systems having s different physical law of damping. For-
tunately, thls convenient but inexact analysls can give
useful information because certain approx1mations are Jus-
tified when the gmount of damping. is small. The basis of .
this method follows. In viscous damping, the hysteresls
loop is an ellipse. Corresponding to any other typs of
damping, an equivalent viscous damping cosgfficient can dbe
defined such that the hysteresis ellipse will have the
same amplitude and the same ares as the actual loop. The
parameter characterizing this equlvalent ellipse can then
be used as & meagure of damping, L

Consider a typical elastic hysteresis loop (fig. 1).
Thig curve is seldom directly measured, but = typical shape
can be inferred for the purpose of ‘this dilscussion. Now
the area of this loop is a measure of “the energy dissipat-
ed per cvecle, that is, = measure of. the damping. If the
amount of damping is small, the loop must be narrow. From
Hooke's law, the mean slope should be anproxlmately con-—
stant., The squation of motion can be written

‘F osin wh (1)

mx + £(x)

nx + g(x) + kx = F, sin wt

f(x) = kx + g(x)
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where kx is the elastic force corresponding to Hooke's
law and g(x) is an undetermined function to take account
of the damping,

The ensrgy dissipated per cycle is.

21 A0
AW = ex + g(x)] 3F as (2)
- | ]

and, whatever the actual law of damping may be, the ampli=-
tude of steady forced vibrations is determined by the con-
dition that the work done per cycle by the external force
is equal to the dissipation of energy by the damping.

am/w 2™

' dx dx _ !
/ F 3% dt =f £f(x) == dt = AW (3)

0 o)

Now the deflection will be very nearly a sine function of
the time but, for generality, a Fouriler series will be as-—
sumed..

Letb

(o2} .
x = X Ap sin nwt + By cos nwt
n=1
The phase can be adausted arbitrarily to make By = 0. The
v91001ty is :

co
dx % 4y nW cos nwt - By nw sin nwt

at n=1

All of the coefficients excent 4, will be small when
the amount of damping is small. Similarly, for a given am-
plitude and a given frequency, the function g(x) can be
expressed as a Fourier. series.

g(x) = n§1 Cp sin nwt + Dy cos nwb

The elastic force . kx does not contribute to the damping
and may be omitted from the expression for AW.
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Then
2T /W
dx
AW = f g(x) g 4t
0
an/w -
. :
= T (Op sin nwt + D, cos nwh)
n=3 n
o
o :
x Z  (nwA, cos nwt - nWB, sin nwt) db
n=1 :
o
= ngl nT (DnAn - Cp3By) o
= 7 (DyA; + 2D3A5 - 203 By +— .. .) (4)

A11 the cross products of sinés and cosineg and the
products involving two different values of n vanish in
the integration. The only remaining terms are products of
each PFourier component of g(x) multiplied by the corTe-
sponding Fourier component-of the velqcity. Thus, if the
second harmonic and the higher terms in the Fourler series
for x and g are small guantities of the first order,
their contridbution to the value of AW will involve only
small quantities of the secend order, For the definition
of the equivalent viscous damping, these higher order terms
are neglected in comparison with the term in Ay.

Then

AW =-m Dy A

p, = AT . (5)

A,

Under this assumption, the loss of ensrgy per cycle depends
only upon the Fourier component of—the restoring force in
Phase with the velocity. But it is just this component
that corresponds to the term for viscous damping. The
equivalent restoring force is '
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f(x).

kA, sin wt + D, cos wt

cos wt (6)

i

AW
kA, sig wt + .
This function gives a hyvsteresis loop in the form of an

ellipse. The coefficient of viscous damping, ¢, which
zives the same energy loss per cycle 1s glven by

dx _
c 35 = cwAy cos wt
= éE— cos wt
- 'IT.A.l
Hence
c = _M_a (7)
WA 5

Derivations of Formulas for One Dggree of Freedom

In the following analysis, it has been recognigzed that

the quantity W, = ~[E7ﬁ, the natural frequency without
damping, is not an observable bdut a conceptual quantity.
Actual measurements can yield only the natural frequency
with damping and the freguency of maximum response. Hence,
the equations for determining damping parameters should
contain only the observable frequencies and not the fre-
quency Weq-

free vibration.~ The equation of motion of a vibrating
system with viscous damping will be taken in the form

mx + cx + kx = O (8)
The solution is
-A5 .
X = x,e gin wyt
where .
A= 53
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The damping will be expressed in terms of a nondimensional
prarameter defined by

c 2\
§ = — = T X (9)
mwo o

This parameter is_simp;y_reléte¢_to thé fraction of crift-~
ical damping. The condition for critical damping is wy, = 23
hence s o )

[&] C

Cer 2nwg,

The amplitude after =n complete cycles of free vibration
is

nerm
-nAT '_liLt)l .
Xp = X6 . = Xge (10)
x v
my T S xp
and since o
A2 82
Wy = Wo 1= We? Wo -5 (11)
8 1 . X :
= —— log, == . (12)
™ Xn
1 -~ 8
4
Define - -
1 0
B, = - —o
1= Tn “%%e g
Then : - B
§ = &1 )
a .
1 4 2


http://www.abbottaerospace.com/technical-library

N.A.C.A. Technical Note No. 751 11

From this equation it is apparent that, when & is small,
8=al

The quantity usually called the logarithmic decrement is
equal to ma, in the present notation.

Forced vibration vproduced by a periodic force of cor-
stant amplitude.~ In terms of the notation of complex var-—
iables, the equation of motion of forced vibration produced
by & periodic force of constant amplitude is

mx + cx + kx = Foeiwt (13)

The solution for a steady state 1s obtained by making the
substitution

x = xoeiwt
Then
¥o Fo
m m
Xg = p = ) (14)
(,UJoa--LU)+3L—C-"H%-U (W2 = W) + Tuw,d

or, for the absolute magnitude of x4,
Fo
m
AN a
s d w3>+52_uf_
Waq we®

The frequency wp of the impressed force for which x,
is a2 maximum is given by

= a
/ ]
f(l___5>+ﬁewg]=~_§_a_l_w2)+ o

(15)

wa=w3<1-§—> (16)
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The amplitude at resonance is’

o
m
Xp = = - _ C(17)
' Wy 2 Wy, &
& m 2
Wy / <l - —U—.)_O_B- + U.)Oa 8
FO
2 —

By use.of equations (15) end (16),'there_is obtained

N

§ = 2 @.— ————--——) B _ (18)
22+ 1
where
(. \
T e e -
a \ u'af
as” = v——ﬂ;-—~——
7:\
."]"1’ "'l

Xoe

ro;ced v1brat10n nroduced by & force pronortlonal to

by a force Droportional to w2 is

o 2 fwt
mx + cx + kx = Mw® e

(19}
where M is a constant. The amplitude of stwady vibdra-
tion is given by

w® w?

xo = e ._ﬂ : e '-__ : . == = - (20)

2 = ..,
a - < € o a 2
S owty o2 T Ty 4 %P,
- :

Bil=
Bix

The frequency W, of the impreased force for which x,
is 2 maximum is given by
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M .
dxg _ m . - :
- R =
a a, e 2 2 2
dw ~/ (w7 - wo) + & wiw,
- S 2(w,? - w® '+ 87 wo]
-2z : =0

2
2 We
(.Um - (21)
1 - 2
2
The amplitude at resonance is
LM
iy 2 u
Xy = m . = (22)
w2 L w?)? s wiw 2 8
o = Wp ) + 8 o%m 6§,/1 = vy
By use of equations (20) and (22), there is obtained
2
8§ = 2 <1 S S > (23)
v azs + 1
where - ’
m
(T - 1
2 w
as >

Properties of Dampling Coefficient, £

Theodorsen and Garrick (reference 7) have used a com-—
plex stiffness function to describe the phenomena of inter-

nal damping, The properties of this function are herein
developed. '

The equation of motion of a vidbrating system can be
written in the form

-
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nx + xk (1 + ig) = Foeiwt (24)

The use of the imaginary term ig implies that the dis-
Placement 1s a sine function of time and that there is a
component of force proportional to the amplitude and inde-
pendent of frequency but in phase with the velocity. The
golution of equation (24) is

iwt
e :
x = 5 - (25)
W .
l = ——— +-1ig
Weo"

gL

This equation agrees with Schlippe's analvsis (reference

) and is similar toc the result Jjust Ziven for viscous
damping except that the damping term is 1i1g instead of
i(w/wo)ﬁ. Thug, the numerical value of £ 1s nearly equal
to the value of- 8 aobtained by measurements close to a
regsonant peak.

The frequency of maximum response 1s obtained as be-
fore by differentiating x with respect to w®. The re-
sult for this case is

UJm - (.Uo _
Hence .
X
< = k
o - 2]
UWn~
£z _
k
bid B e _ -
e
a
¢ 2%
a < w
g = T : : (28)
(Zg\ 1
=,

This equation shows that & is given by the same expres-—
sion as the quantity a; of equation (18).
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Further Details of Practical Importance

In the elementary analysig, the applied force is usu-
ally assumed to be indeprendent of the amplitudes produced
in the vibrating system. - In actual apparatus, however,
the motion of the point where the external force is applied
frequently affects the value of the forcs, so that the ac-
tual force transmitted to the structure changes with the
amplitude of vibration. When the force is produced by a
spring of stiffness X fastened to a crank of radlius R
(see fig. 2(a)), the force on the structure is
- XK(x - R sin wt) and the equation of motion is:

mx + kx = - K(x - R sin Wwt) (27)

Then
1 -wZ m + Xk . -l
x KR gin wt R sin wt

1.1 .1

X X, ! R
S S S (28)
xo! xo R N

Similarly, for a rotating mass fastened to the structure
(see fig. 2(b)), the esquation of motion is:

mx + kx = = M g%z (x + R sin wt) (29)

The solution isg:

1 -mw? + k C1

— 2= —

X Mw® R sin wt R sin wt

11 1
X Xo! ®
1 1 1
Xo'! X0 R (30)
The corrected amplitude, =x,', corresponds to the ampli-

tudes given by theoretical equations in other sections of
this report. Equations (28) and (30) thus provide a method
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of correcting the measured amplitudes for the effect of a
vivrator having a small stroke. The natural frequencles

are changsd ta - - -
/ k + K
m

—k _
m + M

for the two tyves of vibrators shown in figure 2(a) and
2(b), respectivelyv.

+

and

Derivation of Formulas faor Continuous Structures

General case.~ The general theory of vibration has
been presented by a number of anthors, (See, for example,
reference 8, chs. IV and V.) This theory deals with the
problem of finding the normal coordinantes of a systen,

that is, the coordinates in terms of which the equations

of motion have only one coordinate occurring in sach equa=—
tion. The existence of such coordinates for systems with
damping has been digcugsed by Lord Rayleigh, who shows

that these coordinates exist for certain distributions of
damping and that, in all cases of small damping, the errors
introduced by assuming normal modes are of the second order.

A brief outline of the method of normal coordinates
is given. The application of this method to the determi-
nation of damping in each mode of a cantilever beam is then
discussed.

Suppose that the functions X,(x), <€iving the shape
of the deflection curve for each mode, are known. Then
the displacements corresponding to any motion of the system
can be expressed as a summation of the displacements in
each normal mode

u({x) = E dn Xp(x) (31)

According to Lord Rayleigh (reference 8, pp. 130-131),
in damped systems for which normal modes exist, the kinet-—
ic and the potential energy functions, T and V, and the
dissipation function, P, can bHe expressed as sumg of
squares of generalized coordinates or velocities.
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2V = cy9;" + cpq,® +

The equations of motion will
Lazrange's equations.
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a
+ andn

” e + -bncinz

LI ] + cnqlla

be obtained by the use of

4 SEL + éﬂi + jt[ = Qn (32)
at “oq,“4 o4,  94q,
andy * bnqn tocnly T Q'n (33)
where Qp 1s the generalized force corresponding to dn -
The form of Q, is found from the relation :
8W
Qp = T,

where &8W is the work done o
force during a displacement

in the. case
.'X‘.=SX:1,

) For exanmple,
plied at the point
Féu =

Eence

X, (x,)
The solution of the equation .

Xn(xy) Fpett

n the system by the external
Sqn,-

An z
-w an + iwdy +

Xn(xi) F

2
e

W

2
anwon (l -
on

of a force F = Eoeiwt ap-
iwt

F e X (x;) 8qy

F, el WP (34)
of motion 1is

t

Cn

o Tt

0 (35)
+ i 8n>

UJOI.I.
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where
w2 = Cn
on &y
LY
§, = __bn
n - w
a&n “on

The displacements are .then glven by

Xn(x) X, (T ) FoeiUJt (36)

“%n @ ~ ‘E“ + i == 8 )

a(x) = % 4y X, = E

In the summation, it 1s necessary to sum the real and the
imazinary vparts separately. If only réal gqguantities are
uged, the egquations become

Qn = X¥n(x,;) Py sin wt
AQn = -A-n sin Wt + Bn cos wt
a
X, (x,) Fo (1 - 2)
An = 5 wO_
D WP W g 2
an Wgn f(l - = +— n)
Yon Yon
w
~Xp(x,) Fo Ton 6n>
By = 5 3
an wfe [(1 - ) + (B )]
n n - oy n
L wSa Yon
u(x) = E Ap Xy sin . wt + Bp Xp cas wh (37)

Equation (30) ig the connacting link between the analy-
gis of vibration in one degres of freedom ‘and in continuous
structures. Bach term of this egustion has the same form
ag the solutlon for a system having one degree of freedon.
When a force is applied to a structure, all the modes &are
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excited to.a greater or a lesser extent and the problem is
to find the amounts of damping associated with each mode.
There are several ways of solving this problen.

For any case in which the normal functlons are known,
the damping in different modes can be separated by an in-—
tezration., If both sides of equation (368) are multiplied
by Xp(x) and integrated over the length, then all but

one term in the summation will vanish. .

u(x) = £ qn Xp
n

1 Al '
f Xm(X) u(x) dx f Xm(x) M adn Xn(x) dx
n

o o
A
= qu' Xn® (x) dx
)
_[zXh(x) u(x) dx Xp(x,) Py o 1WE
Q, = - (38)
fX (x)dx ap 'om<l-—'g—+1a~g;5m

The'quaﬁtity dn obtained by graphical or numerical inte-

gration of the measured amplitudes u(x) can then be used
as though it were the amplitude in a system having only
one degree of freedom. The process of evaluating this in-
tegral in practical cases consists in measuring the ampli-
tude at a number of points and evaluating the sum:

E Xp(xy) ulxy) axg
Qg = — (39)
2
_Z Em (xi) Axy
i

In the present tests, the procedure was simplified
8till further. The disturbance from two of the modes can
be eliminated by applying the force.at a node of one of
them and measuring amvlitudes at a node of the other. The
Justification of this method follows immediately from equa-
tion (38). For measurements in the range of frequencies
near to Wyp, this equation can be written:


http://www.abbottaerospace.com/technical-library

20 N.A.C.A. Technical Note No. 751

iwt 1wt
Xper(xa) X (x3) Fye . En(xy) Xp(x,) Fye
u(xa) = - 5
Dy—a m
iwd
+ Yura(xa) Zmey(x2) Foo + small terms (40)

Dm+1

where D, 1s written for the denonminator in the mnmth tern.
If x, and x5 are chosen such that

Koy (xa) = Xpyq(xg) = 0

then the amplitude is given by

Xm(xz) Xm(xl) Foelwt T ’
w(xy)=0+ - : + OF small terms (41)
ap W <1 Yoos g 2 )
n - g W °n
on LL)Ol'.l U'}Om

Another method of finding the damping is by evaluat-
ing the infinite series given by eguation (36) to find the
resultant response curve., 4 comparison of this exact
curve with the response_curve for one degreeé of freedonm
shows how to correct the analysis for one degree of free-
dom to take acceunt of all the disturbing modes. Expres-—
sions for the sum of the infinite series (equation (36))
have been found for the cases of torsion and bending of a
cantilever beam wifh the vidbrator at the tip.

Torsion of a uniform beam.—~ CJonsider a cantilever beam

excited in torsional vibrations by an oscillating torque
applied at the free end.

l . -L ™
T '=f % P Ip 62 d..'X'. = E .;lnaf % pIp Xna (x) dx
(0] o]

- (42)
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-Hence

Y
B
1}
W
0
[
Lo ]
ot
B
M
o
M

l 3x, &
n
h/é 5 6J (ZB::) dx

Suppose that the applied torque is supplied by a rotating
unbalanced mass at the tip of the beam. Then the torgue
is

Cn

P = Mw® sin wt

The generalized force is

Qn = Xp(1) Mw® sin wt (43)

1 P> w?
gpIp Xn (x) dx< —U—JE—

The normal functions are known for the case of constant IP’

Xp(x) = sin (20 - 1) g %; n =1, 2, By ees (45)
(1) = X sin ‘“: wzl
P Ip n.< on _ 1>
w
Put
Yon
w—l" = 211 - l
8(1) = M sin wt 5 1 (46)

N : ~ =] a
Lp 1 Ip n! (2n -~ 1) w, - l}
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The sum of this series can bde evaluated by thne following
method. Using the relation (reference 9)

<o
tan x = =~ % e (a7)

o % w (n+ ) m

there 1s obtained

. o 1 1
n = -
b a X i_. R - %) E ;1
(n - %) z 1 (n - *
o .
=5 s . (48)
* (n - %) 'Ez - 1
Put - 2% W
™ Wy
Then 1
[0 ]
TW. &=, TW. _
Tw, 8% By < )1: (en - 1) w,2 N
wa
. M ks L . W
By (1) = 4— “ tan 2. (49)
2 p -L IP 4(“1 UJ]_?.

In figure 3 the wvalue of

has been plotted against w/wl for the first two peaks.
In figure 45 the exact resvonse curve is compared with the
curve for one degree of freedom. h

Berding of a uniform beam.- By a method gimilar Yo
that used for Torsion, the following equations are obtained.
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. A A
m=f%_pAa2ax.=z.a1;f.%pA.x; ax )
n . .
[o] o] '
' L (50)
o) ua |
v=f%m -z dx=2qaf%EI<
3x n »,
(o] R
1
a = 5 p AX," ax
(o]
P =0

Q
it

. AL a_=a
5 EI'<3—E dx
X
[e] R .

Suppose that the applied force is produced by a ro-
tating unbalanced mass at the tip of the beam. Then

= X, (1) Mw?® sin wt

X, (x) X, (1) Mw® sin w

w(z) = % q, X, = % (51)
n n
c,nJ 20 4 x°(x) dx (l-—*sr
wlx) = % M Xn(x) sin wt (52)
. n pAL
___> X, (1) (—-—— - 1>
Put ' .
y = 5 —gt— (62)
n i_ung -1 - .
ws i
and define a pew function
co
y! = % L (54)
n=1 (2n - 1)
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I
g
o |
T 1
[
1
[ o

]

' o o EE> 58
y %— (tan S tanh 5 ( )

If @ 4is defined dy (2n - 1) /o = W,/W for large
values of =n, the function y' 1s practically identical
with the function y, excent for the first two terms of
the series. 3By wuse of this function y'! and suitadble cor-
rections for the first two terms of the series, the re-
sponse curve has baen calculated far the first three bend-—~
ing modes of a beam and is shown in fizure 5. Figure 6
shows a comparison of these exact resonancs peaks with the
correspvonding curve for ons degree of freedom.

APPARATUS

The epparatus used for these tests was very simple.
The avplied force was oroduced in part of the tests by a
small rotating unbalanced masg made by tapping a screw in-
to the side of-a rotating shaft, fitted in light beariags
and clamped to the gtructure that was being tested. The
shaft was turned by 2 small electric motor fitted wlth a
flexible coupling and suita®ble gears; the fregquencies were
measured by an electric tachometer. TFor the rest of the
tests, the rotating mass was replaced by & small crank
coupled to the structure dvy a rubber band,

The amplitudes were measursd by obeerving the magni-~
fied imasge of the filament of a small duld produced by &
lens of 1/4-inch dismeter and 2-3/4-inch focal length held
on the structure by a small brass mounting.
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The models tested were_ the wings used in the flutter
investigation (reference 7) and were in the form of can-—
tilever beams 6 feet 9 inches long with symmetrical-
alrfoil cross sections. Model 1 was rectangular with 1l2-
inch chord and 1/2-inch maximum thickness. It was made of
duralumin with closely drilled 1/2-inch holes.and was cov—
ered by a 0.006-inch sheet of duralumin., Models 24, 20,

%2, and 4 were made of s0lid duralumin with two rows of
chordwise slits to decrease the torsional stiffness. Mod-
els 6 and 7 were made by covering a balsa structure with
1/16-inch mahogany.

EXPERIMENTAL RESULTS

Three methods of measurlng damping were used in thesse
tests. The damping in the first bending mode of each
model was determined by measuring the rate of decay of
free vibration. For the higher modes, some of the tests
were made with the rotating-mass type and some with the
crank—-and~rubber-band type of widbrator. In order %o min-
imize the influence of normal modes other than the one
being investigated, the force was applied and the ampll-
tude was measured at the most suitadle positions. For ex-
ample, in.the measurement of the damping in the third
bending mode, the nearsst disturbing frequencies are the
torsion and the fourth bending. In this case, the force
was applied to the tip of the beam at the position of the
node in torsion and the amplitudes were measured at the
edge of the bean at the positlon of a node of the fourth
bending mode,

Figure 7 shows plots of the response curves of the
models tested. In these tests, it was thought unnecessary
to try to obtain the complete functional dependence of
damping on amplitude and other variadbles. Consequently,
the response curves were analyzed only to the extent of
finding a representative value of the damping parameter &.
It will be noted that the results for all models of a Ziven
type of construction gave values of &8 within a range of
about a factor of 2. In table I are givéen The numerical
results for &8. These values were computed from the data
of figure 7 by use of equations (12), (18), and (23). The
value of the amplitude at a frequency ratio of 1.1 was
taken for determining the best single representative wvalue
of &,
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CONCLUSIORNS

1. In the determinntion of the damping of structures
by means- of the shape of the response curve obtalned by
applying an alternating load at one point of the .structure,
the use of the analysis for one degree of freedom is jus-
tified when the following conditions are met:

(a) The damplnq isg small.

(b) The points of applying the f6TGE and measuring
the amplitudes are appropriate from consider-
ationsg of disturbing normal modes.

(¢) Only amplitudes close to a resonant peak are
used to detarmine the nondimen91ona1 damping
narameter, 5.

2. When the normal functions for a structure are .
known, the damping in the different modes can be separate-—
ly determined from the measured amplitudos at several
.points along the structure. -

#. The measured values of &8 for a homogeneous
structure such as a cantilever beam of duralumin are ap-
proximately equal in the different modes of vibration.

Langley Memorial Aerocnauntical Laboratory,
National Advisory Committee for Aeronautics,
Langlev Pield, Va., December 21, 1939,


http://www.abbottaerospace.com/technical-library

N.A.C.A. Technical Note No. 751 27
REFERENCES

Kimball, A. L., and Lovell, D. E.: Internal Friction
in Solids. .Phys. Rev., vol. 30, no. 6, December
1927, pp. 948-959.

Keulesan, G, H.: Investigation of the Method of De-
termining the Relation of Statical Hysteresis and
Flexural Stress by Measurement of the Decrement of
a Freely Vibrating U Bar. Res. Paper 443, Bur.
Standards Jour. Res., vol, 8, no. 5, May 1932,
pPp. 635-656, '

Becker, E., and ngpl, 0.: Dauerversuche zur Bestim-
mung der Festigkeitselgenschaften, Beziehungen
zwischen Baustoffdampfung und Verformungsgeschwin-
digkeit. Forschungsarbeiten auf dem Gebiete des
Ingenieurw e6sens, Heft %04, V¥DI-Verlag G.m.Db.H.
(Berlin), 1928,

Rowett,.F. E.: Elastic Hysteresis in Steel. Proc.
Roy. Soc. (London), ser. A, vol., 89, no. 614, March
2, 1914, pp. 528-543.

Ockleston, A. J.: The Damping of the Lateral Vidration
of & Mild Steel Bar. Phil, Mag., ser. 7, vol. XXVI,
no. 177, Nowv. 1938, pp. 705-712.

von Sc%lippe .B.:t Die inmners ngpfungo (Berechnungs-—
ansatze fur die innere Dampfung bei mechanischen
S chwingungssystemen.,) Ing.-Archiv, VI. Bd., Heft 2,
1935, 5. 127-133, .

Theodorsen, Theodore, and Garrick,; I. E.,: Mechanism
of Flutter. A Theoretical and Experimental Investi-
gation of the Flutter Problem.- T.R. No. 685,
N.A.C.A., 1940,

Rayleigh, Lord: The Theory of Sound. Vol. I, Macmillan
% Co., Ltd. (London), 1878 (reprint of 1929).

Wilson, Edwin Bidwell: Advanced Calculus. Ginn and Co.,
1912, p. 457, problem 5.


http://www.abbottaerospace.com/technical-library

28

NoA'.C --A- L]

TABLE T’

Techrnical Note No.

751

Values of the Damping Parameter, &

" Mode
Model Bending Torsion
1 o % 4 1
Duralumin’
1. skin 0.062 0.083 0.1130 —-— 0.087
Solid
24 | duralunin .N0E0 .014 - - . 0087
25 do. . D050 L 056 .17073 - — ‘018
K do. . 0045 .0075 .0040 00,0047 -
4 __do. __.0089 .0080 L0050 | .0053 . 0034
6 Wood 020 | == i 0174 . 030 .028
i do. .021 —-— _— - .020
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Figs, 1,2
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/

Figure 1l,~ A typical elastic hysteresils loop.
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Figure 2.~ Simolc mechanical circuits to illustrate

the effect

of a vibrator.


http://www.abbottaerospace.com/technical-library

: T
e
" /J

eq0N T®OTUYOS] ‘V 'O°'YV°N

8,{1)%plIp

F\““““ﬂ-hﬁ‘_

\_

/

\

/

1.0

Pigure 3.- Response

2
w/hd

curve for torelional vibrat

/

3.0

ion of a uniform beam.

/
L el

g ‘FTd

IS4 "oN


http://www.abbottaerospace.com/technical-library

8,(Diplip

14 ] f i =
i 'Y
L | 0
1 &
12 E
fay
=] I
- .
Q l
W
l_l
10 2
Y
=
°
8 | ] L\ §
1
. [ \
5 [ \!
Bl \
\ ~———t———|Beam
| / \\ —=1——1{Cne ¢egrep of [freedom
4 " i ‘\
N
/ NN
/ \ ~ -
2 ’I > —
A \\ T~ [ — ot
//// \\\\ B -
,"’ \-.
g 5 1.0 1.5 2.0 T
w/wy o

Tigure 4.~ Comparison of exact torsional response curve with curve for cone degree of freedom.


http://www.abbottaerospace.com/technical-library

N.A.C.A. Technical Note No. 751
[ _ P S
L wd
\\\\\
.. \\ _]
| I—— \n\
el N W _
.
e = ——
=
{ Bk - 1./
/
i - 1o I
v -~
\\
—a. \R —
— \\1\ . 4
\\\
- R L )
—_— - ——a
H [ ——
| 2=
B i S 7
, pd
;l\\L\\\\\
“
< 16 - = ™ -

30

10

Fiz. 5

P
Figure 5.- Response curve for bending of a uwniform beam.



http://www.abbottaerospace.com/technical-library

) . |

Beam
' J —f— — 1 One| degrpe of frepdom

™~
R T
* {(a) Pirs{ mode 7 T =]
/
-—-d__/‘
0 .5 1.0 1.5 2,0

w/wy

Figure 6a to ¢.~ Comparison of response curve in bending with curve for one degree of freedom.

‘0N 830N TEOIUUSSL V' O'V'N

TS

'Y P14


http://www.abbottaerospace.com/technical-library

N.A.C.A, Technical Note No.

751

-]

.

i

—t+——— 4 Cne} degnee off frepdom

——— Bean

\

(b) S ecord moTe

1.5

1.0
w/wo

Figure 6.- Contimed.

10

g


http://www.abbottaerospace.com/technical-library

N.A.C.A. Technical Wote No., 751 Flg. 6c
<
o
g
| o
o
&
49
I -
(=]
I 2 _ﬁ
o \
D
=t o ] _.nu-
d o 4 —
28 i
| /
1 i
!
b — 1&.
L~ @
]
= - g
e e — <o
~ 1
S _ 3¢
| i il — m
o
N
7o)
—— o
o
=1
_ s
i =]
o
£
C
7o) Q

10


http://www.abbottaerospace.com/technical-library

Fig. 7

N.A.C.A. Technical Note No. 751
1.0 .
[ |
.8
:f /
.6 '
i i |
4
| | |
) 6=0.014 / 5=0.0087 | §=0.0070
' - N /X
ole) ~——®) 1 ] ™~
1.0
I
.8
| |
.6
x | I
g ]l I
. [l [8=0.0070 §=0.015 J 1\ | =0.008
' AN \ | () /-
o @ A | T I ) I e s |
1.0
.8
.6
¢
‘4 I
. |1} 5=0.0080 [\ 1s=0.005% §=0.0034
“le) /\ (h) J1\ ) /
0 N — A . — 1Y% e~
8 .9 10 1.1 1.2 .8 .9 1.0 1.I 1.2 .8 .9 1.0 1.1 1.z
(V)
oy

(b)Model 2A;torsion mode;
rotating-weight method.

(a)Model 2A; second bending
mode; rotating-weight
method.

(e)Model 3;fourth bending
mode; rotating-weight
method.

(d)Model 3; third bending
mode; rotating-weight
method.

(h)Model 4; fourth bending

(g)Model 4; third bending
mode; rubber-band method.

mode; rubber-band method.

(c)Model 3; second bending mode;

roteting-weight method.

(f)Model 4; second bending mode;

rubber-band method.

(i)Model 4; btorsion mode;

rubber-band method.

Figure 7,a-i.-Typical experimental response curves.
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