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WATIONAL ADVISORY COMMITTEE FOR AEZROWAUTICS

TECHHICAL ¥OTE NO. 943

NORMAL PRESSURE TESTS ON UNSTIFFENED FLAT PLATES

By Richard M., Head and Zrnest E. Sechler
SUMMARY

Flat sheet vancls of aluminum alloy {(all 17S-T
except for two spceimens of 248-T) were tested under nor-
mal prossurcs with clamped edge sunports in the structures
laboratory of the Guggenheiw Aerdsnsutical Laboratory,.
California Institute of Technology. The thicknesses used
ranged from 0,010 %0 0.080 inch; the panel sizes ranged
from 10 by 10 inches to 10 by 40 inches; and the pressure
range was .from 0 to 60-pounds-per-square-inch gage.
Deflection patterns were measured and maximum tensile
strains in the center of the panel were determined by
electric strain gages.

The experimental data are represented by pressure-
strain, pressure-maximum—deflection, and pressurc-— ) N
deflection curves. The results of these tests have been
comnpared with the corresponding strains and deflections
as calculated by the simple membrane theory and by large

deflection theories.
INTRODUCTIONW

The primary aim of this research project was the
debtermination of the deflections and strainms in a flat,
unstiffencd plate subjected to & pressure normal Lo its
own plane. Plates were chosen so as to have dimensions
approximating the larger plaves on aircraft structures
(since the larger rlates usually give more trouble from a
deflection and stress standpoinit), and the pressures used
covered the range of pressures found in pressuriged cabins
and extended on up into the range of pressures that might
be encountered in fuel tanks and hull bottoms.
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Since the membrane theory of plates gives a sinple
means of caleulating the strains and deflections in
plate under normal pressures, the experimental results
have been compared with the results given by this thesory.
In addition, wherever possible, the experimental results
also are compared with theoretical calculations made on
the basis of a large deflection theory which, although
morc difficult to calculate, gives more sccuratc results
for certain ranges of pressures and plata dimensions.
The curves presented, therefore, will give the designer
the probable range of validity of the various methods of
calculation.

CUSRURL o
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This investigation, conducted at the Galifornia
Institute of Technology, was sponsored by, and conducted
with financisl assistance from, the National Advisory
Committee for Aeronautics._

SYMBOLS
a short side of plate, inches
b long side of plate, inches .

E modulus of elas

tiecity of material, taken as
10.3 x 10° ps

i +throughout

h plate thickness, inches

Dy, Ng, DNy coefficients in the membrane eguation which
depend upon the b/a ratio as shkhown in
figure 11

jo! pressure acting normal to the plate, psi

R = L ¢train gage resistance, ohms

1/R, + 1/R, + 1/Rg

R:» Ry, R, varisble resistances in the strain gage bridsge
circuit, ohms
Ry strain gage resistance at zero strain, ohms

AR = R - Rg
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w deflgction of the plate, normal to its unlcaded
position, inches

Wo deflection at the center of the plate, inches

G membrane stress, at the center of the plate, parallel
to the long side of the plate, psi

Ty membrane stress, at the center of the plate, parsllel
50 the short side of the plate, psi
. . . . 2
€x membrane strain in X-dirsction (: (g = wcv)\
B </
. . s s L 1 ) N
€y membrane strain in Y-diregtion ‘_,(oy - pUx),
B /
s Poisson's ratio, taken as 0.3 throughout

TESTING APPARATU

N

The main item of equipment consisted of a pressure
tight, welded steel box over which the plates was held by
a clamping ring. The sides of the box and the clamping
ring were made from l/2~by Z2-inch angle so ag to give a
very rigld, clamped edge support to the sheet. This unit
is shown in figures 1, 2, and 3. It was designed %o give
clear openingsg of 10 by 10 inches, 10 by 20 inches,

10 by 30 inches, and 10 by 40 inches, thus giving b/a
ratios of 1, 2, 3, and 4, respectively.

Pressure was applied to the plate by admitting air
under pressure 6 the airtight side of the unit. The air
pressure was measured by a manometer for the lower pres-
sure values and by meansg of a calibrated pressure gage
for the higher pressures. Pressure control was by means
of a valve in the air line,

Since strain gzages were mounted on the undey side
(pressure side) of the sheet, it was necessary %o bring
the electric leads out throcugh the side of the box. This
was done by installing in the side walls a series of in-
sulating plugs containing two copper leads, The lczads
from a strain gage were then soldered to the inside ends
of a pair of these copper leads and the connections to
the bridge circuit were soldered %o the outside ends of
the gsame leads.
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The strain gages consisted of l-inch lengths of 1
mil constantan wire cemented to, bdbut insulated from, the
center of both sides of the panel. 4 rosstte arrangeme:n
of the gages was used in which one gage lay parallel 1
the long side of the panel, one parallel ©o the short si
and two at 45° to the other two. (See fig. 4.) The sam
orientation was maintained on beth sides of the pansel.
Since the gage wires crossed at the center of the rosette,
the wires werc Located at very slightly different dlstances
from the surface of the plate. To offset this, the samne
stacking arrangement was used on both sides of the plate

so that corresponding wirss on eltuer side were always ab
the same distance from the plate surface. Since the aver-
age of the readings from the wires on the two sides of the
plate was taken to obtain the membrane tensions, the effect
of stacking is canceled.

The method of mounting the gages was as follqws: Firs?d,
a piece of very thin rice paper was cemented to the sheet.

! Phen wire number 1 was cemented onto the top of the rice
paper. Wire number 2 was then laild at 20° to number L and
. comented on. This was followed by the other two ab 459,

Static tests on 2 tension specimen indicated that the cali-
bration of the wires was not affected by this stacking
arrangenent, -

The strain gage dbridge circuitd wsed is shown in figure
5. For gages of different lengths and wire sigzes, resist-~
ance X is adjusted t0 be nearly equal to the gage resist-

ance at zero strain. Resistancss R, Rz, and Ry are
acecurate decade boxes and the bridge balance was first ob-
tained approximately by the rough zZalvanometer Gz and
finally by the sensitive galvanometer Gy. The gages WwWere
connected to the dbridge through & two-pole mercury switch
that was designed to keep ewitching resistance to a mininun,
constant value.

Deflections were measured with a dial micrometer mounted
on a traversing guide that went across the panel. Provision
was made to lower the micrometer point slowly onto the sheet,
and contact was determined by reflection.

(o]

The testing procedurs consisted

te
pressure to the panel as determined

of applying a given
by the manometer or
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pressure gage, measuring the straians by deter mnining the
change in the bridge resistance and taking a deflection pro-
file across the pancl at various preassigned points. This
procedure was repeated for varlous pressurs values up to the

maximum pressure assigned to each sheet thickness.
PRECISION OF DATA

The greatest inaccuracy in the data 1s probadbly in tae
strain readings. Some difficulty was found 1 ini
proper cements for the strain gages, and the test dat
cated that some of the gages were slipping. These da

1
5
i

I ot

been omitted from the respective curves, The probab
racy of the readings plotited in figures 12 to 43 is
order of #10 percent. The bridge equipaent was cons
more accurate than the gages themselves.

Deflection values were measured to the nearest G. 000
inch. The deflection readinzs are accurate to the nearest
0.0005 inch; aowever, inaccuracies in initial straighitness
and smoothness of the plates might in some cases go as high
as 0.003 ineh, The poorest accuracies in the deflectiion
measurement occur in the very low pressure ranges.

The pressure applied to the plates could be measursd
accurately to 0,1 psi up to about 15 psl and %o C.5 psi
above this value,

EST RESULTS

A

The curves of center deflection as a netion of pres-
sure are shown in figures 6 to ©@. These are plotted in the
form of tine nondimensional wo/h ratio against the pressure
ratio E(ﬁ%\é. In addition %o the experimental points, the

E\L/ .
curve for the center deflection as given by %the membrane
eguation of Foppl also is shown., This curve is obtained from

the equation

from which
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where =n, is a factor depending upon the b/a ratio of the
plate as given 1in figure 11l.

Inspection of figures 6 to 9 shows that the memnbrane
equation gives excellent agreement with the experimental
points for a square plate (b/a = 1) and that the experimen-
tal points become more and nore conservative {1ess deflec-
tion for a given pressure) as the Db/a raftio increases.

In all cases, the test pressures werse carrisd high enough

so that yielding over a large portion of the plate had taken
place and, at these high pressure values, the center deflec-
tion of the test specimens becaume higher than the values
indicated by the membrane eguation.

Figure 10 sheows a comparison of the GALCIT experimental
points with the membrane equation and the theoretical solu-
tions of references 1 and 2, which arse based on largs deflec~
tion theories. TFor all values, the midpoint deflectlions
predicted by the nethods of Way and Levy are lower than those
obtained experimentally at GALCIT. The membrane equation,
which is shown also, gives predicted values which are higher

in the range 0 < %:<%> < 800, after which the GALCIT ex-
-t

perimental values become slightly higher; although figure 6
indicates that the membrane equation will give satisfactory

o /a\?

engineering accuracy for the thinner plates up bto E \E/
-
values of 10%,

Included in figure 10 are two sets of experimental
points taken from reference %, These values were obtained
on 5- by 5-inch 17S-T plates subjected to normal pressures.
Since the plates were much narrower than those used at

( T \ 4
GALCIT, the pressures necessary bo give the same 2 <%)

bii

ratio are higher (actually 16 times as high) and this may
have caused more slipping of the plates in the clamping rings.
This may account for the considerably higher test deflections
than those obtained at GALCIT or those predicted in refer-
ences 1 anéd 2.

Figures 12 to 43 show the measured cenbter membrane
strains of the plates as determined by the strain gages. On
each curve are shown also the calculated membrane strains
acting parallel to the short and long sides of the nlates,
respectively. These membrane strains are calculated from
the equations
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3 b
/ 2 'S
Gy = 5 h‘e

where ny and ns are obtained from figure 11. Using the
stregss-strain relationships

1
- 5\
<-:K_.E (Ox-ucy,
1 -
€y =3 (Gy - wo)

the following strain eguations result:

b2
_E

( 3 2
b
¢, = (ng =pn >J/. —5

Figures 12 50 19 cover the strain readings in the 10-
by 10-inch specimens for various thicknesses. TFor such
square platé&s, the membrane strain at the csesnter of the
plate should consist of a uniform tensile strain in =211 ai-
rections. In these figures it is scen that the experimental
strains as measured by the three gages scatter about a com—
mon line, which is very close to the strain predicted by the
membrane theory.

€y = (ns-wn~)

llimrtf

In figures 18 and 19, the curve of the midplane strain
as given by Levy {reference 1) is included. Although the
calculated values for these curves do not extend to large
values of the pressure D, it is immediately apparent that
the strain values as caleulated by Levy are nuch lower than
those obtained experimentally at GALCIT, From the experi-
mental data of the GALCIT testes it would appear that the
membrane equations would give a reasonadly good approxinma-
tion to the midplane sirains at the center of a sgquarc plate
under normal pressuress,

Figures 20 $0 27 give similar curves for the 10- by 20-
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inch plates. In these cases, there is noticed a definite
tendency for the experimental stralins measured parallel to
the long sides to be higher than those predicted by the men-
brane equation and for the experimental strains parallel to
the short sides to be lower than those predicted by the mem-
brane theory. This tendency increases with thickness, indi-
cating that, for a rectangular plate, %the bending stresses
across the short dimension tend appreciadly to reduce the
midplane stresses in that direction,

The same trend is shown even more noticeably in figurss
58 to 35 for the 10- by 30-inch plates and in figures 36 %o
4% for the 10- by 40-inch plates. In the larger aspect ratio
plates (b/a = 3 and b/a = 4, the midplane strain reduction
in a direction parallel to the short side is quite consider-
able and & design based on the membrane strains would be eX-
cessively overconservative.

There is considerable scatter found in the experimental
points of figures 12 to 43; however, the trends of the strain
as & fmnetion of normal pressure are clearly indicated. The
scaiter probably is due to two main causes. Sone scabter
yndoubtedly is caused by operating technigne of the wire
strain gages, the most common Gifficulty being that of get-
ting a firm cement Dbond Batween the strain gages and the
plate. The second cause of scatter, and it is felt that this
is the most important, was the lack of initial straightness
of the plates which led to erratic bshavior of the strain
gages, particularly throughout the low pressure ranges.

Deflection ecurves have been plotted for all specimens in

figures 44 to 71, In thess figures, & three-dimensional de-
flection pattern of each panel under load has becn plottecd
for one pressure. The varistion of the center line profiles

with pressure also arec shown in these figures, together with
a magnified portion of the profile near the clamped edge of
the plate., I was hoped that careful measurements of the de-
flection near the clamped edges would lead to a curve which
could be used for stress calculation nsar the edge. This

was not possible, as 1t appears from the figures shorn thnt
the greatest amount of bending deflectlon, evsn for onlates .
as thick as 0.081 inch, occurs in & region which 1is approxi-
nately 1/52 of an inch or less from the point of clamping.
Actually, of course, some bending anfl deformation occurrad
under the edge supports since they could not be wmade infi-
nitely rigid, This explains the fact that the deformation
measurements near the edge of the plate do not go through
zero, the zero shift increasing as the pressure on the plate
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is increased. In all these figures, the expanded profile %o
the right corresponds to the edge deflections taken at the
center of the long side of the plate, while that at the left
corresponds to the edge deflections taken at the center of
the short side of the plate.

COWCLUSIONS

It is felt that the deflection data presented in figures
6 to 9 give a sufficiently conmplete picture of the maximun
deflection of clamped edge aluminum alloy plates under normal
préssures so that the curves may be used direectly for design
purposes. The strain measurements give the variation 0o e
expected from the membrane theory and will Dbe unseful for cor-
relation with more advanced theoretical work which may De
carried out on this problemn. In the same manncr, the deflec-
tion patterns which were determined may give aid in dctermin-
¥ ing the correct deflection pattern of such plates for clear-
anee calculations in design and also may aid further theoret-
jcal research by giving the experimental deflection pattern
upon which to base any theoretical study.

Guggenheim Aeronautical Laboratory,
California Institute of Technology,
Pasadena, Calif., April 1%44.
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App. Mech, (Cambridge, Hass., 15238). John Wiley &
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2. Ramterg, Walter, HcPhersen, Albert B., and Levy, Samuel:
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Fig. 1 - Test Apparatus.

Fig. 2 = Test Apparatus.
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Fig. 71
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