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By Stefan Bergman

'

SUMMARY

Chaplygin introduced the hodograph method in the theory
of compressible fluid flows and developed a method for aan'
constructing stream functiong of such flows. This method,
which has heen extensively used in investigation of compress-
ible fluld flows, is limited iIn certain respeects:r The ex-
pression for the stream function obtained in this manner can
represent only certain types of flow patsterns,., :In gensral,
flow patterns obtained in this way cannot represent the whole
flow around an obstacle, but only & part of such a fiow, and
therefore several expressions are.needed in order  to obtailn
the whole flow.- On the other hand, in many 1nstances, 1t 1s
important to have a, single expression representing the whole
flow, - a . T T

Recsntly Von Kédrmén and Tsien constructed ﬁore general
tyves of stream functions, but only by replacing the true
preesure densisy relation. - ' e

by the linear pres%ure-épécific volume relation

p=A+9_-
p

(A 'k, and O are constants), so that their method is essen-
tlally limited to flows the maximum Mach number of which is
not t06 large.

In a companion rebort the author derived a new formula
for stream functlons besed on the true pressure density’'re--
lation
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p = op¥

It is not subject to the limitations of the Chaplygin method.

In the Presentlreport thie formula is employed to con-
struct two-dimensional subsonic compreseible fluid flows
around a body similar in shape to a given symmetric obstacle,

The methods described in the report are 111
numerical examples. P e ustrated by

INTRODUCTION

* “In'a companion report (referencs 1) the author derived a
formula transforming an arbitrary analytic funection of a com-
plex variable, g(2), 1intoc a function (x,y) which satis-
fies the differentinl ecquation for thé stresam functlion of a:
two-dimeneional potential gas flow. (It 1s assumed that: the
presgsure of the fluid 1s a function of its densityv.) - ‘

*This report describes the application of this formula 4o
the dotermination of a flow around an obstacle. TFirst, the
actual’ computation of the stream function generated by an
analytic function 1s described in detail. Then varions meth-
ode for choosing the function which vielde a flow around a
glven obstacle (or at least around a shape similar to the
given one) are discussed, S V.

The mrocedure is illustrated by completely carryving out
the consbtruction of the compressible flow generated by the
function

2) - 1( i /T 2a7)
2N\/1 - 22 °

In the case of an intompressible fluid this function
would lead t0 the circulation-free flow around a circular
¢ylinder. In the case of a compresaible .fluid a flow around
a eylinder of somewhat distorted cross section 1s obtained.

For the mathematical Jjustification of the formulas used,
the reader is referred to reference 1.
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NOTATION

a gspeed of sound
2q speed of sound at a stagnation point
f(z) analytic function of the complex variable 1z

£(2) analytic function of thse complex variable 2

g(P+1)(2) nth iterated integral of g(2) (See (iS).)

H a function of a real variable occurring in the formula
for the stream functlion of a compressible flow ‘(See
sec. 2.) -

k exponent in thp pressure~density relation

M Mach number (M = v/a) B

Q(n) funcetion of a real variable occurring 1n the formula
for the stream function of a cqmpressible flow

Tn imaginary part of (n) considered as a functlon of M
and § ' ' ’ -

%

v speed (magnitude of the velocity vector)

Vi,Vg components of the velocity vector

w o=@ + 1y complex.potential

Z = X + 1y complex variable in the physical plane i

Z = AN -~ 168 complex variable in the logarithmic plane_

6 angle between the velocity vector and the x-axls

LT
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A for an incompressible flow: logarithm of the speed; for
a compressible flow: e given function of the local
Mach number (defined in sec. 2) (The A of this re-
port is not to be confused with A of reference 1,
to which 1t is similar, but differs from it by a con-

gtant.)

velocityv potential

0 real part of g<n) (See (20).)
1 stream function
wn imaginary part of g(n) (see (20).)

1., Construction of a Flow by Means of—Analytic Functlons of a
Complex Variable (Incompressidle Fluid)

The method used in this paper consists of generating
two-dimenslonal compressible flows by means of analybic func-
tions of a complex variable. The method is best explained by
first considering the case of an incompressible fluid.

There exists a very simple method of constructing pat-
terns of a two-dimensional wsteady irrotational flow of an in-

compressible verfect. fluid by means of analvtic functloneg of-
a compleox variable, Let

w = f(z) = p(x,y) + iy(x,y), 2z = x + iy (1)

be such a function. Then @ and Wf éafiéfy the Laplace
equatlion, )

g . L3 . .
ox® By = ax av

where ¢ can be interpreted as 'the velocity potential of an
incompressible flow; V¥ 1s the stream function, and

V(x,v) = constant

is the ecguation of a streamline.

For instance,
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2 2 - 2 . 2’ '
W = -]:. z + -—) = JC(X ¥ + 1) + 1 (X + A = 1> (2)
2 -z axxa + ya) . z(x2 + yg)

represents a circulation-free flow around a cireulsr cylinder,
for Iméw 1s constant for iz o= 1. (See fig. 1.)

Unfortunately, this simple method cannot be extended to
the case of & compressihle fluid.

Now, let wv3; and. vy be the velacity components of the
incompressible flow I . ' -

L . v, o= acp/ax, Vg = an/ay

)l

Let v be the speed and © the angle between the velocity
vector and the x~axis. Then ' " -
-16 o 2 (3)

oo i R S, ivgy = ve ™! = - :
- : 1 B iz

Thus v, - ivz 1s also an analytie function of =z, By vir-
tue of (3) to each point ) of the physical plane, there
corresponds a point (v, -vzg of the plane the Gartesian_
coordinates of which are v,, -~vz (hodograph plane). 1In
this way an.image of the flow in the .(v,, -vy)-plane is ob-
tained.  This image is called the hodograph of the flow. I%

may happen that at two different points of the’ (x,y)—plane
(physical plane) v, and vz have the same value. Then,

to these two points there corresponds the same point in the
hodograph plane., If it is'desirable to have a one-to-one
correspondence between the flow'and itg.hodograph; the latter
must be interpreted as a "Riemann surface." {(See reference
2, pp. 27,759-60, etec.) . Lo v

-,
'

For the flow (2)
Y ) _“’..-_ (1__>-
, iz 2

The hodograph of the flow consists of all points within the
circle - ) + ' vz® = %.' Each point of the hodograph

corresponds to two'points in the =z-planse. (See fig. 2.)
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In the hodograph plane v and -8 -are polar coordi-
nates. - : :

The "logarithmic" plane is defined as the plane in
which A,

A= log v :
and -8 are the Cartesian.coordinates. The complex varlable
in the logarithmic plane is _ —
' z=>\_1e=1og(£lﬂ> (4)
dz

The transformation (4) maps the hodograph of the flow into
its image in the logarithmic plane. Note that the mapping of
the hodograph plane into the logarithmic rlane 1s independent
of the flow.

For instance, the image of the flow (2) in the logarith-
mic plane is the (doudly covered) domain bounded dby the curve

A

AN = log 2 + log cos 8, =~ %wg 8 % (8)
(See figs, 3 and 5.) L

From the basic properties of analvtic functions it fol-
lows that the complex votentidl w' also can be considered as
an analytib *unction of 2, ’ -

w = f(z) = g(&)", " ‘ (_e_s')
Forﬁingtéhce, for Ehe fiéw_(2) - ;;'ﬁ CL .

2= 1083 (1- _._> that 1s, 3z = (1 - 202y ()

and therefore

s(z) = 1 '[(1 PSR 3Y Ea zezrﬂ (8)
The streamlines in the physical plane (z-plane) corre- .
spond to the lines in the logarithmic plane along whick
' To (X,8) = Im g(2) = ¥ ' ST ) .

1s constant,
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For the flow :(2)
To(A38) = 1Im [g(Z)]' o

[-.(l -~ 26™ cos 6) + (1 - 4eM cos é:; 492A)%]%.:

. . 1 ) )
X [1 - - 5 2A)%] (10)

- 4e cos 8 + 4e

= 1
2./2

(The values of T, are given in table III and plotted in
fig. 5.) In this example the streamlines are the same in
the two sheets of.the Riemann surface. ' -

Now, let an arbitrary.apalytic function g(Z) %be given.
It always is possible to interpret thls function as the com-
plex potential (in the logarithmic plane) of an incompressible
flow in the physical plane (z-plane). The flow in the gzyplane
can be determinéd as follows. Since w(z) = g(2), and

% = log 4¥ =.1og_%% + log &2

dz dz
then . . . . o e . . -
iz. = _d_é -2 | - ? | . -
dz az
or

= dg %
Z«‘L/P'dz e az

Integration along a streamline (in the Z-plane) yields a
streamline in the z-plane. In this case the foregoing inte-
gral can Ye written in the form - . T .

‘ v . (W a .+lv~21‘! 3)
z = X+ iy = - ' cofge 6 Y./ .av
. -\ v Vg
- “ [o] . . A2 . a 2 a
-1 gsin 6 {Ye + v Yy > av
) vE Vg
o

In order that the flow be vhysically possible, it is necessary
that the streamlines do not intersect.
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Avplication of this procedure to function (4) leads dback
to the flow (2).

By means of the foregoing method of assoclating with
every analytic function the Z-plane (logarithmic plane), a
flow in.the z-plane {(physical blane) can be extended to the
case of a compressible flow. .

2. anstruction of Flows by Means .of Analytic Functions of
a‘Complex Variable (Compressible Fluid)

Consider ‘& two-dimensional subsonic potential flow of a

compressible fluid (in the z-plane). It i1s assumed that the
density p and the pressure . p ware connected by the relation

p=A +gp¥ ' C(11)

where A, o, and k :are conétants; There exists a stream
funetion V¥ (x,y) such that ' -

h'2 = e ’ v X e e —— 1
2 p Oy 2 p Ox (12)

are the components of the veloc1tv vector in the x and y
directions, respectively.

Let M ©bve the local Mach number

M= M(v) = ,,./ [aoa __%(k - 1)‘,2.!% (13) ==

o' 18 the speed of sound at rest, v the speed bf'-

the flow, 8 the angle between the velocity vectar and the
poslitive x-axis. Set
3 2 %

-.(1 - M%) 1 + h(1 - ¥M*)°in
_% : _g_ (14)
1+ (1 - M) ‘1 - h(1 - M3)

where a’

2N = log
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where’ : _ - : - . T

' 3
o= |E=1 , k>1
. k+.1 S

(If kX< 1 the definition of A must be changed. (See ref-
erence 1.) ; _ . : T L _

The logarithmic plane is defined as the plane with
Carteslian coordindtes A, 8. The complex variable in thils
plane 1is . ' -

Z = A - 16

In the Z-plane 1, which may be considered as & function
of A and 8, satisfies the egquation ' .

. a a 2
L (y)= = <a_m + O V) Ly -3 W o,y <§ﬂ + Y - 0 (15)
42 \3r2 268 dN 3zdz 32z 9%
where . -

| N o= =k + 1) |
g(1 - M2)3/2

This 1s a linear eguation and its treatment can be facili-
tated by using results from the highly developed theory of
linear partial differential ‘equations. -Let g(Z) %be an ar-
bitrary analytic function of Z. Using thls functlon, a
solution of (15) can be obtained as follows:

e (z) = g(2)

. 7 o o

+

e+ () =/ e®)(z)az, n=0,1, ...
. '-o - ..

There exist fixed functions of a real variable ¢£

Set S S _ -

H<E)s Q(n)(g)r n =1, 2, . .

such that the funotion -
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3 <§%.9> = H(2\N - 2a) [Im‘g(Z)n+ %_Q(l)(ak - 2a)Im g(l)(zj
+ 3 Q<3}(2A - 2a)Im g(a)(z) + ..,
4

+# £20) 0 o(nd(an = 24)1m g(2)(2) + . .-.} “(17)

3n
2 n!

(n a real constant) satisfies (15). (The representation (17)
is an approximation to the solution The exact formula
proved in reference 1 1g

v _ ' | l oy
W (EZ’9> = H(2\ - Ba)miizi[Im glz)

* zz LEn)! Qm(n)(zx'- za)Im'g(h)(Z)]'l(lé)

where o 1& an arditrary non-negative constant
n (n
PRSI CY
m-~> oo

In the.examﬁle-under.consideration itwfs rep;écéd by (l?%,

since the Mach number is comparatively small and the Qn n

do not differ considerably from Q(n)._ Irf, however.'tﬁe

local Mach number approaches the value 1, it 1s necessary to

use the exact formula, (Another form of formul? Sl?) is
glven in appendix I.)) The functione and n depend
only upon k and +v. They have ,been defined by a recurrence

formula and computed for n =1, 2, 3. (See reference 1,
sec.12.) Some of thém are tabulated ‘4n tadbles Ia and Ib and
plotted in diagrams Ia and Ib.

Once ¥ has bgen determined as a function of v/a and

€, the transitlon to the physical plane (z- plane) 1g given
by the formulas . ] — .
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A 2 | 3, 2 4 3
x = i/p Po ©08 e‘gye ; M w§—> av t/p Po 408 © M'we'dv
2 2
‘ov . PY ® ' .Ov Py (19)
_ P, sin 8 (WQ? + v3w§3) av + [ Po sin 6 MEWQ iv
y = - = ~ > v >
. PV 8 pv

o “o
where ‘the integration 1s performed along a streamline (1.e.,

along a line ¥ = constant) and the subseripts 6, v denote
partial differentiation, - s

In this way an arbitrarv number of streamlines in the
physical plans (z—plane) can be drawn. It should be noticed
that along each streamline the value of v/a, 1s known and

therefore also the values of the local Mach number, the pres-
sure, and the density.

The next ssction contains a dlscussion of the actual
computation of the function Y and of the streamlines in ‘the
physlical plane. T . .-

Two additional remarks may be made:

1. The series (17) converges rather slowly for values of
v in the neighborhood of v =a (i.e., M = 1). - This is
not due to a eingularity of V, since it is known that
is regular in the domain concerned. Therefore it 1s possible
to replace (17) by other expansions which converge more rap-
idly. (See reference 1, sec. 17.) The author also. will treat
‘this guestion in a future publicatiod; . . C e

2. It 1s known thatb the theory becomes especlally simple
if kX = -1. (The pressure-specific volume relation then be-
comes linear.) Therefore it is interesting to ‘know how VY
(generated by a given analytie function g(Z)) changes if k
varies in the interval (-1,2). Por this reason the computa-
tlons are carried out for two values of k, k= -0.5, and
k= 1,4 1n the example given in the following section.

‘e :

3, Actual Gomputation of the Stgeam Function, Using the

Generating Ope;ator-in the Form (17)
The actual computation of a compressible flow giveﬁ in
the logarithmic plane by an analytic function ng(Z) consists
of the followlng steps: , L
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I. Computation of the function g(2)(3)
IT. Construction of the flow in the logarithmic plane

III. Transition from the logarithmic plane to the physi-
cal plane : : )

These steps are discussed in detail in the present sec-
tion. The procedure 1is i1llustrated by constructing the com-
Pressible flow obtained from the funciion

e(z) = 2 [(1 S 2B (- zez)%] (8)

(For the case of an incompressible flow this function yields
the flow around a circular cylinder; see the first section.)

Step I.- The functions g(n>(z) have been defined in
the preceding section. 1In general, it will be impossible to
evaluate the integrals in closed fora

VA
g(n+1)(z) - g(n)(Z)dZ

S
[m<n)(7\-6) + w<n>u.e>] (an - 146)

~,

na 7’\,6 e N N }\’& .
=/ (ép(n)dX'; w(n)¢e)_+'_1f(_cp(n)de ~(Blan)  (20)
.o “o

.where

_ _(n)
Py + Y, =g
however, it-is Dossibié‘to use numerical integration. Since

g(n)(z) is an analytic functlion of a complex variable, the

4

value of the integral f g{n)(z)az is independent of the
| )

.ﬁath of integration. ;A véry convenient path consists of the
interval [(0,0), (A;0)] of the negative real axls, followed

by the interval [(A,0), (A,8)] along a line parallel to the
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8 axis (provided this path lies within the image of the flow
in the logarithmic "plane. "It this. dob's not take place,Lan_

obvious ad justment. must be madg.) "Dividing each of these in-
tervals into s subintervals Akk, ABy gives approximately

: .
g 8

g’
g(n+1)(z~) _ Z (n)A7\ Z Wk(n>A)\k + ‘ZX \Vk(n)Aek

. . _ o 5 .,
o et Ve (e (an)
) k=1

N I'n many instances it is more éonveniEnt‘to éipﬁhd';g(Zj;
Into an infinite series and then integrate term by term.
However, as a rule, function g(Z) has singularities, and
. several_series developments are needed in order to cover the
domain in which the function is to be considered, " For “the
' case .of function (8) integral [ gdZ can be computed in
closed form. Then
T T e . STl e

N z - '- - C . .
7 f g(2)dz = (1 - 292)% + log[ez -1+ (1 ~ Zez)%]

-
1+ EEE

Q - ¢
.. .- ..

and 7

;-T1(7\;6) = Im[[g(Z)c}Z} N T . - , ) -

- ' 32 * o4 1 -1
=L [—(l - ZeR'cose_) + (1 - B cos 6 + ’-Lez?\)zf- -g' —( Z#>+ 3 tan

YA . . _ ST "'%
( 2%‘6% sin 8 + [-(1 - 2e™ cogle) (1 - e co; 8 + ﬁeaxy%J %} .-(23)
3]

\ 2%(5 cos § - 1) - {(1 ~ ZQK cos 8) + (1 - be® cos 8 + lUe

The values of T (A, 9) (10), and of T,(A,8) for various
* values of" (K 6) are givehlin tadble II. . T

- e

The functions g, T,(A,8), and T,(A,6) can be repre-
sentedxby;theffollowing series, TFor »0.691 < A < O: )
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- )
z/2 ~%/2 -3%[2 52/2
2 -7
g:i,\/'a[e - = e - 8 « === 8
4 32 128
45 e_'7Z/2 _ }
2048
— [ A/2 -A -3A/2
T, =42 [e / cos (-%)_- % e /2 cog <%> - -('3% e / cos <38>

S 2048 L o
1, =J3 [2<e}‘/3 cos OF )*% ) %"(;-a/z cos (8) ¢ )

5 « 2 (%2 - ) 7 4 2 < -53/2 56 )
+E.2..x E(_e cos Gg) +T§§x§ e cos(z) 1

o (22) - a5 e—7>\/2__po_s.(3§-> ... ] \ (214)

~-7A/2
+ 45 _ x 2 (e / ¢cos G’ﬁ) - l) + ., . .]
. 2048 7 2

/
For A < ~0,691:
g = -2 1+-1'-ezz+ezz+-1‘-¥5—e4z+-?-e5z+. coe
2 8 2
2A 3N 4A
To=-e2[-12-§ gin 28 + e sin 36’+-1§§e sin 48
7. 5N J
+ — -8 sin 58 + ., . .
e
T, = .2 [e . 2 62 sin(28) + 2 o®® sin(36) + 52 o s1n(s6)
+ o= % sin(56) 4“,’;:} +1.14

}(25)
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Step II.~ The construction of the. flow in the logarith-
mic plane can be convenlently performed on. specially scaled
graph paper, One (Cartesian) coordinate’ axlis ie taken as
the 6-axls, the other as the M-axis. In addition to the
values of M gcales showing the corresponding values of
A(M) and v/e, should be indicated. Such scales may be
prepared once and for all, for each given value of k. (See
(11) and (13).) .In dlagrams Ia and Ib. these scales are
drawn for k = —0.5 and k = 1.4,

The values found for: .Im g(n) are entered on this paper
and the lines

g(n>(k - 18) '="constant - " (26)
are drawn. In this way thére isloﬁtaineduby graphlcal inter-
polation the values of the functions

T(¥,8) = Im-{g<n) [A(M) - 19}}- (27)
The function V(M,8') 1s determined by formula (l?) ..
In applying this formula it i's necessary to choose a definite

value for the arhitrarv ‘sonstant o, In general, it 1is. pos-
sible to choose 'a& 80 that the terms in the series (17} be-
come .small for large vailue. .of -M. ,In the example under con-

sideration o 1s set equal to 0.1,

In order .to obtain the function w(M,BJ'hit is necessary
to evaluate the products

P ane, (n,6); - 3 ot ann, ), L L L (28)

.

2

The values of the'functions.lQ(n)(M) can be tabulated once
and for all (for & giveén ¥alue of '‘k)zi-The above products

can be evaluated graphically,; by means:of:a simple]nomquqm,
shown in figure 4.

Adding a finlte nuhber of the terms in the series (16)
and multiplying by H(M) (a function tabulated once and for
all) (ses tables.Ia, Ib) gives an approximate eXpres¥ion for
Vv(M,8). Finally, the lines V(M,8) = constant (stream
lines) are drawn. .

For function (8) ¢(M,8) has been computed for k = ~0,5
and k = 1,4, For k = -0.5 the series has been replaced by
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\h(M 8) = W(M,8; - 0.5)

| -{H(zx - 0. z) [T (M,8)
+%,Q(1)(z>\ - 0.2)m, (1, e)]} L = A(M) (29)

For k = 1.4 the series has been replaced by

Y (M,8) = w(M,8; 1.4)
= In {H(BA - 0.2) [TO(M,Q)'f %;qcl)(zx - 0,2)7,(M,6)

;.é Q(B)(ZA.~,°-2)?3(319)J } v A= A (M) | (30)

The streamlines (in the logarithmic plane) are shown in flg-
ure 6 (k = -0.5) .and figure 7 .(k = 1 4)

Step IIY.- The flow is firset transferred from the loga-
rithmic plane to the hodograph plane.’ Thisg..is done by using
(for the hodograph plane) polar coordinaté graph paper. The
polar coordinates in-the hodograph plane are v/ao and O,
_Since for each plane the values of v/a and O are known,

the transition presents no diffioulties

. The hodograph- streamlines of the flow generated Dby the
function (8) ‘are shown in figure 8 (for k = -0.5) and in
figure 9 (for k = 1,4).

In order to obtain the streamlines in'the phvsical vplane
it 1e necessary to compute the integrals (19) along the
streamlines in the hodogpaph:plane.l

The partial derivaﬁiv%s of V¥ wentering 'in the inte-~
‘grande caf-be -expredses a¥ follows C : ’

\I/v'-_-'. R(O)Im g +lR(.1_)—I..Im g +% R(a):Im g(l)

Z
(=) (=)

.‘j.l',=+ R In g +i. 0. . __(31)

i’

1

(See reference 1, sec. 12.)
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where a
(o) _ g & . (1) x5 L1.gof1) @A
R = H =, R = Hv + 3 HQ - : 1
S o X s . ;y
(n) [ an - 2)1 (n_l) 2n(2n —'1) (n)] aA N30y
R - HQ _ . HQ (32)
22872(n L 1)1 ( ) 4n av)
s
n o= 2,%, . . . ~a},
and .

Wa'¥~Ha{ﬁe“gé~+.%ﬁ§(é& Re g + % Q(2);Re:§(})_. o
. %_Q(w e (3) 4 .. J (33)

(o) g (s)

The. values of R 77", . . ., forr k = 1.4 are given in
table IDb. . ' ) ' - S i

The formulas for the derivatives of Ty, T3 for the
case of the functi'on .(8) are given in ‘appendix”II., The val-
uves of the derivatives of* § are glven'iin table III.

The function - p - which enters in the integrand also can
be tabulated once and for all,. '

The integration 1s 50 be performed graphically. When a
number of streamlines in the physical plane ars drawn, a
rather complote picture of the flow is obtained. In fact,.
for each point in the physical plane for which the gor:etpona~
ing point in the hodograph plans is known, the value of .the
speed, pressurs, local Mach number, and so forth, also is
known.

Por the function (8) 1t_turné out that a part of the
streamlines Y = 0 forms a closed contour. The streamline
starts at - and divides 'itself into two branches at the
first. stagnation.point. The two parts come together at the
second stagnation point Thyus a flow around an obstacle, has
been obtained. . The boundary of the obstacle (for k = -O 5)
i's shown in fi?ure lO ’

For k = 1.4, see p. 21.
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4., Determination of the Function g(2) e .
Whichngaés to a Plow of Desired Typg

It has been shown that every analytic function g(Z)
leads to a compressible flow in the z~plane (physical plane).
T?e)tvpe of the flow obtained thus depends upon the cholce of

Z

If 1t is deslired to obtain a flow around a glven obsta-
cle, or at lecast around an dbstaclo simllar to a given one,
it 1is well to procecd as follows:

First, determine the incompressidble flow around the given
obstacle and obtaln the complex potentlal as a function of
log v — 16. (By using Theodorsen's method (reference 3) this
problem can always be solved.) This function, g(2), 1is
transformed into a stream functlon of a compressible flow.
Assume that the compre531ble flow in the a-plane 1s a flow
around a closed body.?

Let B be the original profile, B; the boundary of
the obstacle of the compressible flow. Clearly, B; will

be different from 3B. Tor instance, 1f B 1is a circle, there
is obtained (for certain values of the arbitrary constant «
entering in the computatlons) the profile shown in figure 10.
The proflle distortion can be represented by assoclating to
each point =z of B a polnt =z of B, and writing

zl=z+d.

(z, z¥, d are comolex numbers), Now, the profile B*
the points of which are given by. :

¥ =z - 4

can be described as belng distorted "in the opposite direc-
tion." If" ons were to construoct the incompressible flow

lNecegsary and sufficient conditions for a function
w(v/ao, 8) to lead to a flow around a closed body are de-
rived in reference 1, sec. 14 . If the original profile is
symmetric with respect to both the real and the imaginary
axis, the combressible flow pattern will always flow around
a closed profile, ) : P
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around B*, comnute ite - complex potentlal in the logarithmic
plane, g*(z) and uee this functlion to. dbtain a compresgi—
ble flow, 1t mlght be expescted that a ' flow dround a profile
Bz would be obtained which better approximates ‘B, This

procedure may be repeated. ‘ ’ IS

In general, the function g(2Z) will be of a very compli-
cated form, even if the complex potential in the physical
plane is a simple expression. Therefore, it 1s conveniént to
know functions which can be expressed in a closed form by ’
neans of elementary functions, and‘ which are potentials of
lncompreselble flows around closed profiles ‘(in the physical
plane Bach such. function leads to compressible flows of
similar type, and the computation of these- flows is_relatively
simple. : . o

A function of the desired type depending upon three arbi—
trary parameters -will presently be constructed. By the follow-
ing successive. transformations, g as a functlion of Z 1is
determinsd: .° : A

g =12, (34)
za_.—.__ﬂ_z_%__,,bf<A<oo, 0< 06 <o~ 7 “T(3B)
C + Zrl._ ._ . . . A - - R
V/z 2 4 sz ¢ 4+ 27,2 (36)
‘m + 12, : e '
Z4 = -3 102‘ hh’i—-“—""'r", . rea.l_. . . (37) R
s 1z, eal. . 7
2, = (2, = _> (38)
Z-ﬁ-log Z C . o (3?)

..

Here, A,iC,'m 'are 'arbitrary constants. The right half .
plane -of thé~  Zy-plane - is teken'into the domaing indicated

in figurée 11b t6 114, dnd into' the domain indicated in flg*
ure lZ. _Now, consider & Riemann surface consisting of two
sheets ' sﬁréaa 6ver ‘the -dbhmain ‘6f the Zg-plane (fig. 12) and_
poss9531ng a branch ‘point at the point .o (corresponding to
g = ). Functibn gCZ )- maps this Riemann surface into the
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exterior of a slit along the real “axls (in %he g—plane)
Thersfore the domain in 2 s~Plane can be interpreted as a
hodograph of a circulation—free flow around & slender dymmet-
ric body with a sharp trailing edge, and g 1is the complex
potential of the flew (provided the constants are chosen Lin
an appropriate way).

The . Z-plane 1is the logarithmic plane for the above-
mentloned flow and therefore g(Z)_ can be transformed into.
a stream functlion of a compressible flow by the method given
in the preceding sections . -

The computation will be facilitated by the relatively
gimple form of - g. . _ -

ICONGLUDING REMARKS

S . : - ¢ D T I A

P B
This paper employs the hodograph method introduced 1nto

the theory of compressible fluids by Chaplygin (reference 4)
in 1902.

An essential feature of the hodograph method is that the
rrinciple of superposgition of solutions ?each of which repre-

sents a stream function in the hodograph blane) holds. If
vy(v,6), wvso(v,0), . . . are solutions of the differential
equation (17) and if' A, A,, . . . are arditrary constants,

‘then Y(v,6) = % AnwnCv;e) is also a solution of (17), One

of the main problems of the theory consists in determining
functions WY(v,8) which yield in physical plane flows around
closed bodies all’ streamlines starting and ending at infinity.

Until the present time, no solutions of this kind have
been given except that of Von Karman (reference 5) and Taien
(reference 6), who replaced the correct pressure denslty re-

lation p = Op'** by p = A4 + O/p. This simplification
vields & rough spproximation and can be employed only when
the maximum speed is sufficiently small,

In the present paper a solution which fulfills the con-
ditions described above and which is based on the true pres-
‘sure densitv relation is derived for the first ‘time . :

"
t

lwa examples h&ve been considered: one correaponding to
a’ nearly circ¢ular dom&in, the other correspording to & slen-
der obstacle., In the fTirst case the computation of the
stream pattern has been carried out completely,
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- The foregoing method may be applied to other profiles dy
elther of two alternative schemes. Another analytic functlon
g(2) may be chosen and the proéedure employed in the present
paper repeated, A combination of simple solutlons, such as
those ‘given by Chaplyvgin (reference 4§ ‘Bers and Gelbart (ref-
erence 7), or the author {(reference 8, p. 23 and reference 9,
P. 277) may be added to either of the stream functions fouqd__
in the afore-mentioned éxamples. 1In each instance stream
functions may be found thet fulfill the previously described

conditions. . , : ;._:__ —

The method can be ‘extended to partly suversonic flows.
One of the advantages of the foregoing method is that a 1arge
part of the computation is independent of the function g.
These computations cam be carried out once and for all and o
tabulated, which will greatly facilitate the application of
the method.

&4s has besn seen ¥n the example under consideration, the
actual calculation of the (subsonic) flow corresponding to a
given function g(Z) does not entail any theoretical diffi- )
cultles. : On 'the other hand, it does involve a very consider-
able amount of numerical computation. It 1s, consequently,
expedlient to use special computational devices, such as punch
card machines, the differential analyszéer, and so forth, in
order to overcome these difficulties. The method described
ln the present section has, however, been' developed" with the
assumption that no such special devices (except perhaps an
ordinary computing (multiplication” and addition) machiné are
availabdle, X

In the sequel to this report the author will dieEuss the

use to which these devices may be put in computing compressi-
ble fluid flows.?

L)

Brown University,
Providence, R. I., May 15, 1944.

1The flow in the phvsical plane. for k ='1.4" will be
described on occasion as well as several aerodynamic conse-
guences which follow from the present results, . - —
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APPENDIX I

Other Form of Formula (17)

It is often more convenient to use an operator which
transforms analytic functions into stream functione and
which differs slightly from (17). This operator has the
form .

vl G

-1

+

z-(1.~ t2)>dt/<l - t3>%

+1 - 1
+ zq(l)/ 52 f(% Z(1 - t2)> at/(1 - £2)%
.‘—1 . o . ) . e e

+1
+ l.zzq(z) t* %Z(:l - t2)> at/(1 - tz)% R ]}

This eperator can be obtained from (17) by setting -
: 41
g(2) = / £ (% Z(1 - t3)> 4t/(1 - %
' ]

-1 ‘p

or
m/a

. 2 :
£(2) = 3/ z sin o $8(22 sln 9) 4, . £(0)
‘ ., a(Z sin2 @) ™

(o)
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APPENDIX II

Pormulas for the Derivatives of T for the Function (8)

ar, 7y 1 A 1 oa oA\ T3
35 =_.§-[<§ ~ 8 cos_?) + <Z - 8 gos g + e ) ]
' ~%
x[l—%_]:—ekcose+ez7\>:‘ + &__8sin 9 sinG[(_]_._e coaG)
A AN\ % 1A oA J~3/2
+ (i —-~ 8 cosg 6 + e > ] [— ~ 8" cos B + e ]
4 4
oTo _ o, e [1 A | 2 ]-%
ShooC "ot 8 Fg oty [4“6 cos B *+ ¢
X [l - l (l - ek caos B + 82A> J
2 \4
) |’ | 1 : ]
' 2%
[[—(L - e cos 8) (— - e cos 6 +-92A> ]
. N2
r ' %
2 G e ) Go P e e BF]
2 .
<L + e7\ cos § + 92?\> 3/a
4
) . . X %
%@i = _[_ % ~ " cos 9) +-<% ~ e" cos 6 + 32A> ]
X [1 + l;(i - ek cos 8 + 32A>_&]
. 2 \4
LI

SA
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. Table Ta
(¥ = -0.5; X= 0.1)
" Functions used in -computing the stream functions
of a compressible flow.
oz | M v/e, g | W
~2.82 0.265 | 0.272 | 1.000 | -0.0299
~1.96 0.403 | 0.430 | 1.000 | -0.0602
~1.612 | 0.473 | 0.518 | 1.002 | -0.0909
. ~l.51 0.497 | 0.551 | 1.003 | -0.1115
~1.388 | 0.528 | 0.593 | 1.004 | -0.1267
~0.79 0.690 | 0.861 | 1.015 | -0.3008
. ~0.394 { 0.820 | 1.185 | 1.046 | -0.7033
-0.188 | 0.901 | 1.440 | 1.111 | -1.5871
’ -0.132 | 0.921 | 1.527 | 1.145 | -2.2682
' Table Ib. - The values of F, H, Q(n), ré®) ( for k = lu, o = 0.1): Functions used in computing
the stream-function of a compressible flow. :
5| ¥ |va | F | E @ @ @ QW | g} g1} g2 2
- oo .0000 |.0000| .0000|1.0000{ .000G| .0OOC 0000 .0000 0000 0000 »0000
_-3.8772' 21000 |.0999 0001 { 1.0000| .0000| .00OL -.0001 .0002 | 9.9600{ .0010| ~.0020 0000
-2.5096] .2000 |.1992| .00i1|1.0002| -.0009| .0O15 -.0013 .0008 | 4.9197] ..0030|{ -.0103 L0148
~1.7327 | .3000 |.2972 L0064 | 1.0014| -.0056 0085 -.0083 <0064 | 3.2141) 0090 -.0411 0670
-1.2071| .4000 |.3938 | .0256 | 1.0042 20199 | .0342 ~.0395 .0374 | 2.3371| .0235| ~.1203 2307
-.8238 | .5000 | 4879 | .0866 1.0100( -.057 | 1160 -.1680 2116 | 1.7947| .0520] -.3152 7600
. 6706 .5500 {.5341| .1565|1.0167| -.0935| .210L —.3496 o521 {1.,5901| .0755| -.5082 1.4060
-.5365 | .6000 |.5795 | .2839 | 1.0247| -.1501| .3823 =49 1.3527 1.41;0 1088 [ -.8277 2.6049
~204 | 6500 |.6242 | .5245{1.0359| -~.2401] .7089 | ~31.6847 3.7802 |1.2620| .1566 | -1.3796 5.4353
-.3203 | .7000 |.6680 | 1.0060 |1.0515| -.3870 | 1.3663 | ~4.0770 11.7558 {1.1254 | 2275 | -2.3946 | 11.8168
—-.2207 | .7500 |.7110 _2.0623 1.0811 | -.6959 | 2.8304 | -12.7121 51.4676
-.1615 | 8000 {.7532 | 4.6583 | 1.1049 | -1.0896 | 6.4088 | -35.1357 | 194.4562 | .8847 | .5248 | -9.0769 | 81.6373
1015 | .8500 |.7945 |12.5662 | 1.1517 | ~2.0186 |17.4338 | -149.6938 | 954.643 | JTTL7| 8743 |-21.9464 | 306.6745
. -.0535 | .9000 {.8349 |46.6378 |1.2275 | -4.3787 [65.3783 | -997.3960 |16412.652 | .6555 {L.6804 |-71.6427 |1772.3621
0000 |1.0000 {.9129 L °0 ’ = - o0 oo - oo .°<! *. 0000 o0 -00 oo



http://www.abbottaerospace.com/technical-library

‘WACA TR No. 973 IABLE IT

Computation of the stream-function (in the logarithmic plane) of a
compressible flow generated by the analytic function (8).

-A e To Ty L T Tz W(K=-0.5) \W¥=1.4)
0.08| 0.05] -0.0878| -0.0020 | 0.0000 | +0.0000| -0.0365| -0.0400
0.02| 0.20| +0.0002 | -0.0402 |-0.0008 | +0.Q001] +0.0250| +0.0105
0.02] 0.40| +0.0968 | ~0.1560 |-0.0049 | +0.0021{ +0.1950| +0.0994
0.02| 0.60.| +0.2051 | -0.3318 |-Q.0160 | +0.010% +0.41683| +0.0702
0.02| 0.80| +0.2975| -0.5588 |-0.0413 | +0.0826] +0.6518| -0.3030
0,08| 0.08| -0.1159 { ~0.0044 |-0.0003 | +0.0000| =-0.1162| -0.121B
"0.06} 0.30| -0.0251 | -0.0892 |-0.0058 | +0.0006| +0.0144| -0.0187
0.08| 0.34| -0.0019 | -0.1148 |-0.0074 | +0.0008| +0.0496 | +0.0084
0.08| 0.40 | +0.0845 | -0.1582 |-0.0105 | +0.0016] +0.1062 | +0.0453
0.06| 0.50 | +0.0964 | -0.2418 }-0.0174 | +0.0041} +0.2089 | +0.1008
0.06| 0.70 | +0.2098 [ -0.4494 |-0.0890 | +0.0167| +0.4155| +0.1387
0.08} 0.90 | +0.2973 |.-0.7016 |-0.0755 | +0,0466/ +0.6181| +0.0038
0.06| 1,10 | +0.3440 | -1.015¢ |-0.1340 | +0.1048| +0.8066 | -0.4074
0.10] 0.15] -0.1791 | -0.0154 {-0.0019 | +0.0000| -0.1870} -0.18582
0.10| 0.35| -0,0625 | ~0.1200 |-0.0127 | +0.0005| +0.0219| -0.0574
0.10| 0.50 | +0.0414 | -0.8448 |-0.0246 | +0,0029| +0.1258| +0.0538
0.10| 0.80 | +0.1073 | -0.3442 |-0.0363 | +0.0078| +0.2266| +0.1130
0.10| 0.70 | +0.1@84 | -0.4564 |-0.0505 | +0.0135| +0.3248| +0.1652
0.10| 1.00 | +0.2975 | ~0.8540 |-0.1887 | +0.0683| +0.5936| +0.1361
0.20| 0.22 | -0.8504 | -0.0184 (-0.0071 | -0.0003| -0.3487| -0.8505
0.20) 0.40} -0.1802 | ~0.1468 |-0.0255 | -0.0017/ -0.1534| -0.185%
0.20| 0.70 | -0.0018 | ~0.5354 |-0.0768 | +0.0044| +0.1177| +0.0098
0.20| 0.80.| +0,185¢ | ~0.5972 |-0.0931 | +0.0105| +0.2592 | +0.1310
0.20 1.00 | +0.2204 | ~0.8790 |-0.1323 | +0.0313| +0.4179| +0.2188
0.20| 1,10 | +0.2544 | -1.0328 |-0.1481 | +0.0536| +0.4864 | +0.2322
0.30| 0,30 | -0.4688 | +0.0306 |+0.0162 | -0.0050| -0.4689 | -0.4692
0.80 | 0.75 | +0,0099 | -0.5364 |[-0.1034 | -0.0008| +0.0886 | +0.0164
0.80 | 0.85 | +0.0753 | ~0.6758 |-0.2058 | +0.0060| +0.1750 | +0.0743
0.80| 0.95 | +0.1887 | ~0.8222 |-0.2398 | +0.0250| +0.2504 | +0.1835
0.30 | 1.10 | +0.1804 | -1.0546 [-0.2491 | +0.0385| +0.3467 | +0.1888
0.30 | 1.20 | +0.2209 | -1.2164 |-0.3078 | +0.0422] +0.401% | +0.2166
0.40| 0.85 [ -0.5617 | —-0.0258 -0.5616 | ~0.5577
0.40 | 0.80 | -0.2084 | -0.3274 -0.1682 | ~0.1542
0.40 | 0.85 | +0.0081 | -0.8802 +0.0843 | +0.1111
0.40 | 0.93 | +0.0568 | -0.8016 +0.1457 | +0.1770
0.40 | 1.05 | +0,1147 | ~0.9200 +0.2247 | +0.2632
0.40 | 1.30 | +0.1941 | -1.4062 C +0.3504
0.80 | 0.40| -0.6396| +0.0278 -0.6360 |~0,8376
0.60 | 0.45| -0.5273| -~0.04=2 -0.5245 {-0.5241
0.60 | 0.60| -0.8070| -0.2742 -0.2892 |-0.2864
0.60 | 0.75| -0.1572| -0.5112 ~0.1289 |-0.1189
0.60 | 0.96| -0.0208| -0.8364 +0,0336 |+0,0418
0.60 | 1.00{ +0.0081| -0.9256 +0,0684 |+0.0745
0.680 | 1.16| +0.0683| -1.1744 +0.1446
0.80 | 0.50| -0.8270| -0.0318 -0.3959 |-~0.3962
0.80 | 0.70| -0.2158| -0.2878 -0.2028 |-0.2148
0.80 | 0.90| -0.0898| -~0.7878], -0.0840 |~0.0880
0.80 | 1.05| -0.0209) -1.0040 : +0.0143 }~0.0169
0.80 | 1.10| -0.0017] ~1.0934 +0.0366 |+0.0010
0,80 | 1.20| +0.03la{ -~1.2724 +0.0780 |+0.0347
0.80 | 1.40| +0.080L| ~1.8374 +0.1874 |
0.80 {-0.02| -0.2981| +l.1928 -0.2583 |-0.3011
1.00 | 0.54| ~0.2520| -0.0436 -0.2835 |-0.2519
1.00 | 0.75| -0.1561| -0.4426 -0.1452 |-0.1550
1.00 ! 1.00| ~0.0389| -0.9050 -0.0362 |-0.0366 .
1.00 | 1.10] ~0.0038| -1.0902 .-0.0085 |-0.0011
1.00 | 1.20} +0.0015| -1.2752 +0,0257 |+0.0047
1.00 | 1.35] +0.0843| -1.5564 +0.0621 +0.0382
1.00 | 0.00}| ~0.3079| +1l.4728] - -0.2306 [-0.3116
1.20 | 0,58} ~0.1515| -0.0828 -0.1508 |-0.1513
1.20 | 0.80}| -0.1022| -0.5116 -0.0945 |-0.1009
1.20 | 1.05] -0.0426 | -0.9890 -0.02877 |-0.0401
1.20 | 1.15| -0.0214 ! -1.1792 -0.0037 i-0.0184
1.20 | l.22]| -0.0080} -1.3126 +0.0117 1-0.0048
1.20 | 1.80} +0.0059| -1.4850 +0.0279 [+0.0096
1,20 | 1.40} +0,0212 | -1.6566 +0.0462 [+0.0253
1.20 |-0.04[ -0.2140| +1.2460 -0.0401" |-0.0245
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Table III -
(k = -0.5; = +0.1)

Computation. of the profile in the physical plahe. The flow is

generated by the function

(8).

The values given below are

computed for points where Y = 0 (approximately).

a7

A A - el e Yy Yy ax/dA dy/aA
-0.194 | -0.294 | 0.70 | 0.8669| 0.8476| -0.5699 | -0.4800
-0.060 | -0.160 | 0.40 | 0.23986| 0.8505 | =-0.4339 | -0.1834
~1.000 | -1.100 | 1.20 | 0.1251| 0.3829 | -0.3485 | -0.8962
-0.060 | -0.160 | 0.30 | 0.1044| 1.1894| -0.5190 | -0.1605
-0.094 | -0.194 | 0.50 | 0.8309| 0.8525 | -0.4740 | -0.2580
-0.600 | -0.700 | 1.00 | 0.4385| 0.5050| -0.6850 | -1.0869
~1.410 | -1.510 | 1.30 | -0.0165| 0.2453 | -0.2385 | -0.8590
-2.000 | -2.100 | 1.30 | ~0.0902| 0.0272| -0.5305 | -1.9110
-1.000 | -1.100 |-0.03 | 6.9885| -1.8565 | 64.3002 | -1.8298
-1.700 | -1.800 |~0.10 | -0.0062| -0.1291 | 0.86075 | -0.0609
-2,000 | -2.100 |-0.15 | -0.0792| -0.0572 | 1.0191 | -0.1540
~0.720 | -0.820 |~0.02 |-12.9584|-146,8974 | 245.4658 | -4.8703
-0.094 | -0.194 | 0.36 | 0.3748| 1.0478| -0.5913 | -0.2259
-0.720 | -0.820 | -0.02 | -12.9584|-146.8974 | 243.4653 | ~4.8703
-0.094 | -0.194 | 0.36 | 0.8748| 1.0478| -0.5913 | -0.2859
-0.197 | -0.297 | 0.51 | 0.5404| 0.88581| -0.7775 [ ~0.4400
-0.396 | -0.496 | 0.78 | 0.5105| 0.,6564| -0.8152 | -0.8065
-1.000 | -1.100 | 1.08 | 0.1524| 0.2950 | =-0.4009 | -0.7593
-1.410 | -1.510 | 1.17 | -0.0153| 0.1368 | -0,1885 | -0.4448

0.000 | -0.100 | 0.00 0.6125
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NACA TN No. 973 Figs. 1,2,3,4

Figure 2 i
Figure 3
__\\
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\ ..‘
A% >= 1
J

Figure 4.- Nomogram for the products (28}, cos o = 1/Q(M).

If Oa = T(#,037), Ob = T(M,02), ..., then OA =
Q(M)T(M,81), OB = QM)T(,82), ... . An obvious adjustment
is made when Q(M) < % By this procedure we may obtain any
of the products Q(Y P
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Figure 8.~ The hodograph of the compressible fluid
flow, k = -0.5, @ = 0.1, M¥Mmax = 0.9,
Mo = 0.52.
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NACA TH No. 973 : . ) Fig. 9

Figure Y.~ The hodograph of the compressible fluid
flow. k = 1.4.-, o = O.l, Mmax = 0.77,
Mo = 0.32.
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Figure 10.- The boundary, By, of the obstacle. k = -0.5, o
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