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: SUMMARY

S-N curves are derived for aluminrum wing and tail structures by
fitting various regression models to 246 full-scale constant-amplitude fatigue
; test results from twelve types of aircraft structures. The derived curves were
g tested by comparing the predicted lives with actual test results of various
aircraft structures fatigue tested to variable-amplitude loads spectra. More

reliable predictions resulted from these derived S-N curves than from existing
S-N curves.
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RESUME '3

Les courbes de fatigue relatives aux structures d’aile et d’empennage :

sont obtenues grace 3 I’étude, au moyen de modéles basés sur la méthode de R

regression, des 246 résultats des essais de fatigue en vraie grandeur, et 3 ampli- 3

tude constante, entrepris sur douze types de cellules d’avion. Les courbes ;

obtenues ont été contrdlées en comparant les durées de vie prévues aux ’

résultats des essais de fatigue réels effectués, suivant un spectre de charges ;
d’amplitude variable, sur différentes cellules d’avion. Ces nouvelles courbes

permettent des prédictions plus fiables qu’avec les courbes de fatigue exis- . ‘J

tantes. ;
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CORRELATION OF FATIGUE DATA FOR ALUMINUM
AIRCRAFT WING AND TAIL STRUCTURES *

1.0 INTRODUCTION

This document establishes more consistent S-N curves for the fatigue life prediction of alu-
: minum aircraft wing structures than the presently available RAeS-ESDU S-N curves for “Typical Wings
| and Tailplanes’ (Ref. 1).

TR

EUFR

Constant-amplitude fatigue test results from 246 aircraft wings and tails from twelve aircraft
types were pooled and various regression models were fitted in order to ol:tain mathematical expréssions
for sets of S-N curves.

L e Lo A

These curves and the existing RAeS-ESDU curves were then used to predict the lives of
variable-amplitude tests and the calculated lives were compared with the actual test results.

In the life calculations the method of linear cumulative damsge (Palmgren-Miner Rule) was
utilized.

2.0 SN CURVES DERIVED FROM FULL-SCALE STRUCTURES

When estimating the life of a-wing structure when structural details and an extensive stress
analysis of the wing are not available it is normally better to use S-N curves derived from built-up struc-
tures than those derived from notched material coupons. Reasons for this include the fact that there
is no fretting in a simple specimen and a simple specimen has only one load path whereas many struc-
tures are redundant.

R AeS-ESDU published a set of S-N curves derived from 137 full-scale fatigue tests on wings
and tailplanes of various aluminum alloy aircraft structures (Ref. 1). These data and curves are re-
produced in Figures 1 and 2.

Upon inspection of Figure 2 it is noticed that the curves do not follow the same general
trend. It is easily seen that the line for five ksi mean stress does not follow the pattern of the lines for
the other mean stresses. It is understood that the curves were drawn by “eye’ and to illustrate this
inconsistency the slopes and intercepts of the lines were plotted.

Straight lines on log-log plots can be expressed by the equations

log;o N A + Blogy, S,

]

or log;yS, = C + Dlog, o N

The coefficients A, B, C and D were calculated for the lines shown in Figure 2 and their
values were plotted versus mean stress in the graphs shown in Figure 3. The discontinuities in the
curves tend to confirm that a mathematical analysis was not performed on the data.

Because of this and together with the fact that many additional data are now available it
was decided to re-analyze the data and to include as many new data as could be obtained.

*  The work in this report is a summary of the author’s Master’s Thesis submitted at the University
of Waterloo, Waterloo, Ontario, Canada.
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3.0 CONSTANT-AMPLITUDE FATIGUE TEST RESULTS

In a literature search approximately 400 full-scale test results were located; however, only

246 were used in the analysis. The criteria for data selection were as follows:

1) The nominal stresses in the failure regions were well defined.

2) Only data from constant-amplitude tests were used in the analysis..

3) .All data used had fatigue lives in the range 103 < N < 107 cycles.
4) All data used were from tests conducted at room temperature.
3 Table 1 lists the types of structures, the number of results used, and the references from
4 which they were obtained. Reference 16 gives a more detailed list of the test results used in the anal-
3 ysis. The test results are plotted in Figures 4 and 5, these figures showing the test results for the
Al-Cu-Mg slloys (e.g. 2024, and similar alloys) and the Al-Zn-Mg alloys (e.g. 7075) respectively.
E 3.1 Definitions, Assumptions, and Other Relevant Information

1. Approximately three-quarters of the structures were manufactured from Al-Cu-Mg alloys

and.one-quarter of the structures from Al-Zn-Mg alloys. Preliminary analysis showed that a
large diffexcsice in fatigue life existed between these two types ¢f structures; thus, allowance
had to be made for this in the analysis.

Failure was defined as final or catastrophic failure, i.e. the applied load could no longer be
supported by the structure. An analysis defining crack initiation as failure would be diffi-
cult in that many airframes had some service history before fatigue testing and a portion of
these aircraft already had cracks in fatigue-critical regions.

Some of the wings used in the R AeS analysis and also the present analysis vere not cycled
to complete failure. Some probable reasons were:

i)  toreduce the time required for testing,
ii) inability of the test rig to cycle only one half of a wing, and
iii) to avoid damage to the test apparatus.

The lives of these wings were estimated by their respective researchers. These estimates were
based upon the propagation rates of fatigue cracks in the specimen under consideration. Com-
parison with lives and crack propagation rates were also available from other specimens tested
at the same load range.

The stresses used in the analysis were nominal or gross-section stresses in or near the fatigue-
critical region. The actual stress in the initiation area was usually not known unless deter-
mined by sophisticated methods of stress analysis.

In general, two types of loading rigs, hydraulic and vibration, were used for fatigue testing.
Ford and Payne (Ref. 4) found that in their tests on Mustang wings there was no significant
difference in the variance and mean of the lives of two sets of several wings tested at the
same load level in different loading rigs, one a hydraulic type and one a vibration type.

The precision with which loads were controlled in the various fatigue tests is unknown as
not all the references discussed details of the testing methods, equipment, calibration
procedures, and methods of load monitoring. This fact does add an unknown quantity of
scatter to the results of the analysis.
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7. It was assumed that the geometries of these various structures were similar in that being fuli-
scale structures they all contained similar stress concentiations such as holes, rivets, bolts,
hydraulic fittings, changes in section, cutouts, stiffeners, reinforcements, surface attachments,
etc., all of which are potential sources of crack initiation.

3.2 Geaeral Comments on Fatigue Tests

Data from many structures found in the references could not be used in the analysis because
of a lack of stress data for the failure locations. Probably some of this information was not published
at the time of the tests for security reasons. Also, even though some references to structural fatigue
tests prior to the 1950’s were found, most reports from this era were either no longer in existence or
not easily obtained. Other test results are probably available from the aircraft industry, such as results
of tests that were published for internal use and not widely circulated.

4,0 ANALYSIS OF RESULTS
In the present analysis the fatigue life has been assumed to be a function of applied loads

and the material (in this case either Al-Cu-Mg or Al-Zn-Mg alloy). The loads on a structure can be
reduced to the form S, .., * S, ; thus, for our purposes the fatigue life can be represented by

N = f (S eqns Syr» Material)

4.1 Mathematical Models

Four mathematical models were fitted to the data using the method of least-squares. The
models proposed were of the following form:

logjg N = £, (S,) * 5 (S,) + f; (M)

The various regression models were compared using statistics such as standard error of esti-
mate and coefficient of correlation.

4.1.1 Log N Versus Log S, Curves

The first model was:

logyo N = by + by §;, + by S} + by S, + b logy S,

where S| and S, are in ksi. In this model f; is a cubic polynomial in mean stress, f, is log-linear in
alternating stress, and f; was zero as at this stage it was not yet realized that structures manufactured
from different aluminum alloys would have significantly different lives. This model yielded a family
of straight lines on log-log (log N vs. log S, ) paper.

: In order to reduce the number of parameters, the cubic polynomial f; for interpolating

3 mean stress was replaced by a logarithmic function, log;, (S,, + 5). An arbitrary constant of 5 was
added to the mean stress so that the expression would be valid for S;; = 0 and also could be extra-
polated to mean stresses slightly less than zero if desired.

With the logarithmic interpolation for mean stress a slightly better correlation resulted, the
slopes of the lines of the two models differing by less than 0.2% and the lines were almost coincident.
Therefore the logarithmic function for the interpolation of mean stress was retaine:d.-in all the regressions.
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From the results it was also evident. that there were significant differences in the lives of
structures of the two material types. To account for this a dummy variable for material type was used.

The model then became

loglo N = bl + b’_) loglo (Sm + 5) + b3 loglo S:l + b4 M (S-Nscurve No. 1)

where M
M

0 for Al-Cu-Mg Alloys
1 for Al-Zn-Mg Alloys

With the dummy variable, the S-N curves for the two alloys would he of similar shape, only
displaced along the log N axis by the value of the coefficient of M (b, in this case).

Figure 6 shows S-N Curve No. 1 for the Al-Cu-Mg alloy structures and Figure 7 shows S-N
Curve No. 1 for the Al-Zn-Mg alloy structures.

In the next regression the term (log;, S, )' was added to f,. With this quadratic term, a
slightly higher coefficient of correlation was obtamed The model then became

logig N = by + b, logj (S, + 5) + by logy, S, + by (logjy S,)°> + bs M (SN Curve No. 2)

The resulting S-N curves were a family of parabolas on log-log paper. S-N Curve No. 2 for the Al-Cu-Mg
alloy structures is shown in Figure 8 and Figure 9 shows S-N Curve No. 2 for the Al-Zn-Mg alloy struc-
tures. ‘

The curves look unusual since they are concave downwards; however, when curves are fitted
to experimental data the resulting empirical expressions may “best fit” the data but may not represent
the physical process involved. The addition of a cubic term, (log, S, )3, did not improve the correlation.

4.1.2 Log N Versus S, Curves

In these regressions f, was represented by polynomial functions of S_, rather than log S, .
The mean stress was still interpolated logarithmically.

The first model of this set used a quadratic function of S, for f, and the expression for the
S-N curve thus became

logjg N = by + by log;o (S, *+ 5) + by S, + by 83 + bg M (S-N Curve No. 3)

The resulting curves were a set of parabolas on semi-log paper. The coefficient of correlation
was slightly less than that obtained with the linear curves of log N versus log S, .

Figure 10 and Figure 11 show S-N Curve No. 3 for the Al-Cu-Mg and Al-Zn-Mg alloy struc-
tures respectively.

Upon studying the figures it is noticed that in the high-alternating-stress low-endurance region
the curves rise sharply. This is not, of course, representative of typical S-N curves and re-ults from the
constraint of the parabolic fit. Extrapolation of the curves beyond the plotted values would lead to
erroneous results.
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The second model in this set included a cubic term in S,. Thus, the model became

logjg N = b, + bylogo (S, +5) + by S, + by S +bg S +bgM (SN Curve No. 4)

The resulting S-N curves were a set of cubics on semi-log paper. With this regression the co-

efficient of corzelation was slightly higher than those obtained with the parabolas of log N versus log S,.

S-N Cwrve No, 4 for the Al-Cu-Mg and Al-Zn-Mg alloy structures is shown in Figures 12 and
13 respectively.

Table 2 lists the coefficients of the parameters and some statistics obtained from the four
regression models.

Further regressions were not attempted as it appeared that all four of these.models yielded
similar results and more complex models would only slightly increase the coefficient of correlation.

4.2 Residuals

Residuals are the differences between the actual test results and the predictions from the
regression equation.

Figure 14 shows the residuals plotted versus the values predicted by the regression equation
for S-N Curve No. 1.

No abnormality exists if the plotted residuals form a horizontal band, rather than showing
some trend such as increasing or decreasing when plotted versus the predicted value. The points in
Figure 14 appear to form a horizontal band in that no other trend is noticed; thus, the least-squares
analysis would not appear to be violated.

Residual plots forthe other S-N curves are not included as they are similar. They can be
found in Reference 16.
5.0 COMPARISON OF S-N CURVES

The derived Al-Zn-Mg alloy S-N curves cannot be compared with the RAeS curves as all data
used in the RAeS analysis were from Al-Cu-Mg ailoy structures; however, the Al-Cu-Mg alloy curves can

be compared.

Figure 15 shows S-N Curve No. 1 for Al-Cu-Mg alloys and the RAeS S-N curves superposed.
Comparisons for the other curves are not shown since they are similar.

When comparing the derived Al-Cu-Mg alloy S-N curves with the RAeS curves the following
generalities are noticed:

1) They are less conservative at high mean strosses, i.e. greater than 20 ksi,

2) At the lower mean stresses they are.less conservative in the low-endurance high-alternating-
stress region,

3) Al the lower mean stresses they are more conservative in the high-endurance low-alternating-
stress region.

PP RTINS B oY



http://www.abbottaerospace.com/technical-library

-6-

In conjunction with the above three statements the following should also be taken into con-
sideration:

et

1) Mean stresses greater than.20 ksi are rare in practice.

f 2) The frequency of loads in-the low-endurance high-alternating-stress region is low; thus, their ‘
: effect on fatigue life (using a linear damage rule) is negligible.

e e e A

3) The frequency of loads in the high-endurance low-alternating-stress region is high; therefore, !
r the fatigue life can be significantly affected by the S-N curves in this region. ‘

L g o

e e a0

: From the preceding items it can be concluded that any major differences in fatigue life calcu- }
lations using these derived S-N curves as opposed to the RAeS curves will be primarily due to high-
( frequency low-amplitude loads.

6.0 SCATTER IN CONSTANT-AMPLITUDE FATIGUE DATA

e R M b v

The standard deviation of log life of the pooled data is approximately the same for all the
derived S-N curves (== 0.35); therefore, any of the derived S-N curves will predict lives of constant-
amplitude tests with approximately the same reliability.

This large scatter, i.e. about three times as great as the scatter normally found in replicate
tests on nominaliy identical structures, is due to the superposition of scatter from two sources: the
first is the scatter inherent in a single type of aircraft structure and the second is the scatter due to
combining several types of aircraft structures,

ERVE PV SO S AR RN % S

6.1 Scatter Within a Group of Similar Structures

Within a set of similar items scatter can be caused by construction variations, slightly different
material properties due to heat-to-heat variation, and residual stresses induced during fabrication.

O

6.2 Scatter Due to Different Types of Structures

There are gross material differences among aircraft structures of different {ypes, the only
allowance made for material type was for differences between two of the major groups, namely alumi-
num-copper-magnesium alloys and aluminum-zinc-magnesium alloys. Within the:2 groups the material .
properties and heat treatments can vary widely. .

amp a S A

Lt e

Also, the types of structures included in this analysis varied considerably. Included were ’ z
aircraft ranging in size from fighters to transports. Elements tested were wings, major sections of wings,

and vertical and horizontal tailplanes. This variety alone suggests that considerable scatter in the results :
is to be expected.

All of the effects contributing to scatter in the above two sections were combined and hence
the reason for the large scatter.

The magnitude of the scatter can hest be appreciated by reference to Figure 16. Shown for
S-N Curve No. 1 are the actual lives versus predicted lives for the 246 constant-amplitude tests. The
standard error of estimate is =0.35. The *2 ¢ limits are drawn on Figure 16 and 95.5% of the points
are expected to be within these limits if the distribution is assumed to be log normal. It is noticed that
in the graph only eight points are outside the * 2 ¢ limits which is somewhat better than is predicted
using the log-normal distribution. Graphs for the other curves are very similar and thus are not shown.
The maximum number of points outside the =2 ¢ limits on any graph is eight.
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7.0 LIFE PREDICTIONS USING VARIOUS S-N CURVES AND RELIABILITY OF PREDICTIONS

7.1 Lives Predicted by. Various S-N Curves

The lives of several aircraft tested under programmed loading were compared with the pre-

dicted lives calculated using Miner’s Rule in conjunction with the RAeS S-N curves aud the S-N curves
derivcd from the regressions.

As the life calculations were computerized, mathematical expressions were also required for
the RAeS curves. Sewell (Ref. 17) proposed a model which fits the R AeS curves very closely for mean
stresses between 2 and 20 ksi and Douglas (Ref. 18) proposed a model which covers the range of mean

stress from 0 to 30 ksi. Douglas uses Sewell’s method between 2 and 15 ksi mean stress. These expres-
sions are shown in Appendix I.

Life calculations were made using the four derived S-N curves and both Douglas’ and Sewell’s
expressions for the RAeS S-N curves,

Table 3 contains the list of aircraft for which lives of wing or tail structures were calcuiated
and the references from which the information was taken. The eight aircraft yielded a total of 18 test
cases for which lives could be computed. A summary of the life calculations is shown in Tables 4 and
5. Further details on the calculations, the loads spectra and stresses are given in Reference 16. Appendix
II shows a computer printout of a typical life calculation.

Tables 4 and 5 show the actual lives (log mean if more than one structure was tested), the

. . . . n actual life
calculated lives as predicted by each S-N curve and the damage ratios { £ — = ———— ) . Where

N calc. life
more than one structure was tested, the log standard deviation was also calculated in order to obtain an
appreciation of the scatter within a group of similar structures.

It was noticed that the greatest scatter occurred in the Mustang wings and Commando wings
which are relatively old structures. Scatter in newer structures appears to be less.

The damage ratios for each of the four derived S-N curves were plotted on probability paper
and compared with the damage ratios obtained using the RAeS curves. These plots are shown in Figures
17, 18,19 and 20. These figures show that in all four cases the derived S-N curves give results which
are less scattered and more conservative than predictions using the RAeS S-N curves. Similar diagrams
comparing the two mathematical expressions for the RAeS S-N curves were not made as in only two
cases (U.S. Jet Fighter Spectra 1 and 2) were there any differences in the calculated lives. In these
cases Douglas’ method was slightly more accurate than Sewell’s method.

Table 6 is a summary of the life calculations shown in Tables 4 and 5. In Table 6 are the
minimum damage ratios, maximum damage ratios, the ratios of maximum to minimum, the number of
n
unconservative predictions (2 N <1 ) , the log means of the damage ratios, the log standard devia-
tions of the damage ratios, the damage ratios at - 8 o from the mean, and the probabilities of survival at

z nﬁ = 1 for each S-N curve.

The last three columns of this table show that the new curves are a definite improvement
over the existing curves. The log standard deviation for the R AeS curves is ~ 0.38 while for the de-
rived curves they range from 0.19 to 0.22, i.e. almost half the value. As a result, this yields higher
allowable damage ratios for equal reliability (e.g. -3 ¢) and higher confidence at any damage ratio

<e.g. Z% = 1>for the derived S-N curves.
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It is noticed that the log means of all the damage ratios are greater than unity and that the log
standard deviations (=2 0.19 to 0.22 for the derived curves) for the variable-amplitude tests are less than
the log standard deviations from the constant-amplitude tests (=~ 0.35). Both of these facts are probably
the result of load interactions.

7.2 Reliability of Predictions

It is essential for the user of any of these curves to have an estimate of the reliability of the
life calculation. As mentioned, means and standard deviations of the damage ratios were calculated for

i oo S 2 L A ML LS

each S-N curve and are shown in Table 6. From these, the reliability of any life prediction at 2 Z = 1

n
can be estimated. Also estimated can be the values of £ — for the S-N curves such that they have the
same reliability. N

Let M, , see Figure 21, be the mean of the various aircraft structures. Unless several full-scale
tests are performed on the wing structure in question, it is not known where the actual life lies in Dis-
tribution No. 1. Therefore, to be conservative one must move down on this distribution, for example
3 01\, tO M2 .

This point M, is then assumed to be the mean life of a fleet of aircraft. The fatigue lives of
aircraft within this fleet are distributed about M, and have a log standard deviation 0. A value for o,
was estimated using the 14 log standard deviations shown in Tables 4 and 5 and.the following formula:

1/2
2 2 2
.- Slnl.+82n2 + e +Sknk
n + n, + ... +n - k
where S; = logstandard deviation of group i
M; = number of specimens in group i
k = number of groups

The value obtained for the composite log standard deviation was 0.104. This is in agreement
with Impellizzeri’s (Ref. 26) findings which also suggest a log standard deviation of the order of 0.10.
Thus, it was decided to use a value of 0.10 for g,. To obtain a satisfactory degree of reliability for the
fleet one must move down, say for example 3 0,, on Distribution No. 2.

n n
The numbers below the &- axis (Fig. 21) are the values of % f\l- for the various S-N curves

that yield the same level of reliability. It is, of course, up to the individual user of these S-N curves to ;
decide what degree of reliability is desired. ;

The rightmost column contains the scatter factors needed for the various S-N curvesif -3 0

n
is an acceptably safe limit on each distribution and Miner’s Rule (E E =1 at,‘ailure> is used.

The combination of these two factors (- 3 ¢ on each distribution) gives a probability of fail-
ure of (1 - 0.99865)% or= 2 X 1076 and then for a fleet size of n, the expected loss is = 2n X 1076
aircraft. The probability of failure of in-service aircraft and hence the expected loss is also a function
of the frequency of inspection and maintenance, inspection techniques and operator skill, and the cer-
tainty with which the fatigue-critical location is known. The overall probability of failure, therefore,
cannot easily be quantified.
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8.0 CONCLUSIONS

1) Any one of the four derived S-N curves predicts fatigue life of aluminum aircraft wing struc-
z tures more reliably than the RAeS S-N curves. S-N Curves Nos.-2 and 4 give the most reliable
5 predictions.

1t is felt that S-N Curve No. 4 is the best curve taking into consideration its shape and the
statistics summarized in Tables 2 and 6.

BT Oy L e Rt g

2) Any major difference in fatigue life calculations using the derived S-N curves as opposed to
the RAeS S-N curves will be primarily due to high-frequency low-amplitude loads.

3) Structures manufactured from zinc-bearing aluminum alloys appear to have significantly
; shorter fatigue lives (3-1/2 to 4 times shorter on the average) than structures manufactured
: A from copper-bearing aluminum alloys.

; 4) For pooled data from various aircraft the scatter in variable-amplitude tests is less than the

) scatter in constant-amplitude tests. For the constant-amplitude tests the log standard error

3 ‘ of estimate was approximately 0.35 and the log standard deviation for the variable-amplitude
tests using the derived curves was of the order of 0.2.

5) The scatter within any one group of aircraft structures is considerably smaller than for the
pooled data. The composite log standard deviation of several tests was = 0.10. The more
modern structures appear to exhibit less scatter than the older structures, presumably due
to tighter quality control of materials and manufacturing processes.

RO %t o
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TABLE 1

, |
e CONSTANT-AMPLITUDE DATA USED IN ANALYSIS
} Aircraft Type and Component No. of Tests Reference
Meteor 4 Tailplane 36 2and 3
P51D Mustang Wing 124 4
C-46 Commando Wing 18 5,6, and 7
Dakota Wing 2 8
H
: Lancaster Wing 1 9
3 Piston Aircraft* Outer Wing Panels 5 10

Piston Fighter* Wings 2 10
; Jet Aircraft* Outer Wing Panels 7 10
: F3H-1 Horizontal Tails 19 1land 12
i F3H-1 Vertical Tails 20 11and 13
R -
‘; CF-100 Wings 9 14
Fokker F27 Wing Centre Section 3 15
Total Tests 246
E;,
‘ * Aijrcraft type not disclosed in reference.
3
;
3
3
]
3
4
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- TABLE 3

VARIABLE-AMPLITUDE TESTS

Aircraft

Piston Provost

P51D Mustang
Vampire

C-46 Commando
U.S. Navy dJet Fighter
CF-100

F3H-1

Fokker F27

Reference

19
20 and 21
22
6and 7
10
23
11 and 24

25
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~— —— — RAe8 S-N CURVES

SN CURVE NO-|
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10% 108 107
CYCLES TO FAILURE N

104

103

COMPARISON OF RAeS S-N CURVES AND S-N CURVE NO- | (Al-Cu-Mg)
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SAFE LIFE

OF FLEET

-39.

M, = ASSUMED
MEAN LIFE OF
A FLEET OF
AIRCRAFT

M, : MEAN OF
VARIOUS AIRCRAFT
STRUCTURES

DISTRIBUTION
NO. 2

DISTRIBUTION
NO.1I

SCATT'ER FACTOR USING
MINER'S RULE (Zn/N=1)
AND -3¢0 ON BOTH
S-N CURVE v ' DISTRIBUTIONS
RAeS 0.05 0.10 1.32 >20
NO.I 024 0.47 2.13 =4
NO.2 0.30 0.59 2.24 =3
NO.3 0.31 0.61 2.45 =3
NO.4 0.31 0.61 2.30 =3

FiG.21: COMPARISON OF E-,':,— VALUES FOR VARIOUS S-N CURVES
AT EQUAL RELIABILITIES
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APPENDIX I

METHODS FOR INTERPOLATING BETWEEN THE RAeS S-N CURVES

In general the equation of the curves are given as

log;o N = A + B#log), S,

Sewell’s Method (Ref. 17)

2<S, <2

A =9.45982

0.237677%S,, + 0.0118776*S2 - 0.00025697*S],

B =3.96687 - 0.021367*S,, - 0.0004786*S2 + 0.00000657*S3,

Douglas’ Method (Ref. 18)

0<S, <2

2<8, <15

15 < 8, < 20

20 < S, < 30

S,, S, inksi

A =10.0556

0.51285*S,,

B = 4.8023

0.44000*S,

Sewell’s cubic polynominal expressions

A =85278 - 0.055198*S,
B =3.9947 - 0.028920%S_
A =8.3050 - 0.044055*S,,
B = 3.9237 - 0.025373%S,
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