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Introduction 

The concept of sandwich construction combining thin, strong facings on light
weight, thick cores immediately suggests possibilities of deriving constructions 
so proportioned that minimum weight for a given stiffness or loading capability 
is achieved. It is important to realize that the minimum weight construction 
derived may not be practical because of unusually thin facings which are not 
available, or some other detail such as an unusually lightweight core of great 
thickness. Since it is theoretically possible to arrive at impractical designs, 
various minimum weight analyses should be used with caution for comparing 
sandwich with other constructions unless the sandwich proportions are examined. 
Analyses of the efficiency of panels of various sandwich constructions of certain 
materials have been reported. 3,4 This note presents some general analyses of 
minimum weight sandwich considering stiffness, edge load capacity, and bending 
moment capacity. 

1Revision of a Note of the same title and designation, published in October 1965. 
Research was performed for the MiIitary Handbook 23 Working Group by the Forest 
Products Laboratory under U.S. Air Force Contract No. 33(616)70-M-5000. Results 
are preliminary and may be revised as additional data become available. 

2 Maintained at Madison, Wis., in cooperation with the University of Wisconsin. 
3 Johnson, Aldie E., Jr., and Semonlan, Joseph W. A study of the efficiency of high-

strength, steel, cellular-core sandwich plates in compression. National Advisory 
Committee for Aeronautics Tech. Note 3751, Sept. 1956. 

4 Kaechele, L. E. Minimum-weight design of sandwich panels. Rand Corp. Rpt. RM-1895, 
March 1957. 
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Bending Stiffness 

Since the primary purpose of structural sandwich is to provide stiffness 
(hence low deflection under transverse load and high resistance to buckling 
under edgewise load), the analysis of minimum weight sandwich to provide a 
specified bending stiffness is considered first. 

Sandwich bending stiffness per unit width can be derived by elementary 
mechanics and is given by the following formula for sandwich with thin facings 
and a core of negligible bending stiffness: 

where D is bending stiffness; subscripts 1 and 2 denote facings 1 and 2: E is 
modulus of elasticity; λ is one minus the product of two Poisson’s ratios; t is 
thickness; and h is distance between facing centroids, 

After setting 

(2) 

formula (1) can be rewritten as 

(3) 

The weight of a sandwich is given by the formula 

(4) 

where w is density (p.c.i.); WB is total weight of bond (adhesive or brace) 

between facings and core (p.s.i.); W is sandwich weight (p.s.i.), and 
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t is core thickness. The core thickness can be defined in terms of h and the c 
facing thicknesses by 

And after defining new parameters 

and substitution into (4) the resultant weight expression, after assuming bond 
weight, WB , is the same for all sandwich of the type considered; it can then be 

written as 

(5) 

Solution of (2) for t2 and (3) for t1 and substituting into (5) results in: 

(6) 

Expression (6) is to be minimized with respect to h and β. Minimizing (6) with 
respect to h results in 

(7) 
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The configuration of this minimum weight sandwich can be examined by 
substituting (3) for D in formula (7) and (2) for β in formula (7) to produce the 
following expression: 

The left-hand portion of this is approximately equal to the core weight of the 
sandwich and the right-hand portion approximately double the facing weight. 
Thus for a minimum weight sandwich of a specified bending stiffness the core 
weight must be approximately two-thirds the weight of the sandwich minus bond 
weight. 

Values of facing thicknesses can be found by substituting (3) for D in formula 
(7) to give 

(8) 

Minimization of (6) with respect to β results in 

(9) 

and substituting (9) into (2) results in 

(10) 

Additional insight concerning optimum sandwich can be had by proportioning 
facings to minimize stiffness. This can be done by rewriting formula (1) as 
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where 

and 

Since a certain amount of facing is needed to carry loads (bending or compres
sion) η can be considered to be constant and maximizing (11) with respect to a 
results in a = η/2 which finally produces the relationship that the facings shall 
have equal extensional stiffnesses, i.e. 

(12) 

and substitution of (12) into(10) results in 

(13) 

which states that the weights of the facings shall be nearly the same. 

The foregoing has not considered high stresses that might have to be carried 
by very thin facings. Because of stress limitations, availability of facings in 
proper thicknesses, and availability of cores of low density, it will often be found 
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that the minimum weight sandwich cannot be realized. It is also important to 
review other discussions of minimum weight sandwich to be sure that inherently 
impossible combinations of unusually thin facings on lightweight cores are not 
being examined. 

Bending Moment Capacity 

The bending moment resistance of a sandwich with thin, equal facings on a 
core of negligible bending stiffness is given by the formula 

M = Fth (14) 

where M is bending moment per unit width; F is design facing stress, t is 
facing thickness; and h is distance between facing centroids. Following the same 
procedure as for bending stiffness, formula (14) is solved for t and substitution 
of this in the weight formula (W - WB) = 2wt + w c h results in 

(15) 

Minimizing (15) with respect to h results in 

(16) 

The configuration of this minimum weight sandwich can be examined by sub
stituting (14) for M in formula (16) and obtaining, finally 

(17) 
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and further substitution of (17) into the weight formula leads to 

(18) 

Thus the core weight for a minimum weight sandwich of specified moment cap
acity must be one-half the weight of the sandwich minus bond weight. 

The moment capacity was based on a facing stress, F, which may be an 
allowable stress or failing stress, etc. If the possibility of local wrinkling or 
dimpling of sandwich facings exists, then moment capacity should be based on 
that stress at which wrinkling or dimpling of facings occurs. 

The wrinkling stress of sandwich facings is dependent upon facing and core 
properties. Since core properties can be related to core density, wrinkling 
stress can also be related to density. The wrinkling stress of sandwich facings 
is often given by the formula 

(19) 

where FWis wrinkling stress of facings; k is a theoretical or empirical buckling 

coefficient; E is effective elastic modulus of facing; E is core modulus of c 
elasticity (normal to facings); G is core shear modulus. If it is assumed that 

c 
core elastic properties are related to facing properties in proportion to densities 
as follows 

then formula (19) can be written as 

(20) 
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where 

Since F (formula 20) is not dependent upon t or h, the dimensions of the 
minimum weight sandwich for face wrinkling can be determined directly from 
the previous analysis. 

Substituting (20) into (16) yields 

(21) 

which is dependent upon relative density of core and facing materials, but as 
before 

which is the same as (17). Therefore, the minimum weight sandwich for which 
bending moment resistance based on wrinkling of the compression facings must 
have a core weight of one-half the sandwich weight minus bond weight. 

The dimpling stress of sandwich facings on honeycomb or corrugated core is 
dependent upon facing properties and unsupported width of facing. The dimpling 
stress is given by the formula 

(22) 

where FD is dimpling stress of facings: k is a theoretical or empirical buckling 

coefficient; E is effective elastic modulus of facing; t is facing thickness; and 
s is honeycomb core cell size or spacing between points of corrugated core 
supports for the facings. If it is assumed that the core density is related to the 
facing density and is inversely proportional to s, then 
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and (22) becomes 

(23) 

where 

Proceeding as before and solving formula (14) for h rather than t, thus avoiding 
some cube roots after substituting (23) for F, results in 

(24) 

Substituting (24) into the weight equation (W - W
B

) = 2wt + w c h results in 

(25) 

and minimizing this expression with respect to t finally yields 

(26) 

From equations (24) and (26) it is found that 

(27) 
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and substituting (27) into the weight equation finally results in the core weight 

(28) 


Buckling Under Compressive Edge Load 

The edge load capacity of a sandwich panel, precluding local facing failures 
by wrinkling, dimpling, or facing compression failure, is dependent on the buckling 
of the entire sandwich. This buckling is determined not only by the sandwich 
bending stiffness, D, but also by the shear stiffness. 

The buckling load, per unit width, of a simply supported flat sandwich panel 
with isotropic facings and core, and having a length not less than its loaded 
width is given by the formula5 

(29) 

where 

5 Ericksen, Wilhelm S., and March, H. W. Compressive buckling of sandwich 
panels having dissimilar facings of unequal thickness. Forest Prod. Lab. 
Rept. 1583-B. Rev. 1958. 
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and N is buckling load per unit panel width; b is panel width (loaded edge): 
E is facing elastic modulus; t is facing thickness; h is distance between facing 
centroids; G is core shear modulus; and µ is facing Poisson’s ratio. After c 
substituting values for D, K, and V in equation (29) and defining 

equation (29) becomes 

(30) 

The sandwich weight equation is 

(31) 

Elimination of one of the variables, t or h, by solving (30) and substituting into 
(31) is not as easy as in previous examples. However the minimum of (31) sub
jected the constraint imposed by (30) can be found by a method used by Lagrange 
by solving the following: 

(32) 
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where L is a Lagrangian multiplier. After performing the partial differentiation 
indicated by (32) and reducing, the two expressions of (32) become: 

(33) 

And after noting that expressions (33) can be written as: 

(34) 

Adding the expressions of (34) finally results in 

(35) 

Solving (35) for t and substituting into (30) and solving for h gives 

(36) 

Equation (36) can be used to find h by first assuming V = 0 to obtain a minimum 
h and then using a finite V after assuming a core shear modulus, G , and 
determining t from (35). c 
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From the weight equation 

(37) 

and substitution of (35) into (37) results finally in 

(38) 

or 

and finally if W = w h c c 

(39) 

Thus if the core shear modulus is large and V = 0, the core weight is two-thirds 
of the sandwich weight minus bond weight. This also was the result obtained when 
prescribed bending stiffness was analyzed and was to be expected since for V = 0 
buckling depends on bending stiffness (see (29)). The effect of V = 0 reduces 
the core weight relative to the sandwich weight. 

Buckling of Sandwich Cylinders Under 

Axial Compressive Load 

The axial compressive load capacity of a circular cylinder with walls of sand
wich construction, precluding local facing failures by wrinkling, dimpling, or 
facing compression failure, is dependent on the buckling of the sandwich walls. 
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The buckling load, per unit circumference, of a sandwich walled cylinder in 
axial compression is given by the formula6,7 

(40) 

where (approximately) and (approximately); 

N is buckling load per unit cylinder circumference; E is elastic modulus of 
facing; t is facing thickness: h is distance between facing centroids; r is mean 
radius of cylinder; k 1 is a coefficient dependent upon whether buckling is 

governed by small or large deflection theory; 6,7 k2 is a coefficient depending 

upon whether isotropic or orthotropic core is used and also upon small or large 
deflection theory; and G is core shear modulus associated with shear distor
tion axially. c 

Substituting values of K and V into (40) yields 

and solving for h results in 

(41) 

(42) 

6March, H. W., and Kuenzi, Edward W. Buckling of cylinders of sandwich 
construction in axial compression. Forest Prod. Lab. Rpt. 1830. Rev. 
Dec. 1957. 

7Zahn, John J., and Kuenzi, Edward W. Classical buckling of cylinders of 
sandwich construction in axial compression--orthotropic cores. U.S. Forest 
Serv. Res. Note FPL-018. Nov. 1963. Forest Prod. Lab., Madison, Wis. 
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Substitution of (42) into the sandwich weight equation (W - W
B

) = 2wt + w c h 
yields 

(43) 


and minimizing (43) with respect to t yields 

(44) 

From (42) and (44) it can be shown that 

(45) 

Rewriting the weight equation to give 

(46) 

and substituting (45) into (46) finally results in 

(47) 

Thus, the core weight, W , is determined to be about one-half the sandwich c 
weight for sandwich proportioned to give minimum weight for a given cylinder 
buckling load. This was to be expected because for V = 0 the buckling load is 
dependent upon the product th as when prescribed moment resistance was 

analyzed for which 
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Abstract 

This note presents theoretical analyses for determi
nation of dimensions of structural sandwich of mini
mum weight that will have certain stiffness and load-
carrying capabilities. Included is a brief discussion of 
the resultant minimum weight configurations. 


