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By Simon Ostrach

SUMMARY

The flow of fluids with and without heat sources and subject to
body forces between two plane parallel surfaces which are oriented in
the direction of the generating body force is analyzed under the condl-
tion that the temperature vary linearly along. these surfaces. It is
found that a modified Rayleligh nunmber (product of the reciprocal of the
ratio of specific heats and the Prandtl munber Pr and th% modified

Grashof number Grp) as well as a parameter Kp = Pr Grp is of

slgnificance in this problem; where B8 1s the volumetric egpansion
coefficient, fyx is the negative of the X-component of body force per
unit mass, 4 is the characteristic length, and Cp 1s the specific
heat at constant pressure. Solutions of this problem are obtained in
terms of "universal" functions which are tebulated for simple applica-
tion to specific cases. Representative velocity and temperature dis-
tributions from which detailed study of the hest transfer is made are
then computed. When the ratio of CKj (where C is related to the mass
flow) to the Rayleigh number is of unit order of megnitude, the effects
of aerodynamic or frictional hesting can be sppreciable. Asymptotic
solutions (for large values of the Rayleigh number) which render the
computations simple are also presented.

Comparison of the results from the method given herein with those
obtained elsewhere in an approximate manner for a special case simi-
lating the natural-convection flow of fluids with heat sources in a com-
pletely enclosed region shows that the approximate method is suffi-
ciently accurate for problems in which the modified Rayleigh nunber is

less than 104.
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INTRODUCTION

In recent years the transfer of heat to and from enclosed or par-
tially enclosed regions by means of natural convection or by a combinse~-
tion of natural and forced convection has taken on new significance in
the fields of aeronautics, atomic power, electronics, and chemical en-
gineering. Most of the information on these modes of heat transfer under
such conditions is of a semiempirical or speclalized nature; relatively
little detailed informetlon exists for internal natural-convection flows.
In reference 1 there appears one of the few attempts to determine theo-
retically the velocity and temperature distributions in detail and hence
the heat transfer for an internal flow problem of this kind. In that
reference & solution was found for the fully developed flow of fluids
wilth and without heat sources between two long parallel plates with con-
stant wall temperatures (where one could be different from the other)
oriented in the direction of the generating body force. The information
obtained therein is of practical value in connection with fully developed
flows subject to body forces where the surfaces are maintained at uniform
temperatures. Lighthill (ref. 2) employs integral methods to study the
natural-convection flow in tubes with either one end or both ends closed
and with constant wall temperatures, and in reference 3 approximete
superimposed free- and forced-convection flows are cobtalned for short
channels and pipes.

As the next step in the study of natural convectlon or combined
natural and forced flows in confined spaces, conslderatlion ls here given
to the configuration of reference 1 with the exception that the thermal
boundary conditlon specified is that the surface temperatures vary
linearly along the plates or surfaces. (One surface, however, may be at
8 different local tempersture from the other but the slopes of the tem-
perature dilstributions on each surface are taken to be equal.) The
analogous forced-convection problem is treated in references 4, 5, and 6.
The present problem similates several importent physical occurrences of
this phenomenon; for example, it could represent the case where the out-
side of the chamnel formed by the plates is cooled (or heated) by a
counterflow. In sddition, the present problem represents a more general
case than was considered in reference 1, since here the temperature will
no longer be restricted to be a function of the transverse coordinate alone
and, hence, energy convective as well as mass convective effects will be

ineluded.

The solution is obtalned in terms of functions which depend on only
one of the several assoclated dimensionless parameters, and these func-
tions are tabulated so that speclfic cases can be easlly computed. Solu-
tlons for pure natural convectlon and for superimposed netural and forced
convection are shown to be essentlally identical. Representative velocity
end temperature distrlibutions are also presented, and the effects of
frictional or serodynamic heating on the flow and heat transfer are
discussed. -
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A special case which simlates a completely enclosed reglon in which
there is no net mass flow, the walls are at the same temperature, and
heat is genersasted uniformly by heat sources is treated, and detailed
velocity and temperature proflles are cbtained from which the heat trans-
fer 1s determined. This special case was treated in an approximste
manner in reference 7.

Consideration is a2lso given to the problem of convective inversion,
that is, to the cases where the modified Grashof number changes sign.
It is shown that convective inverslon due to changes in the body force
direction, to changes in the sign of the volumetric expansion coeffi-
cient, or to changes in the sign of the axial temperature gradient alters
the character of the problem, because, it is belleved, under these con-
ditions the flow becomes unsteble because of heating from below (see
pp. 104 to 107, ref. 8).

ANATLYSIS
Formulation of the Problem

The study tc be made here is that of the laminar fully developed
flow of flulds with and without heat sources and subject to a body force
between two plane parallel surfaces open at both ends and oriented in
the direction of the generating body force (see fig. 1). It is further
specified that there shall be linear (with equal slopes) temperature
variations along the walls but that the walls need not necessarily be =t
the same temperature. The flow is assumed to be parallel to the axis of
the channel (that is, the only nonvanishing velocity component is the one
in the longitudinal direction) and in addition it is assumed that the
physical properties (for exsmple, cp and p) of the flulds are constants
and that the essential influence of the density changes on the flow is
taken into account by the introduction of the volumetric expansion co=-
efficient in the body force term (that 1s, the other influences of vari-
able density and the variation of the expansion coefficlent with tempera-
ture are negligible). Discussions of the justificabion of the assump-
tions can be found in references 1, 2, and 10.

Under the conditions stated, the basic equations with body forces
included expressing the conservation of mass, momentum, and energy (see
ref. 1) become, respectively,

%:o (1)

St B

-


http://www.abbottaerospace.com/technical-library

4 RACA TN 3141

E=o (3)
d%r*  3%p*  ecy  op* W\ q
dx2 + Sy 2 = VX - 1% (gf) "k (4)

(See appendix A for a complete list of the symbols used herein.) With
cognizance teken of equations (1)} and (3) the above system reduces to

dfy 1 dp

k(e §) ©
d%r*  d%r* Py or* w\é g
% Tyxe TEUXE C (’éf) "k (6)

where the veloelty is & function of the transverse coordinate Y only
and the pressure ig a function of only the longltudinal coordinate.

The body force term in equation (5) can be written as a buoyancy
term by introducing the volumetric expansion coefficient B in a manner
similar to that described in appendix B of reference 1. Equation (5)
then becomes

pRT
d%y X ;o w 1 /aP
el . X - = = (& £
et O - Tt =3 (dX * Pwg X) (7)
where the subscript wg refers to the surface at Y =0 (see fig. 1).

The boundary conditiones associated with this problem sre that the
velocity at the walls must vanish (the no-slip condition for viscous
fluids) end that the temperature must vary linearly slong the walls.
(No‘te that the latter condition implies that the temperature gradlents
along the walls and hence the axial heat flux along the walls must be
constant.) In order to satisfy the temperature conditions and equation
(7), the temperature must be of the form

T*(X,Y) = AX + T(Y) (8)
Mathematically, the boundary conditions are formulated as
U(0) =U(d) =0 (9)

T*(X,0) = AX + T(0) (10)
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T (X,d) = AX + T(a) (11)

Substituting equation (8) into equations (7) and (6), respectively,
ylelds

aZy  PBfy 1(@1?

— —_— 0 = == I 1

dIz+ m udX+pW0X (2)
and

2 pc A 2

ae TV B (U Q_

7~ E U"'k(dx) +E=0 (13)
where

e = T(Y) - T(0)

Bince the left side of equation (12) is a function of Y alone
and the right side is a function of X alone, it is clear that each
side must be equal to a constant. Thus, equetion (12) can be written as

g2y  MBfy =
E + T e =¢C (14:8.)
or
1 /ap =
m (ﬁ + pwofx) =C (14v)

The temperature now appears in equations (13) and (14) as @ which
is independent of the longitudinal coordinate X, and hence the thermsl
boundary conditions can be written as

8(0)
6(a)

0
T(a) - T(0) = 8y (15)

To nondimensionalize equations (14) and (13), let
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vl
Ue—ooy %
pBLyd A
Y =yd . L (18)
g o —JET____Ad .
pPp2ry2a% T Ka
J

Bf,d
X ) is the new dimensionless parameter presented

where Kp = PrGrp <

in reference 1, but here the Grashof number is modified because it is
based on Ad rather than on a temperature difference, that 1s,

Grp = M’éfA. Hence, equations (14), (13), (9), and (15) become
u' + T = CKp (17)
T" -Rau + ()2 + Ky =0 (18)
uw(0) =u(l) =0 (19)
T(0) =0 (20)
T(1) = K—ﬁgﬂ (21)

where the primes denote differentiation with respect to ¥,
Re = (1/r) PrGry 1is-e modified Rayleigh criterion or number (see p. 105,

ref. 8), a = Qd/kA is the dimensionless heat source parameter, and
c=C Prds/cPAKA. Eliminating T Dbetween equations (17) and (18)
results in

wlV - (u')2 + Rau - oKy = 0 (22)
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with the boundary conditions

u(0) =u(l) =0 (23)
u"(O) = CKp (24)
u"(1) = (C - 6y;/Ad) Kp = mCKp (25)

where m=1 - SW/CAG.. The constant C which eppears as a parameter in

the boundary-value problem described by equations (22) to (25) merely
specifies the temperature level (see eq. (17)) of the problem. In order
to define completely the temperatures and velocltlies, this constant must
be related in some way to the physics of the problem. From equation (l4b)
it can be seen that C could be determined from the pressure gradient
along the channel; that 1s, C 1is essentlially connected with the end
conditlons to which the channel 1s subJect. Since the pressure gradient
mey not be known a priori, in the subsequent sectlon dealing with the
solution of the present problem C will be related to the end conditions
by the mass f£low in the channel, which remains inverient over the entire
length of the channel.

Note that solution of the preceding boundary-value problem will
yield velocity end temperature distributions for both natural-convection
and combined natursl- and forced-convection flows. The forced-
convectlon pressure gradient merely alters the magnitude of the constant
C. A discussion of such a superimposed flow problem under special con-
ditions is glven in reference 11l.

Several Interesting observations can now be made concerning these
equations. First, comparison of equation (22) with the corresponding
equation in reference 1 shows that they are identical except for the
third term in equation (22) s which does not appear at all in the equa-
tlon in reference 1. This term stems from the convection term in the
energy equation; hence, in the present problem energy convectlon effects
will be included. The energy convection term vanished ldentically in
reference 1 because of the assumption that the velocity and temperature
profiles were independent of the axlal coordinate. BSecond, since the
convection term appears with a coefficient, another dimensionless param-
eter (Ra, the modified Rayleigh number) is associated with this problem
and its Iinfluence on the results must be studled. Finally, the condi-
tions of the problem require that the temperature be of the form
T* = AX + T(y) (see eg. (8)), and hence the longitudinal heat flux is
everywhere constant.
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The boundary-value problem stated in equations (22) to (25) can be
written in more convenient form by defining

Vo=Rau-aky (26)
Hence
\_riv+RaV-—RlE(\_r")2=0 (27)
. v(0) = V(1) = - oKp (28)
v"(0) = + Ra CK, ¥'(1) = + m Ra CK, (29)

Solutions of the Boundary-Value Problem

Equation (27) is nonlinesr (the nonlinear term is due to the friec-
tional or aerodynamic heating) and therefore, as in reference 1, a method
of successlve approximations will be employed 0 find its solution. To
this end, equation (27) is written _

—iv — - .2
v, + Ra v, - %; (vi1) =0 (30)

where n = O, 1 denotes the particular term in the approximation
Vv=vy+ vy and v!; =0, Let

v = é; v W
=2y -1
oKy
A= S (31)
Ral/ZCKA
=T 64
R =32 )
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Equations (30), (28), and (29) become, respectively,

i 1 )
vnv + Rvy, - E(Vﬁ-l)z =0 (32)

vo(-1) = vp(1) = A (33)
vi(-1) = JAR vi(1) = nJaR (342)
vp(-1) = vu(1) = vi(-1) = vi(1) = 0 n O (34b)

where the subscripts now denote differentiation with respect to 1.

Zeroth-order spproximation. - In the zeroth-order approximation,
the nonlinear term which 1s associated with the frictional heating does
not appear and the problem then consists of solving the equation

e + Ry =0 (35)

subject to the boundasry conditions
vo(-1) = vo(1) = A (36)

vg(-1) = IR va(1) = wT\[R (37)

For simplicity of computations the solution can be obtained in terms of
symmetric and antisymmetric functlons of 1, depending only on the param-
eter R (or Ra), by setting

J( -1) Jm + 1)
V'O=7\V'OO + mz (mz Vo2 (38)

VOl +

where the boundary conditions to be satisfied by the verious voj (where
j =0, 1, 2) are glven in the following table:

subseript | v(-1) | v(1) | v"(-1) | v*(2)

00 1 1 0 0
o1 0 o | -JR | AR
02 0 0 AR | AR
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The functions vy, must each satisfy equation (35), which has the general
solution for positive values of the Raylelgh number

vg = 8, exp(ern) + ap exp(-ern) + az exp(grn) + a4 exp(-grn) (39)

where
e=1+1
g=1-1
and
r= Rl/éﬁqﬁ

Using the boundary conditions to evaluate the constants in equation (39)
and expressing the solution in terms of reel products of circular and
hyperbolic functions show that

1
coshzr + coszr -1

Voo = (cosh r cos r cosh rn cos ry

+ sinh r sin r sinh rn sin ry) (40)

1

Voq = (cosh r sin r sinh rn cos
oL coszr - coshzr
- sinh r cos r cosh rny sin ry) (41)
L (cosh inh in T
Voo = cosh r cos r s rn ein r
0z coshzr + coszr -1
- sinh r sin r cosh rn cos rn) (42)

Note that Y00 and Voo 8re symmetric functions and VoL is an anti-
symmetric function of 1. These "universal" functions VOJ are glven

for various values of Ra in table I.
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First-order approximation. - In order to include the effects of
frictional heating to a first order, let n =1 in equation (32). Thus

v.sll.-v + Rv, = % (v('))2 = £(n) (43)

where, in view of equation (38), £(7n) is given by

£(n) = = [A2v! 2 + AJ(m + 1)v1. v! +J2m'l)2v'2
W =g A0 m+ L0 Yoz z 01
Je(m + 1)2 | 2 . Jé(m? - 1) _, _,
+ T via + AJ{m - l)voo viy t > V&1 Yoz
(44)
The boundary conditions on vy are
vi(-1) = vy (1) = v{(-1) = vj(1) =0 (45)

Once agein, to cobtain "universal-type" functions let

a2
vy = szlo +AJ(m + 1)vy; + -J—zjm—-—-]i v

Z 12
2 2 2¢..2
J%(m + 1) Jo(m® - 1)
+ T viz + M(m - L)vy, + > vis (46)

In view of the form of equations (43) to (46), the functions v 5, vqq5
Vyos and Vyz are symmetric; and vy end Vig are antisymmetric
functions. Each of the functions vy, (k =0, 1, . . . 5) will be a

solution of equation (43}, but where the nonhomogeneous term is only
the related part of equation (44) (for example, the first term on the
right-hend side of equation (44) is assoclated with the vio solution

and so forth).

A particuler solution of equation (43) can be constructed from

(v )p = J;" £,(8) 6(n - £)at
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where G 1is the Green's function which satisfles the homogenecus part of
equation (43) and the conditions G(O) = G'(0) = G"(0) = 0, G'''(0) = 1.
These arbitrary conditions were applied to yleld a simple form for the
Green's function. Hence

1

(v, )p = - ;—3 [ stzn g x(n - &) - g stmn e x(n - £)] £, (E)at
o

(47)

Note that if the fk is a symmetric function, (vlk p is also symmetric;

and if P is antisymmetric, so is (vix)p. From the boundary conditionms,
equation (45), it can be seen that vix wmust be either symmetric or anti-
symnetric. Therefore, 1f fx 1s symmetric, the complementary solution
used with the particular solution must be symmetric; and if P£x 1s enti-

symmetric, the complementary soclution must also be antisymmetric. These
complementary solutlions are, respectively,

_ . cosh ern cosh gry
(Vlk)cs =B cosh er F cosh gr (48)
_ o, Binh ern sinh gry
(vlk)ca =t i er T sim gr (49)
e :
E = — sinher (1 - £ (¢)at 50
25| [Brmer - t] £ (50)
o
1
F = s—j—g [sinh g =(1 - £)] £, (E)at (51)
0

The vy solutlions can be written explicitly in real form (by proper

combinations of particular and complementary solutions) and are given in
equations (Bl) to (B6) in appendix B. Values of v.. for several R

1k
(or Re) sre presented in teble II.

Veloclty and Temperature Distributions

Now that the various Vi, &re known explicitly, they can be inserted
into equation (46) to yield vy. The sum of v, (as given by eq. (38))
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and vy then forms the solution which includes frictional heating effects

to a first order. By means of the various transformations made, the solu-
tions of the given boundary-vaelue problem (egs. (22) to (25)) or the
dimensionless velocity distributions to the zeroth and first epproximation
are, respectively,

K _ 1/2 1/2

X,.2
1 A 2 1/2
ul == R—a EQ(VO + Vl) + C!K] = Uy + m l}fc vlo-cha. / C(m. + l) VJ]

2 2 2
(m - 1)2RaC (m + 1)%RaC 1/2
+ < Vg *+ 7 viz - (m - 1) oRe / Cvyy
2 2
+ (m - ]2_)3.&0 v_ls] (53)

where the v, (3 =0, 1, 2) are given in equations (40) to (42) and the
Vik (k =0, 1, 2, 3, 4, 5) are given in appendix B.

In principle, higher-order approximations could be cobtained by con-
tinuing the procedure described. However, the results become very un-
wileldy. Therefore, beyond the range of applicebility of the zeroth- and
first-order approximations (that is, in the range of large frictional
heating effects), the complete boundary-value problem should be solved
numerically; some discussion of these numerical results relative to the
zeroth- and first-order approximstions will be presented subsequently.

To determine the temperature distributiens, recell that they are
related to the veloecity distributions by equation (17) and that

1/2 1/2
v _ Rsa w _ Ra
vOO = - Z Voo and Vo2 = — Voo 8° that

1 (m+ 1)} 1/2
TO =CKA -118 =KA{ - m G'V02+ Z(E. - l)Cv'él + 2 Ra/ VOO

(54)
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and

2
K
T. =CK, ~-ul' =T A l}zv" -oaRal/z C(m + 1) V‘J‘_l

1 A 1 0 ~ 16Re 10

1/2
(m ~ 1) aRa / cvyy,

2. 2 2
L m-1)%ec? . (m+ 1)%Rec?
" 12 . 13

2 2
+ (m - l% RaC v;,-s:l (55)

where the primes on the u-functions denote differentiations with respect
to y and on the v-functions denote differentiations with respect to 1,
and the explicit forms of the second derivatives appearing in equations
(54) and (55) are presented in equations (B7) to (Bl3) of appendix B.

Thus, solutions of the original boundary-value problem in terms of
u and T are known to zeroth- and first-order spproximations, that is,
neglecting frictional heating and including ite effects to a first order,
respectively. These solutions are, however, given in terms of the param-
eter C (recall that m is also a function of C through eq. (25)).
Therefore, to relate C +to the physical problem the dimenslionless mess
flow in the channel ls defined as

M= u,dy (s6)

Neglecting aerodynamic heating, equation (56) becomes (using the zeroth-
order approximation as given by eq. (52))

1
"o Ky [m :\/Eor,(iin 2r + sinh Zr)

Uod = gg |* - rel/% \eOSh 2r + cos er
0
+ pal/a C(m + 1) (sin 2r - sinh 2:-) (s7)
,\/'g cosh 2r + cos 2r

or

Y1 1 cosh 2r + cos 2r)\| MRa 2 afsin 2r + sinh Z:zil
C = + . . - +
244 al?é in 2r - sinh 2r/| K Ral 4\cosh 2r + cos ZIZ‘

A
(58)
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(For large Ra the expressions in parentheses in equation (58) reduce

to 1 and -1, respectively.) Substitution of C as determined into equa-
tions (52) to (55) then yields the velocity and temperature distributions
for any case if M, Gwl/Ad, Ra, a, and K, are known. Note, then, that

the mass flow is an independent parameter of the problem, and hence could
be due in part to a forced flow. For a given configuration and fluid the
last four of these parameters are specified, so that equation (58) re-
lates C +to the mass flow M, thet is, the temperature level and the
mass flow through the channel are related, as 1s only reasonable in flows
of this type.

Asymptotic solutions. - The solutions presented in the previous sec-
tions are valid (to the proper order of approximetion) for all values of
the paremeters of the boundary-value problem. However, from physical
considerations, it can be seen that in many practical occurrences of the
phenomenon under consideration, the parameter Ra may become very large
(of the order of 10% and higher). It is therefore appropriate to examine
the asymptotic character of the boundary-value problem. To this end it
is convenlent to write equations (22) to (25) as

C
%Eiv-;g—(ﬁ')z+ﬁ-5§—a=0 (59)
u(0) =u(l) =0 (60)
' (0) =1 u"'(l) =m (61)
where
u = CK,u (62)

A

For very large Ra, equation (59) is of the boundary layer type (see ref.
10). Therefore the velocity and tempersture profiles will have very large
gradients near the walls, and thus the asymptotic solutions will yield the
velocity and thermal boundary layers with essentlally constant conditions

given by the inviscid solution up = of/CRa. in the center of the channel

associated with large Ra flows. Hence, expanding the coordinate normal
to the wall, as is done in boundary lsyer theory, reguires that

Ral/éy (63)

v

7 = ra Y%y (64)
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The esymptotic forme of equations (59) to (61) are

v_+v-%—A-(v)2- & =0 (65)

yyyy Ra = 3 /2

CRa
v() =0 (68)
- 1 for the wall at temperature Ty

V—(0) = m = 0 (67)
Yy m for the other wall at temperature Twl :
V() = Vi) = 0 (e8)

where the subscripts dencte differentiation. Note that the conditions
expressed by equation (68) replace the boundary conditions at the second
wall and require that influences of one wall do not affect the other.

Thue y can be considered as the coordinate normal to the first (or left-
hand) wall (thet is, the one corresponding to Y = 0) and -y will be
the coordinste normal to the other wall, which is st ¥ = 4. Hence, use
should be mede of the proper part of equation (67) in each solution.

From equation {65) it can be seen that the frictional heating effects
will be negligible for large Ra unless CKp/Ra (or CrBfXd/cP) is at

least of unit order of magnitude. It should perhaps be pointed out here,
in contradistinction to the qualitative discussions in references 1 and
12, that the frictional hesting is important only if essentially the

ratio of K (based on any appropriate temperature) to Ra is of unit
order of magnitude or larger, as can, in fact, be verified in general.

Thus it should be noted that the discussions in those references hold
specifically only 1f Ra i1s of unit order or smaller or if Re does not
appear as an explicit parameter of the problem {as in ref. 1, for example).
For the range of conditions and physical properties of flulds being con-
sidered, it is unlikely that CKp/Re willl be of unit order for a flow

generated in a gravitational field alone with large Ra. Therefore, un-
less the natural-convection flow is being generated by & body force con-
slderably stronger than gravity, the ratio of the volumetric expansion
coefficient to the specific heat at constant pressure is umusually large,
or there is considerable forced flow (to increase C), the frictional
heating effects will not be important for large Re. (Of course, the
possibility always exists that some unusual fluid will be employed whose
physical properties are such that CKA/Ra will be of such a magnitude

that the frictional heating effects will be important for large Ra even
in a gravitaetional field. ILiquids nesr their critical state may be rep-
resentative in this respect (see ref. 13)). Furthermore, it can be seen
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from the same equation that the effects of the heat sources will be im-

portant only if or,/ CRal/ 2 is of unit order of magnitude for large Ra.
This is physically reasonable.

Since the frictional heating effects are negligible for large Ra,
unless CK, 1s very large these effects will be neglected in this sec-

tion. (A method of successive approximations similar to that described
in the previous sections could be applied without difficulty to eq. (65)
if these effects are of consequence.) Therefore, letting

V=v- a,/CRal/ 2, equations (65) to (68) become, respectively,

V§§§§.+ V=0 (69)
v{0) = - e (70)

T=(0) = & (71)
V(@) =V =0 (72)

The solution satisfying equations (69) to (72) is

V=-e_y/v-2_ m sin Y +

cos - (73)

’\/'2_ CRal/ 2 ’\/5

To find the temperature distribution the second derivative of equation
(73) is necessary, and this is given by

Vﬁ = _e_y//\/E GI’L/Z sin ~Y— - @ cos —— (74}
CRe. '\/E '\fz_

For large values of the Rayleigh number Ra, then, the dimensionless
veloclty and temperature distributions are given by

CK
A /= a
u_ = V4 — 75
& 1/2( 1/2) (75)
Ra CRa °

and

To =CKy (1 - V53) (76)
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Solution of Special Case Simulating en Enclosed Channel

There is considerasble interest in the natural-convection flow in a
completely enclosed rectanguler region. In reference 7, the natural-
convectlon flow of fluids containing heat socurces between two parallel
plenes is considered (as is the case here also); but there, in order to
simlete an enclosed rectangular region, it 1s further specified that the
net mass flow be zero and that the walls be at the same temperature. This
problem is treated in en approximate menner in reference 7 in that the
velocity distribution was postuleted wlthout regard to the equations of
motion and, hence, it would be desiraeble for comparison purposes to obtaln
a more exact solution for this special case from the solutions found
herein.

For zero net mess flow in the channel the parameter C can be deter-
mined directly from the other parameters of the problem and equation (58).
Thus

e.

0 Y1 a (cosh 2r + cos Zr\[ NE (sin 2r + sinh Zr) B {I

o~ za " NG rel/4 \sin 2r - sinh 2r/ pel/4 \ecosh 2r + cos 2r

(77a)

where the superscript denotes the zero net mass flow and the subscript
designates the order of the approximestion. It is lnteresting to note
from this equation that for no internsl heat sources (a = 0), zero net
mess flow In the channel can be cbteined when C = Gwl/ZAd. However, to

obtaln the solution for the speciel case silmulating flow with heat sources
in s completely enclosed region with walls of equal temperatures from the
solutions presented ln the previous sections, ewl mist be zero in equa-

tion (772), and therefore

© - o (cosh 2r + cos Zr){: e (sin 2r + sinh Zr) _ l]
N Rel/% \sin 2r - sinh 2r, Ra1/4 cosh 2r + cos 2r
(770)

The veloclty and temperature dlstributions for this special case are then
obtained by replacing C in equetions (52) and (54) by Cg as glven by

equation (77b). Further physical slignificance of the zero net mass flow
cese can be inferred from equation (13). Integration of this equation
over the channel cross section shows that for no net mass flow ell the
heat generated internally (by heat sources and by aerodynamic heeting if
the latter is significant) in a given cross sectlon must be transferred
to the walls.
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Computetions made for this case including frictional heating yielded
no appreciasble deviations from the zeroth-order results.

Solutions for Case of Convective Inversion

An interesting aspect assoclated with the natural-convection
phendmenon is that the Grashof number can change sign; this implies a
reversal in the flow direction and is referred to as convective inver-
sion (see p. 109, ref. 8). The sign of the modified Grashof number in
the present peper can be changed in one of three ways: &1) by a change
of the sign of the longitudinal temperature gradient T /X = 4, (2) by
a change in the direction of the generating body force, and (3) by a
change 1n the sign of the volumetric expansion coefficient as occurs
near the critical state of a liquid (see ref. 13).

Since the modified Grashof number appears in the parameters Kj

and Ra connected with the problem considered herein, the effects of
sign changes of the Grashof number in the solutions should.bg studied.-
From its definition, Kp is proportional to A, f£x~, and B so that

only the first will alter its sign. Note further, however, that the
modified Reyleigh number Ra 1is essentislly the product of the Prandtl
number and a modified Grashof number, that is, a Grashof number which
depends on the product (Ad} of the longitudinal temperature gradient and
the distance between the plates. Hence, any one of (l), (2), or (3)
given in the preceding parsgraph will lead to a change in the sign of
Ra. For negative Ra the solutions as given in the previous sections
do not apply, and hence the foregoing boundary-value problem (egs. (22)
to (25)) would have to be solved with negative Ra. These solutions

can be readily obtained, but it is found that with frictional heating
neglected these solutions change character with changes in Ra and that
there exist criticasl negative values of Ra for which the solutions
become meaningless. In an attempt to explain these unusual results,
further interpretation of the problem must be made. Reexamination of
the meaning of negative Ra shows that not only changes in the body
force direction and sign of the volumetric expansion coefficient but
also a change in the sign of the longitudinal temperature gradient A
can lesd to negative Ra. If the negative Ra 1is attributed to the
last cause, the physical interpretation of the unusual mathematical
results pointed out becomes clearer, because a negative A implies that
the fluid is being heated from below and this situation leads to a
"Reyleigh-type" instability of natural-convection flows due to the
"piling of heavy fluid on lighter fluid." Analogous interpretations, of
course, also follow directly for changes in the body force direction and
in the sign of the volymetric expansion coefficients. Natural-convection
flows heated from below between horizontal plates have been studied ex-
perimentally in some detail (see refs. 8, 14, and 15, for example), and
it was found that the flow does indeed change character (into cellular
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motion) for certein critical values of the Rayleigh nunber. Hence, it
is believed that the critical values of Ra found from the linearized
anelysis (in that the aerodynsmic hesting was neglected)} for negative
Ra. may be analogous to those observed in actual cases. However, since
this instsbility leads to these additional complications and should be
further investigated (perhaps using the true nonlinear egs.), the case
of negative Ra will not be treated further herein. It should, how-
ever, be kept in mind that if in an actual case of the configuration
congidered herein the Ra 1s negative, the flow and heat transfer will
not be as predicted in this paper but should be expected to exhibit a
behsvior pertinent to the "unstable-type" flows.

RESULTS AND DISCUSSION
Velocity and Tempersture Distributions
The relations between the actual and dimensionless velocltles and

temperatures as determined from the variocus transformetions in the
analysis (see egs. (18)) are

Al
=h [B
U =i (78)
Ad
0 = KK T (79)

where U and 6 denote the actual and u and T, the dimensionless
quantities. For a given fluid, configuration, hest-source intensity,
end mass flow, the velocity and temperature distributions can be com-
puted from equations (52) to (55) (for Ra > 0); and for zero net mass
flow and the walls of the seme temperature, by epplying equation (77b)
to equations (52) and (55). These computations will be accurate within
the limits of the method of solution; that is, for moderate and small
values of Ra the solutions yield results of reasonable accuracy for
small CKp, and for large Re the zeroth-order approximstions or, even

more simply, the asymptotic solutions will glve answers valid for all
CKp. The range of applicability of the various solutions presented

herein will be discussed more fully subsequehtly.

Because the solutions were obtained in the convenient forms (egs.
(52) and (54), for example) wherefrom the qualitative effects of the
various parameters assoclated with the problem can be studied, and since


http://www.abbottaerospace.com/technical-library

NACA TN 3141 21

tabular values of the universal functions are presented to facilitate
computations for any specific case, no extensive detailed calculations
will be glven covering the entire range of values taken on by the param-
eters. Representative velocity and temperabure profiles were, however,
calculated for Xj = 10, m = -1, 1, and 2, @ = 0, 10, and 100, and

Ra = 10, 102, 1600, and 10%4. 1In addition, the parameter C was given
the value -1 in 21l the computations except those for the case simu-
lating flow in a completely enclosed region. In this way the relative
influences of the other parsmeters are just as apparent, but the number
of computations is greatly reduced. The results of these computations
are presented in figures 2 to 9. The contents of each specific figure
(mumbers 2 to 9) are listed in the following table:

Kp = 10 Ugs Uy Tor T1

m | @« |Re =10| 102|1600 | 10% 10 102 | 1600 | 10%

-1 o) 2(a) | 3(a) | 4(a) | 5(a) 6(a) | 7(a) | 8(e) | 9(=)
10 2(a) | 3(a) | 4(a) | 5(a) 6(a)| 7(a) | 8(2) | 9(a)
100 2(a) ! 3(a) | 4(a) | 5(a) 6(a)| 7(a) | 8(a) | 9(a)

1 0 2(b) | 3(b) [ 24(v) | 5(b) 6(b) | 7(b} | @8(b) [ 9(b)

10 [[&sP2(p) | 3(b) | 4(p) | 5(b) 8DPg(w)| 7(0) | 8(b) | 9(p)
100 2(0) | 3(b) | 4(0) | 5(b) 6(®)| 7(b) | 8(p)| 9(b)

2| o [®Pate) | 3(e) | 4(e) | %5(e) | *P6(e) | 7(c) | 8(c) | “a(e)

10 2(c)| 3(c) | 4(c) | 5(e) 6(c)| 7(c) | 8(c) | 9(e)
100 2(e) | 3(c) | 4(c) %5(c) 6(c)| 7(c) | 8(c) | ®a(c)

&Tncludes results for u_ or T.
PTncludes results for ul2) or 7(2).
CIncludes results for ug or Tg.

For each triplet of parasmetric values (m, a, Ra) the profiles were com-
puted with frictional heating neglected (by eqs. (52) and (54) and de-
noted by wug end Ty on the figs.), with frictional hesting included

to a first approximation (by egs. (53) and (55) and denoted by wuj

and Tl), and in several specific cases with frilctional hesting completely -

accounted for (by numerical solution of egs. (22) to (25) using & Card-
Programmed Electronic Calculator end denoted by wu and T). For
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Ra = 10% the asymptotic solutions (given by egs. (75) and (76) and
denoted by ug and Tgy) are also included for XKp = 10, m = 2, and

o =0 and 100. The asympbotic solutions were computed from each in-
dividuel wall to the channel center and then faired in to joln smoothly.
From these computations eny qualitetive trends obtained by examinstion
of the solutions can be further substantiasted and, in addition, some
definition of the range in which the frictionsl or aerodynemic heating
exerts a large influence can be made. Calculations were also made for
the specilal case simulating a completely enclosed region in which there
is no net mass flow and the walls sre at the same temperature by applying
equation (77) to the appropriste solutions. These curves are given in
figures 10 and 11. The velocity and temperature profiles (particularly
for Raus,104) are qualitatively similsr to those determined experi-
mentally in reference 16.

Effect of different wall-temperature configurations (m varylng)
end heet sources (o varying). - From equations (52) to (55) and thelr
related universal functions, it can be seen, as expected, thet an in-
crease in the wall temperature parameter m or an increase in the heat-
source peremeter o results In larger velocities and higher tempera-
tures. These trends together with that of increasing net mass flow, as
represented by the area under the u-curves, with m and o can be ob-
gerved on figures 2 to 9. It can also be seen from filgures 6 to 9 that
1f sufficilent heat ls generated by the heat sources, the direction of
hegt transfer will be changed. In agreement with the statements made in
the section dealing with the zero net mass-flow case, note from fig-
ures 2(a), SEa), 4(a), and 5(a) that if aerodynamic heating is neglected
for m= -1 (since C = -1) and o = 0, there is no net mass flow. In
general, the velocity distributions become more symmetrical with the
larger o (see figs. 2(a), 3(a), 4(a), and 5(a), for example) because
the hest added uniformly by the heat sources counteracts any asymmetry
imposed by the wall thermal conditions.

Effect of the modified Rayleigh number (Ra). - Examination of
the solutions (eqs. (52) to (55)) shows that the velocities and tem-
peratures decrease with increasing values of the modified Raylelgh
number Ra. This trend can also be seen by comparison of corresponding
curves in figures 2 to 9, and even by comparing with the curves in refer-~
ence 1 which are for Re = 0. For large Ra 1t can be seen from fig-
ures 5(b), 5(c), 9(b), and 9(c) that the velocity and temperature pro-
files teke on & "boundary-layer form." Asymptotic solutions computed
for Ra = 104, Kp =10, m = 2, and o =0 and 100 are also presented
on figures 5{c) and 9(c), and these very closely spproximaste the more
exact solutions. Hence, for large Ra +the asymptotic solutions can be
employed to yleld reasonable results much more simply. For the case
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wvhere m = -1 and o« = 0, increasing the modified Raylelgh number changes
the tempersture distribution from essentially the conduction profile

(that is, an slmost linear distribution) at Ra = 10; the increased
effect of the convection is then apparent for the larger values of the
Rayleigh number. It is interesting to note that for Ka = 10, o« = 10,

and m = -1, 1, and 2, changes in the Rayleigh number can so affect the
temperature distributions that the heat flow direetion from one or both
the walls can be altered. (Compare corresponding parts of figs. 6

to 9.) This point will be more graphically portrayed in the subsequent
discussion of Musselt numbers.

The velocity and temperature distributions (see figs. 10 and 11)
for the special cese considered herein of zero net mass flow and walls
at the same temperature are not in general apprecisbly altered in shape
by increases in Re although the velocity pesks vary inversely with the
Rayleigh number. The shape of the veloclty and temperature profiles is
seen to be qualitastively the same as that essumed in reference 7.

EBffect of frictional heating. - By compering the proflles presented
in figures 2 to 9 computed by neglecting frictional heating (denoted by
the subscript zero) with those computed including the aerodynamic heat-
ing to a first order (demoted by the subscript unity), the effect of the
aerodynamic heating on the velocities and temperatures can be studied.
Numerical solutions obtained of the complete boundary-value problem
(eqs. (22) to (25)) in which the frictional heating was entirely taken
into account are also included (with no subscripts) (see preceding teble)
on figures 2(b}, 2(c), 4(b), 6(b}, 6(c), 8(b), 10, and 11 for comparisons
with the approximate solutions.

In accord with the discussion on the asymptotic solutions, 1t can
be seen that when K, 1s small compared with Ra (recell that C = -1
in these calculations) the serodynamic heating effects are negligible.
Since no computations were made herein for K, > 10, the computations
made for Ra = 1600 and 104 show no deviation between the zeroth and
first approximations, and these are also coincident with the numerical
golution (see figs. 4(b) and 8(b)). Hence, in the range XKp/Ra<< 1,
the zeroth-order approximations will yield accurate results; if, in
addition, Ra>> 1, the asymptotic solutions provide a simple means of
obtaining the velocity and temperature profiles. Note that the param-
eter Kp serves merely as a scale factor in the zeroth-order soclutions.

In the range where K, and the Rayleigh mumber are of the same

order of magnitude, the frictionsl heating affects the results to greater
or lesser degree depending on the particular smount of heat addition as
specified essentlally by the parsmeters m and o (figs. 2, 3, 6,

and 7) and, hence, the first-order approximations should be employed in
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this range. Comparison of the first-order solutions with the several
numerlcal solutions of the entlre boundary-value problem shows close
agreement for the cases computed. Hence, unless the conditions are
more severe than the most extreme conditions for the range of parameters
considered herein as represented by Kg/Ra =1, m=2, and a = 100,

the first-order solutions will yileld results which include the effect
of serodynamic heating of reasonsble accuracy. In this range where its
effects are important, this frictional heat, of course, acts Jjust as do
the heat sources and leads to increased velocities and altered tempera-
ture profiles and, consequently, different heat-transfer rates (figs. 2,

3, 6, and Th

For the speclal case simulating flow in a completely enclosed re-
gion, the aerodynamic heating did not affect the results appreciably over
the range of parsmeters under consideration. A numericel solution com-
pletely including the effects of aerodynamic heating was made for
Ra = 10; it can be seen in figures 10 and 11 that this solution coin-
cldes with the zeroth-order solution, which neglects the effect of frie-

tlonal heating.

The complete consideration of frictional heasting (as in the numeri-
cal solutions) for the problem discussed herein, just as for the case
(essentially Ra = 0) reported in reference 1, leads to the two results
(a) that there exists a critical set of conditions beyond which no solu-
tions exist, and (b) that where solutions exist there are two solutions
for every set of admissible parametric velues. Examples of these second
solut%o?s are presented in figures 2(b), 2(c), 6(b), and 8(c) (denoted
by u end T(2)), and it can be seen that the velocities are more
than 10 times as large as the first solutions and the temperatures are
much greater than the corresponding first solution temperatures. These
last unusual results cannot be predicted from the solutions obtalned by
successlve approximations ass described herein, but are found from numeri-
cel solutlons obtained by means of a Card-Programmed Electronic Calcu-
lator. At present the significance of the second solutlons is not ex-
plained, although it is felt that they are intimstely connected with the
unique regenerative action of the frictional heating in natural convec-
tion. The existence of the critical conditions appesrs to be simllar
to the thermel choking phenomenon.

HEAT TRANSFER
Nusselt Nunbers
The hest-transfer coefficients for the natural-convection phenomenon

treated here can be expressed in terms of Nusselt numbers. The Nusselt
nurber is here defined as - — _


http://www.abbottaerospace.com/technical-library

NACA TN 3141 25

where the double subscript signifies that the temperature gradient 1s
to be evaluated at either Y =0 or Y = d, depending on the wall under
. conslideration.

In terms of the dimensionless quantlties,

1l /ar
= = [=— 80
Nu Ky (dy)o,l (80)

The temperature gradient can be found from the zeroth-order solutions,
and the Nusselt numbers can be computed on this basis from

Nugg = L 1[4[ 5 1 > [cr,(sinh 2r + sin 2r)
Z»JZ_Ra 1coshr+cosr—l

CB-4

+ C{m—l—l%Ral/z (sinh 2r - sin Zr)] + C(m'l)Ral/z (sinh 2r + sin Zr%

2(coszr - coshzr)
(81)

) Nug; = L { -1 E(sinh or + sin 2r)

Z’ﬁ-Ra.l/4 coshzr + coszr -1

5 LR (3o 22 - sin Zri] + —Clm-1)Re (sinh 2r + sin 2T}

2(coszr - -coshzr)
(82)

where the first subscript denotes that zeroth-order approximstion is
used, s@nd the second denotes the wall with which the Nusselt number is
associated. (Egs. (81) and (82) are, of course, specifically for Ra
positive.) Note that these zeroth-order Nusselt numbers are independent
of Kp. When CKp is of the same order of magnitude as Ra, the zeroth-

order gpproximaetion has been shown to be lnaccurate; therefore improved
Nusselt numbers can be obtained by using the appropriate T (first-
order approximation) solutions and, for the same conditions as for
equations (81) end (82), the Nusselt numbers can be computed from

K 2 )
) Nujo = Nugp + m d) - CaRal/2 (m+ 1)X%p + c%(m - 1)235«03

2 2 20 2
+ & (mz DR 4 cm - 1)ara™ Ey - 9—(‘“2*'11 Raﬁsj (83)
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K 2 2
A 1/2 C2(m - 1)“Ra
Nu;q = Nugy = maﬂi - CoRe/ “(m + 1X2o + Q
11 1 7 2 3
84\2 Ra7 4 4

, CZ@RZ 1)23304_ + Cla - 1)03&1/205 + g_z.ﬁlz_z'_l_) RBQ6] (84)

where the various &; in equations (83) and (84) are given by equations
(B43) to (B48) in appendix B.

Computations of the Nusselt numbers were made over a range of
values of Ra from equations (8l) to (84) for K = 10, m = -1, 1, and
2, and o =0 and 10 where again C was taken to be -1, and the re-
sults are presented in figures 12 and 13 for the wall at ¥ =0 and
Y = 4, respectively. The figures show that for bhe wall at Y = O the
Nusselt numbers decremse, in general, wlth increasing Re, and for the
wall at Y = & the Nusselt nunmbers increase with the modifled Rayleligh
number except for the case where m = -1. For Kp = 10 and o = 10,
the Nusselt number changes sign with increases in Ra because of the
veristion of the tempersture profile with Re, as was previously noted.

Figures 12 and 13 also demonstrate clearly the effect of the aero-
dynamic or frictional hesting. This effect, 1n accordance with all that
preceded, is extremely pronounced for low velues of the Raylelgh number
(that is, when K/Ra 1s of unit order of magnitude).

Flow in an enclosed region. - For the specilal case simulsting flow
in a completely enclosed region (M = O, m =1, and a % 0), the calcula-
tions for the temperature profile were extended over a larger range of
Ra. end plotted in figure 14 as the ratio ¢ of the temperature differ-~
ence to that for pure conduction, as was done in reference 7. The con-
duction temperature difference used in & is the chennel center-to-
wall difference subject to uniform heat generation by socurces and is
equal to GKA/B. The temperature profiles computed in an approximste
manner in reference 7 are compared with those computed more exactly by
the method reported in this paper, and it can be seen that the dis-
crepancy becomes quite apparent for velues of Ra = 104 and above.

The Ny in reference 7 is related to Ra by Ra = % N1; hence, for

most liquids Ny end Ra are identical. If v # 1, v is merely a
scale factor. It can be seen from figure 14 that for Ra < 104, the
temperature gradients at the wall are all slmdst identical, and hence,
even if the temperature profiles themselves were not identical, the
heat transfer computed by the two methods would be in reasonable agree-
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ment. The variations of the dimensionless temperature varisble éb
(ratio of center-to-wall temperature difference to that for pure con-
duction) as used in reference 7 with Ra as given by the two methods
sre also compared in figure 15, and hence the quantitative limits of
the approximate method can be seen.

CONCLUDING REMARKS

An enalysis was made of the flow subject to body forces between two
parallel plane surfaces orlented in the directlon of the generating body
force along which the temperature is specified to vary linearly. The
solutions for natural convection and those for combined natural end
forced convection were found to be essentially the same. It was found
that a modified Rayleigh number (product of Prandtl and modified Grashof
numbers) in addition to the parameter Kp was of significance in this
problem, Solutions for the velocity and temperature distributions are
glven in terms of "universal" tebulated functions. Detailed velocity
end temperature profiles were computed and it was found that, in general,
the veloclity and temperature differences increase with the wall tempera-
ture parameter and with additionsl heat due to heat sources. The veloc-
ities and temperatures decrease with increasing values of the modified
Rayleigh number. When the ratio of CKp to the modified Rayleigh num-~
ber is of unit order of magnitude, the frictional or aerodynamic heating
apprecilably affects the velocity and temperature distributions. Asymptotie
solutions for large Ra are presented which make computations in this
range relatively simple. For any given set of the parameters, complete
consideration of frictional heating implied the existence of two flow and
heat-transfer states and implied that no solution exists beyond certain
critical values.

Consideration was given to a specisl case similating the nstural-
convection flow of fluids with heat sources in a completely enclosed
region with the walls at the same temperature. Computations from the
solutions for this special case demonstrated that an approximste method
developed in another paper should yleld reasonably accurate results as
long as the modified Raylelgh mumber is less than 10%4. The effects of
aerodynamic heating were found to be negligible for this case.

Study of the convective lnversion aspect of the present problem led
to the inference that for negative values of the Rayleigh number, addi-
tional complications arise because of an instability (due to heating from
belcw) of the flow which muist be more thoroughly investigated.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautlcs
Cleveland, Ohio, December 29, 1953
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APPENDIX A

SYMBOLS

The following notation is used in this report:

longitudinal temperature gradient

constants in eq. (39); i =1, 2, 3, 4

constants defined by eqs. (Bl4) to (B35); i =1, 2, 3,...22
constant in eq. (i?)

constants defined by egs. (B36); 1 =1, 2, 3, ...6

constant defined by eq. (77b)

constant in eq. (14b)

gpecific heat at constant pressure

gpecific heat at constant volume

constants defined by eqs. (B37); 1 =1, 2, 3, ...10
characteristic length (specifically distance between plates)

constent defined by eq. (50)

constants defined by eqs. (B38); i = 1, 2, 3, -..6

constant, (i+1)
constent defined by eq. (51)

negative of X-component of body force per unlt mass

Green's function . .

modified Grashof mumber, pfy Ad*/y®

constent, (i-1)

3141
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M3

Bl

Nu

el

heat-trensfer coefficient
constants defined by eq. (B39); i =1, 2, 3, 4
constant, Rel/ 2ok, /64

Pfyd
dimensionless parameter, Pr Grp °p

thermal-conductivity coefficilent

constants defined by eqs. (B40); i =1, 2
dimensionless mass flow
constants defined by egqs. (B4l); i =1, 2, 3, 4

constant defined by eq. (25)

constant defined by eq. (64)

Nusselt number, hd/k

modified Rayleigh criterion as given in ref. 6, YRa
pressure

Prandtl number, cpu./k
heat due to heat sources
constants defined by egs. (B42); i =1, 2, 3,...8

constant, Ra/16

modified Rayleigh number, % Pr Gry

constant, Rl/ 4/ :\/’2‘
tenmperature

velocity

dimensionless veloclty

dimensionless velocity, u/CKA
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dimensionless velocity defined by eq. (61)

a
dimensionless velocity, V - CRal 3

dimensionless velocity, v/64
dimensionless velocity defined by eq. (26)
longitudinal coordinate

transverse coordinate

dimensionless transverse coordinate

Ral/ 4

dimensionless transverse coordinate, '

dimensionless heat-source parameter, Qd/kA

1
coefficient of volumetric expansion, p[?igéEl]P

ratio of specific heats
dimensionless coordinate, 2y - 1

temperature difference, T - TwO

constant, -aKA/Sé

absolute viscosity coefflcient
kinematic viscosity coefficient
dummy varieble

density

dimensionless temperature difference

dimensionless temperature difference, BT/GKA

NACA TN 3141

dimensionless center-to-wall tempersture difference, 8(7)y=l/3/dxﬁ

constants in egs. (80) and (81); 1 = 1, 2, 3,...
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Subscripts:

a asymptotic solution

ca complementary entlsymmetric solution
cs complementary symmebric solution
I inviscid solution

n order of epproximation

P particulsr solution

w0 conditions at y =0

Wy conditions at y =1

0 zeroth~order approximation

1 first-order approximation
Superscript:

(2) second flow and heat-transfer state
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APPENDIX B

FIRST-ORDER SOLUTIONS

The explicit forms of the first-order solutions to be used in equa-
tion (46) are:

1
Vigo = [Bl cosh r1 cos rn + By sinh rn sin rn + Bz cosh 2rn cos 2ry
Raa?z
+ B, sinh 2ry sin 2rn + B=(cos 2rn - cosh 2ry) + 15 B (B1)
4 5 3
1 X
vy = Bg cosh rn cos rn + By sinh rn sin rn - By cosh 2rn cos 2ry
Ra372[

+ Bz sinh 2rn sin 2rn - 15 B,g (B2)

Vig = 1—2::};75[38 cosh rn cos rn + Bg sinh r7 sin rq

+ Byg cosh 2 rn cos 2 rq + By, sinh 2 rn sin 2rm

+ Byn(cosh 2rq + cos 2rn) - 15 Blc;_] (B3)

1
viz = 5;375[315 cosh rM cos rn + By, sinh ry sin ryq

- BS cosh 2rn cos 2rn - 34 sinh 2ry sin 2rn

+ Bg (cos 2rn - cosh 2rq) - 15 35] (B4)

1 _
Vig = Ra,s > Bl5 ginh rq cos rn + BlG cosh rn s.:'Ln rq

+ Byq sinh 2rn cos 2rn + Byg cosh 2rn sin 2ry

+ Bg sin 2rn + B, sinh 2rrj} (B5)
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1

Vig = RaWE[BZJ_ sinhk rn cos rn + B22 cosh r7 sin rn

- Byg sinh 2rn cos 2rn + Byg cosh 2rn sin 2rn
+ By sin 2rn - Big sinh Er'q] (B6)

The constants B;(i = 1, 2, ... 22) appearing in the preceding equations

are readily computed for a given Ra. In the subsequent section of this
appendix these constants are written explicitly in & form suitable for
reasonebly rapid computation.

The second derivatives appearing in equations (54) and (55) are

V'" = ‘Ral/ 2
01 4(coszr - cos

5 )[cosh r 8in r cosh rn sin ry
hr

+ sinh r cos r sinh r7y cos r'q] (B7)

vip = ﬁ[BZ cosh rn cos rn - By sinh r7 sin ry
+ 4B4 cosh 2rn cos 2rn - 4Bz sinh 2ry sin 2ry

- 2Bg(cos 2rq + cosh Zrn)] (B8)

n

1
11~ éRa[B7 cosh r1 cos rn - B6 sinh rn sin rq

+ 4Bz cosh 2rn cos 2rn + 4B, sinh 2rn sin Zrn] (B9)

1
vip = ZRE[Bg cosh rn cos rn - Bg sinh rq sin rq
+ 4B15 cosh 2rn cos 2rn - 4B sinh 2ry sin 2ry

+ ZBlz(cosh 2rn - cos qu)] (B10)
1
v, = EEBl‘i cosh rn cos rn - Byz sinh rn sin rq

- 4B4 cosh 2rn cos 2rn + 4Bz sinh 2rn sin 2ry

- 2Bg(cos 2rn + cosh 21'1])] (B11)
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Vi'.AL = le'-{a—:' -By5 cosh rn sin rq + Byg sinh rn cos 1

- 4Bq7 cosh 2rn sin 2rn + 4B g sinh 2rn cos 2rm

- 2Byg sin 2rn + 2Bpg sinh qu] (B12)

vig = E}a_ -Bp1 cosh rn sin rq + Bpp sinh rn cos TN

+ 4B1g cosh 2rn sin 2rn + 4B17 sinh 2rn cos 2rm

- 2By sin 2rn - 2Bpg sinh Zrn:l (B13)

Constants for First-Crder Approximation

The constants eppearing in equations (Bl) to (B13) are written in
an expedltious form for computbting as follows:

= - 41 - Y
B, = fi_l:( 3D HD,)E, + (Dg-3D,)E, + 2(DgiD,)E5 + 2(D +D5)E,
hqh
512 8182
+ (D5+D4)E5 - (D1+D2)E6]+ I5 -—M—]j— (B14)
2 2
128 (2h1° + hp®)
- (D1#Dg)Es - (DxD4)Bg|- T3 W (B15)
hh
32 Bibp
Bz = - 15 Ty (B16)
2 2
16 (B = By%)
By=T5 — W (827
2 2
16 (R1¢ + hof)
Bs=-F —w (B18)
1
4
By = -f]—_EBDl—DZ)EZ + (D3-3D4)El + (D3+D4)E6 + (Dl+Dz)E5
256 (1,2 2 ]
- 25 (p2 - n
Ta, (ho 1%) (B19)
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128 hihy
B, = Ll[(-D3+3D4 Ep + (8D1-Dg)Ey - (Dy+Dp)Eg + (D54-D4)E5;l e
(B20)
Bg = - —[(D D-2D,)C; + (2D 4D,-Dg)C, ~ 2(Dg#Dg)Cs - 2(Dy4Dg)C,
448 boh,  32(MHM,)
+ (Dg-Dg+2D4 )Cs + (-21314437-138)05] 5 - (B21)
4
Bg = - —L-z-[(ZDl+D7-D8)cl + (-DgiDg+2Dy)Cy - 2(D74Dg)Cz + 2(DgDg)Cy
64(M5-M, )
+ (-2Dp4D;-Dg)Cs + (-D5+D6-2D4)06] —E— (B22)
32 hyh
2
Bio = ﬁaz'l— (B23)
16(Ms5-My)
S 4
gett 15N, (B2¢)
16(Ms+M, )
. |
B, = L—lB-SDl+D2)E1 + (Dz-3D,)Ep - 2(DgD, )Ex - 2(Dy+Dy)E,
512 hyhy
+ (Dz#D4)Eg - (D1+Dp)Bg]- —Ta, (B26)
4
1
- 128 1y 2 2
(D5+D4_)E§] - Tom, [hl + th] (B27)
4
B15 = -LE[(2D1+D7'DB)Q1 + (D5-Dg-2D4)0Qp - (D5tDg)Qz + (D7+Dg)ey

- (Dg simh 2r)Qg - (Dyg sinh 2r)ag - (Dg sin 2r)@; - (Dig sin 2r)qg]

+ ——[ 20hg + 1%hs + 18 siuh 2r - 6 sin 2r] (B28)
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Bg = f‘;[( -D5#Dg+2Dy)Q + (2D1+D7-Dg)Qp + (D7Dg)Qz + (D5+Dg)ay
- (Dyg sinh 2r)qQg + (Dg sinh 2r)Qg - (Do sin 2r)Qy

+ (Dg sin 2r)Q8]+ T%s-[lz% - 20hy - 6 sinh 2r + 18 sin Zr_]

(B29)
16h,
By = 5K, (B30)
16h,
Byg = ToiL, (B31)
8 sinh 2r
Big = - T (B32)
8 sin 2r
Bog = = '——'?ms—- (B33)
4
By = i’g[('ZDl'D7+D8)°‘2 + (D5-Dg=2D4)Q + (D5Dg)Qy + (D7+Dg)ez
+ (Dg siuh 2r)Q7 + (D1g sinh 2r)Qg - (Dg sin 2r)Qg
- (Dyg sin 2r)Q6]+ -1—451\4;[2%4 + 125 + 18 sin 2r + 6 sinh 2r|
(B34)

Baz = f_z[(Ds'Ds‘ZDQQz + (2D;+D,-Dg)Q) - (D,D5)Q, + (DgDg)as
+ (Dyg sinh 2r)Q; - (Dg sinh 2r)Qg - (D;q sin 2r)Qg

+ (Dg sin Zr)Qe]- 1—5%4-3-[12114 + 20hz + 6 sin 2r + 18 sinh 2r]
(B35)
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where

o

o

2
5

cosh®r cos®r simh r sin r
sinhSr sindr

coshSr cosdr
sinh®r sin®r cosh r cos r
cosh r cos°r sinhZr

coshsr cos T sinzr

sinh3r sin r coszr
coshzr sin:”r sinh r

ginh r cos r

cosh r sin r J

2
3

sinh 2r sin 2r -~ % sinh r sin r

costhcosZr-2+écoshr cos r

5

4

5

3

cos 2r -%cosh2r+-§-coshr cos T

4
c052r+£5'-cosh 2r+§sinhr sinr

sinh 2r sin 2r +-:I£ sinh r sin r

5

12

cosh 2r cos 2r + 2 -~ = cosh r cos r

\

37

(B36)

(B37)
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cosh 2r cos 2r + 2 = % cosh r cos r

uifo

sinh 2r sin 2r - % glnh r sin r

oo

2 2 8
-5 cos 2r +~§ cosh 2r - T ginh r sin r

% cos 2r - % cosh 2r +-% cosh r cos r

sinh 2r sin 2r + % gsinh r sin r

afoo

cosh 2r cos 2r + 2 =~ % cosh r cos r

u1jro

cosh r cosr 3
sinh r sin r

cosh r sinh (1 - 2 cos@r)

- sin r cos r(2 cosh?r - 1) y

(coshr + cos?r - 1)3
(cosh®r - cos®r)? (cosh®r + cos’r - 1)

2

(coshzr + cosPr - 1)@

(cosh?r - cos?r)2

(cosh®r + cos®r - 1) (cosh®r - cos@r)

coshzr sinzr

sinzr coszf

NACA TN 3141

./

(B38)

(B39)

(B40)

(B41)
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Q,l=-§cosh2rsin2r-%coshrsinr w
2 4
Q2=3-sinh2rc052r-gsinhrcosr
2 4
Q3=-5-sinh2rc052r-§coshrsinr
Q4=-§cosh2rsin2r+ésinhrcosr
5 5
> (B42)
= —sin2r+§-sinhrcosr--g-coshrsinr
%B=-5 5 5
Q6=-.g_sin2r+%coshrsinr+%sin.hrcosr
Q—-g-sinh2r+-§coshrsinr-Esinhrcosr
7T~ 75 5 5
—-ésinth E;—s:h:.hrcosr---g-cohr:sin:r'
% =3 °5 5 ©°F J

Nusselt Number Constants

'The constants appearing in equations (83) to (84) are given
explicitly as

1, = (By-By)sinh r cos r - (By+By)cosh r sin r + 8(B4-Bz)sinh 2r cos 2r

- 8(Bz+By)cosh 2r sin 2r - 4Bg(sinh 2r - sin 2r) (B43)
0, = (B;-Bg)sinh r cos r - (BgtBy)cosh r sin r + 8(Bz+B,)sinh 2r cos 2r
+ 8(34-]33)cosh 2r sin 2r (B44)
Q, = - - i - :
3 = (Bg-Bg)sinh r cos r (BgtBg)cosh r sin r + B(Bll Blo)smh 2r cos 2r

- 8(B,ytByy)cosh 2r sin 2r + 4By,(sinh 2r + sin 2r) (B45)
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§4 = (By4-Bizg)sinh v cos v - (Byz+By4)cosh r sin r
+ 8(Bz-By)sinh 2r cos 2r + 8(Bz+B4)cosh 2r sin 2r
- 4Bg(sinh 2r - sin 2r) (B46)
575 = (Byg-Byg)cosh r cos r - (Byg+Byg)sinh r sin r

+ 8(Byg-By7)cosh 2r cos-2r - 8(By7+Bqg)sinh 2r sin 2r

4B,g cos 2r + 4Bgp cosh 2r . (B47)
526 = (Bgp-Bpy)cosh r cos r - (Boy4Bpo)sinh r sin r
+ 8(By7+Big)cosh 2r cos 2r - 8(By7-Biglsinh 2r sin 2r

- 4By cos 2r - 4Bg cosh 2r ' (B48)
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TABLE I. - ZEROTH ORDER UNIVERSAL FUNCTIONS
(a) Ra = 10 (b) Ra = 10°
" "

M| Yoo Yor | Yoz Yor Tl oo | Tm Vo2 o1
o |o.88z1]0 ~0.3571 0 |o0.38002[0 -0,59713]|0

.1| .8833) -.01203| -.3536 | .o7812| | .1| .36748|-.03828| -.s9260 .2220

.2| .8876) -.02504| -.3431 | .1363 .2| .38973|-.07435| -,57890| .4483

5| .8946| -.03570] -.3256 | .2347 3| .42844|-.1059¢| -.35537| .5753

4| .9041| -.04387| -.3001 | .3132 4| .47700{-.13079| -.52119| .9108

.5| .9159 -.043902| -.269¢ | .3921 .5| .54057|-.14651| -.4751 |1.1545

.6 .9298{-.05028] -.2304¢ | .4713 .6| .B1597|-.15069| -.2154 |1.4073

7] .9457|-.04676| -.1842 | .5507 | | .7| .70173|-.14079| -.3407 |i.e604
.8 .9628|-.03771] -.1304¢ | .6304 .8| .79597|-.11419]| -.2476 |1.9402

.9 .9811|-.02237| -.08901| .7104 .9| .89832|-.06818| -.1350 |2.2180
1.0.0 |o 0 7908 | |1.0|1.000 |0 0 2.5000
(¢) Ra = 1600 (&) Ra = 10%

1 Y00 o1 Vo2 vor || " Y00 01 Y02 Y01
0 |-0.1342 |0 -0.1672| O 0 ]-0.053806[0 0.02232€ | 0

1| -.1258 |-.06668| -,1735| .09850( .1| -.056456|-.012229| .015544 | -.e621
.2 | -.09985(-.1322 | -.1929| .2639 || .2| ~.062696|-.031015]-.0054315| ~1.2444
3| -.05462(-.1951 | -.2217| .5616 || .3| -.067254|-.062081|-.042058 | -1.5254
4| -.01201| -.2522 | -.2558] 1.053 4| -.060949|-.10908 |-.095256 | -1.6120
5| .1061 {-.2986 | -.2886f 1.798 || .5| -.030510|-.17164 |-.16322 | -.g074
.6 .2279 |-.3266 | -.3105| 2:840 || .6| .040867|-,24238 |-.23798 .8741
7| .3806 |-.3258 | -.3092| 4.209 || .7| .17153 |-.30309 |-.30121 | 4.1880
.8 .5638 |-.2828 | -,2696{ 5.897 8| .37653 |-.32059 |-~.32004 9.3285
9| .7745 | -.1807 | -.1736| 7.862 || .9| .85984 |-.24313 |-.24308 |15.449
1.0|1.000 {0 0 10.00 |{1.0] 1.0000 |0 0 25,000

¥

THIE NI VOVN
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TABLE JT. - FIRST ORDER UNIVERSAL FUNCTIONS

{a) Ra » 10
n vig i1 vig 13 Yi4 Y15 io vhy 2 vis viq vig
0 [o.3388%10-7|0.97802x10-2 |0, 2079102 | 2, a535x10"2 |0 0 -0,7817x10-2 |-2.0753x10% | -0. 7480x10-2 | -8,0109x10-2 [0 0
2| 3348 98780 2941 2,8228 00050551072 " _oo31dw10-2| - 7214 -2,0763 -. 7382 -£.0180 01315x10-2 | .0zpARx0-R
2| e .8358 2829 2,7510 000750 .OOBEE ~. 7024 -2,0811 -.8983 -6.0368 .02077 02774
3| .308e .8840 265 2.502¢ .00158 01083 -.1226 -2,0793 -.6431 -6,0375 .01882 00892
4| .2818 .8104 241 2.5705 .00252 01388 -,7110 -2.,0850 -.5720 ~5.9821 , 00359 -.04130
5| 2497 T .210 2.0094 00345 01719 -.6538 -1.8866 - ~5, 8152 -, 02096 -.1211
6] .elll .8058 .175 1.7892 004&RT 01806 - 6336 -1,8484 - 4267 -§,4802 - . 05818 -.2138
7| Lledl 4752 L1365 1,5085 0044 01918 - 5443 -1.8143 ~.5486 -4,8219 -.0859 -.3077
.81 L11s0 5279 008 9578 .003% 01819 -.4157 S1.2074 -, 2872 -3.7018 -,1001 VY.
.8 ,0598 .1883 047 4897 ,0012¢ 00848 -.23m), -, 7206 -.1617 -2.2580 -,0783 = 27R0
1,0 0 0 0
(b) ha = 10R
" [] n » n h
"1 V12 13 Y14 i Yo Y11 V12 13 T4 Y15
5,2062x10-3( 4,81 74%10"3 | 1,4360:103] 4.001x10-3 |0 ) -9,7782%1073| _8,1120%10-3 |-5.847x10~5| -8, 388%10-H 0 0
4.4767 1.4178 .988 ,o083x10~5 | .om1am=10-5| -.p38 -B.8E15 -3.674 -7.123 2174x107Y ,0508x10-3
4.3555 1,3640 3.858 0147 04kl -10.388 -8.8446 -3.365 -7.478 3466 0101
4.1435 1.87ew 3,870 0288 .0662 -11.008 +8.21B1 -3,058 -8.017 .5156 -.1155
5.8412 1.1881 3,418 0411 .oa7l -11,839 -B.B4b -2.895 -3.851 .oaTe - 3758
5.4408 1,014P 5.088 .0688 1041 -11.888 -10.341 -2,339 -9,257 -.%2p1 -.765),
2,9570 L8458 2.627 08B 1138 -11.804 -10.480 -2.025 -9,553 -.8587 1. 2448
2,529 .6573 2,095 0721 1104 -10.829 -9.888 -1.7670 -9,323 -1.3614 L. 8975
1.5238 AB14 1.468 .06R% 0905 -8.685 -B.,251 1. 4711 -5.087 -L.5864 119064
,B387 2308 757 L0372 L0520 -6.158 -B5.11% -.9939 -5.248 -1, 2800 11,6018
Q 0 0 0 0 o 0
(2) Ra = 1800
']
n vio 11 Via 13 14 V15 ¥io "I *Ie s e vis
o | ’2.749x10-8| -2,0150%10-5| 40, 700%10~-B| 11, 238x10-8| o 348,90%10"%| 77.720}1078] -84.078x10"6| zs.570x0-% o 0
.1 84, -1,5255 10.281 11.408 -,24089x10-8] 4.3090:00-8| x08.82 78.511 -2,11 30,080 48.385x1078] 28 439:10-6
.2| 85,138 - 44076 39.048 11.876 -,02481 8,26782 185.0% 78.279 -78,47 15.118 85.875 -85,556
5| 95,584 1.8000 37.047 12,488 1.038% 13,586 -15,679 89,827 88,28 -=,678 100.25 -90,303
.4[101.85 4,1286 54,584 13,040 %.0738 13.988 ~277.74 41.088 -80,85 -28.666 80.08 ~168.28
.5 (108,27 T.1424 51.086 13.%08 5.8738 15.310 -578,37 ~18,T4 -50,95 -8%.088 18,46 -118.38
.8]102.98 9.9388 27.18s 058 8,7891 15,487 ~863.87 -1)5.38 -75.20 3,580 -94.83 -134.58
.7( 82,071 11,555 20.484 11.825 10.73 14,286 ~1082.8 -238, 50 -114.09 -122.82 —R32 .49 -185.40
8] 70.72% 10.627 16.852 §,6828 10,388 11.427 ~1069.4 -334.83 -184.2 -188.88 -344,08 -109.69
9| $8.95¢4 6.051 9.185 5.583 8,873 8.6R0 -756.1 -510.97 -182,8 -178,30 -323,14 ~194, 82
1.0 0 0 ] o 0 0 o 0 [
(d) Aa = 104
n 10 V11 Vig 13 Va4 V15 rlo 11 vig vis vle vig
O |-17.548x10"9|.18.7a5x10-8| 25.304x1078| 29,005x10-8 o 58,587x1076| -1,4552x20"8| 9.020741078( 10.18710-8 0o
g -.7i87 -18.488 27,8567 104 -8.7581x10-8| 2a3.941n10-8| 3¢,055 -.94689 8,3848 0.2584 1.0880x10"%| ,92580x10-8
.2| s0.138 -18.00% 40,586 48,215 -12.402 45,714 34,404 . 71186 68,3285 8.5257 2.675% . 7684
.3| 135,18 -18.712 59,810 88,705 -15.288 71.109 51,521 3.7608 2.6926 2.1228 5.2898 ~1.1364
.4|250.35 -15.559 81.018 91.262 -12.825 94.230 20,055 71,9142 -2.1724 -3,256 8. 7500 -4,818
.5|sam. 58 -4, 5476 100,25 110,51 -1,8890 112.70 -6.8573% 11.238 -7.189 -8,573 11,3582 -8.833
,6[811.01 1,250 112.51 121,58 20,451 122.7% -52,880 . -11.080 -11.929 a8.828 -11.800
.7|3ad.12 17,011 113,78 120.73 50.144 121.15 -114.13 ~E.490 -14,588 -14.,906 -6.001 -14.530
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Figure 1. - Schematlc sketch of configuration considered.
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Figure 2. - Continued. Dimensionless velocity distributions
for various heat-source parameters with Re = 10, KA = 10,
C = -1.
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Figure 4. - Dimensionless veloclty distributions for various
heat-gource parameters with Ra = 1600, Ky = 10, C = -1.
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Figure 5. - Dimensionless velocity distributions for various
heat-source peremeters with Ra = 107, Ky =10, C = -1.
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Figure 6. - Dimensionless temperature distributions for veri-
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Figure 6. - Concluded. Dimensionless tempereture distribu-
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Figure 7. - Continued. Dimensionless temperasture distribu-
tions for various heat-source parameters with Ra = 10%,

KA=lO, Cc = -1.
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Figure 8. - Dimensionless temperature dilstributions for vari-
ous heat-source parameters with Re = 1600, KA =10, C = -1.
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Figure 8. - Continued. Dimensionless temperature distribu-

tions for various hest-source parameters with Ra = 1600,
KA = 10, C = -1.
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Figure 8. - Concluded. Dimensionless temperature distribu-

tions for vearious heat-source parameters with Ra = 1600,
KA =10, C = -1.
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Figure 9. - Dimensionless temperature distributions for vari-
ous heat-source parameters with Ra = 107, KA = 10, C = -1.
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